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Pernambuco, Brazil, 6 Laboratório Central de Saúde Pública, Secretaria de Saúde do Estado de Pernambuco, Recife, Pernambuco, Brazil, 7 Department of Medicine,

Division of Infectious Disease, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 8 Department of Pharmacology and

Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 9 Department of Infectious Diseases and

Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America

Abstract

Background: We report the detailed development of biomarkers to predict the clinical outcome under dengue infection.
Transcriptional signatures from purified peripheral blood mononuclear cells were derived from whole-genome gene-
expression microarray data, validated by quantitative PCR and tested in independent samples.

Methodology/Principal Findings: The study was performed on patients of a well-characterized dengue cohort from Recife,
Brazil. The samples analyzed were collected prospectively from acute febrile dengue patients who evolved with different
degrees of disease severity: classic dengue fever or dengue hemorrhagic fever (DHF) samples were compared with similar
samples from other non-dengue febrile illnesses. The DHF samples were collected 2–3 days before the presentation of the
plasma leakage symptoms. Differentially-expressed genes were selected by univariate statistical tests as well as multivariate
classification techniques. The results showed that at early stages of dengue infection, the genes involved in effector
mechanisms of innate immune response presented a weaker activation on patients who later developed hemorrhagic fever,
whereas the genes involved in apoptosis were expressed in higher levels.

Conclusions/Significance: Some of the gene expression signatures displayed estimated accuracy rates of more than 95%,
indicating that expression profiling with these signatures may provide a useful means of DHF prognosis at early stages of
infection.
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Introduction

The dengue virus is a member of Flaviviridae family, genus

flavivirus with four antigenically distinct serotypes (DENV-1 to

DENV-4). Dengue virus infection is a global public health

concern, with an estimated incidence of 50–100 million cases of

dengue fever (DF), resulting in 500,000 clinical cases of life-

threatening dengue hemorrhagic fever syndrome (DHF) and

24,000 deaths per year [1]. DHF is characterized by vasculopathy,

which results in sudden plasma leakage that reduces the blood

volume and may result in hypovolemic shock, known as dengue

shock syndrome (DSS). There is no antiviral therapy to treat

dengue infection, neither are there means to prevent the

development of DHF.

During the acute febrile phase of infection, DF and DHF

patients display a very similar clinical picture. However at

defervescence (after 4 to 7 days of the beginning of the symptoms),

DHF patients start to present signs of circulatory disturbance [2],

which makes medical management a major challenge in endemic

areas. This is especially true during outbreaks when dengue cases
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typically over saturates the capacity of all medical points-of-care,

and results in shortage on the capacity to attend the regular

demand for medical assistance causing major disruptions on the

public health systems.

The World Health Organization [2] has established clinical

criteria to define DHF cases, but the difficulties of both fulfilling

these criteria and early identification of severe cases, make the

clinical management of severe forms of the disease even a greater

challenge [3,4]. Therefore, a search for new tools to predict patient

outcome is essential to facilitate the assessment of the need for

medical interventions.

The current concept underlining DHF immunopathology

relies on epidemiological evidence indicating an increased risk of

developing DHF in secondary dengue infections. This concept

led to the identification of biological mechanisms involving

antibody mediated enhancement (ADE), mediated by non-

neutralizing antibodies [5,6], as well as exacerbated activation

of cross-reactive T cell clones [7,8,9,10], both acquired after

primary infection. Some of the ‘‘markers’’ of dengue severity

found on peripheral blood that were correlated with plasma

leakage on DHF include several inflammatory cytokines,

chemokines and adhesion molecules that are expressed at high

levels [11,12,13,14,15,16,17], complement activation products

[18,19], increased frequency of activated cells [20,21] and large

number of cells undergoing apoptosis [9,22]. All these findings

have helped to advance the understanding of the immune

mechanisms involved in the development of DHF but none of

them were proven to be reliable or useful as biological markers

for clinical use.

DNA microarrays have been used as a tool to identify

‘‘signature genes’’ and predict successfully, patient outcome for

cancer [23,24] as well as for bacterial and viral infections [25,26].

Using this approach, some studies have shown that at the peak of

the disease, several genes are differentially expressed in dengue

patients presented with the more severe disease [27,28]. Hence, we

believe that an early gene expression signature differentiating the

mild from the severe clinical outcomes of dengue could be a useful

tool for developing biomarkers to predict clinical outcome, which

will facilitate the clinical management of dengue infected patients.

Here we report the analysis of gene-expression microarray data

of PBMC samples collected from DF and DHF patients during the

febrile phase of the disease. These data were used as the basis for

the development of reliable biomarkers to predict the clinical

outcome of dengue infection.

Methods

Dengue Cohort Design and Strategy for Functional
Genomic Studies

A cohort of acute febrile patients admitted on three hospitals in

the city of Recife, state of Pernambuco, Brazil, was established and

described elsewhere [29,30]. Briefly, sequential blood samples

were obtained at the day of admission, day 1, and at days 3, 5, 7,

15 and 30. Dengue cases (confirmed by either serology, RT-PCR

or virus isolation) were clinically classified according to the WHO

criteria into two classes: Dengue Fever (DF) and Dengue

Hemorrhagic Fever (DHF) [31]. All participants signed an

informed consent. This study, that included several methods

suitable for studies related to dengue immunopathology including

functional immunomics, was reviewed and approved by ethics

committee of Brazilian Ministry of Health CONEP: 4909; Process

nu 25000.119007/2002-03; CEP: 68/02. In addition, the Johns

Hopkins IRB also reviewed this study as protocol JHM-IRB-3: 03-

08-27-01.

The inclusion criterion for this functional genomic study was:

All the subjects enrolled had to have at least three medical visits

within the first two weeks of study enrollment. The dengue

patients had to have confirmed acute dengue 3 infection based on

RT-PCR/virus isolation and serology, be febrile at the time of the

first hospital visit (temp. above 38.5uC) and with more than

106106 PBMCs available for microarray analysis collected at the

first visit. Moreover, for DHF group, the samples must be collected

prior the onset of circulatory disturbances (hematocrit and levels of

serum albumin normal) and no signs of bleeding (tourniquet test

negative). Samples had to have clear definition of the clinical

outcome of either DF or DHF. A non-dengue group of patients

(ND) consisting of individuals with febrile infection of unknown

etiology with negative tests results for dengue by RT-PCR, virus

isolation and serology after at least 3 samples collected within the

first two weeks after enrollment. This group includes suspected

dengue cases collected during the same period as the dengue cases,

but for which dengue infection was not confirmed through either

RT-PCR/virus isolation or serology in at least three blood samples

collected at different days. The samples from DF, DHF and ND

patients were matched to avoid spurious associations with patient

age, gender, dengue infection history and days of symptoms

between the groups.

The functional genomic studies were performed on total RNA

extracted from PBMC purified from blood samples collected from

febrile patients at the time of their first medical visit. The samples

selected for this study were collected from 18 confirmed dengue 3,

genotype III cases and 8 control samples (ND group). None of the

DHF patients presented vasculopathy signs and symptoms at the

time the samples used in the functional genomic characterization

were collected. At the time of collection the patients referred

approximately 5 days of disease and the absence of fever was

reported two to three days after enrollment. Among the dengue

confirmed cases, 8 patients were characterized as DF and 10

patients were classified as DHF (Table 1).

Sample Processing for Genechip Hybridization
Blood samples from patients enrolled in this study were

collected in heparin vacutainer tubes (BD Vacutainer) and within

2 hours from the collection, PBMC samples were separated by

gradient density using Ficoll-Paque (Amersham Biosciences) and

cryopreserved in 10% (v/v) Dimethyl sulfoxide (DMSO; Sigma-

Aldrich) in inactivated fetal bovine sera (FBS; Hyclone). Four

million frozen cells were thawed and immediately lysed with Trizol

(Invitrogen) for total RNA extraction through chloroform

extraction and isopropyl alcohol precipitation following manufac-

turer’s protocol [gene expression using either fresh or frozen

PBMC were compared and shown to be similar, (data not shown)].

The total RNA was purified by using the RNeasy MinElute

Cleanup Kit (Qiagen) according to the manufacturer protocol and

quantified by spectrophotometry at 260 nm and 280 nm (UV

spectrum). Total RNA was used for cRNA synthesis through two-

cycle target labeling kit (Affymetrix) according to the manual

manufacturer. Briefly, RNA isolated from the PBMC was biotin-

labeled and hybridized to human oligonucleotide microarrays

(Affymetrix) by using a two-cycle methods of cDNA synthesis as

follow. On the first cycle, first-strand cDNA was prepared by using

a T7-(dT) primer and Superscript II reverse transcriptase

(Invitrogen) from 10 to 100 ng of cellular RNA. Second strand

synthesis was performed by using E. coli DNA polymerase I and

the double-stranded cDNA was used for in vitro transcription

(IVT) for cRNA amplification by using Megascript T7 kit

(Ambion). The product of this first cycle of reaction (cRNA) was

used for reverse transcription for synthesis of first and second

DHF Biomarker
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Table 1. Patients selected for functional genomic studies.

Dengue diagnosis

Patients Clinical Diagnosis Sex Age Days of Symptoms IgM IgG PCR/virus isolation

P330 DF F 40 4 Neg Pos Pos

P310 DF F 30 3 Neg Pos Pos

P331 DF M 45 6 Pos Pos Pos

P121 DF M 53 4 Neg Pos Pos

P129 DF F 29 5 Neg Pos Pos

P164 DF M 27 1 Neg Pos Pos

P171 DF M 44 5 Neg Pos Pos

P243 DF F 23 7 Pos Neg Pos

P277 DHF M 41 3 Neg Pos Pos

P307 DHF F 41 8 Pos Neg Pos

P125 DHF F 84 8 Pos Pos Pos

P128 DHF F 26 7 Pos Neg Pos

P145 DHF M 19 7 Pos Neg Pos

P165 DHF F 22 4 Neg Neg Pos

P206 DHF M 36 8 Pos Pos Pos

P235 DHF F 35 5 Pos Pos Pos

P102 DHF F 21 7 Pos Neg Pos

P111 DHF F 21 5 Pos Neg Pos

P317 ND M 41 4 Neg Neg Neg

P237 ND M 25 8 Neg Neg Neg

P239 ND M 47 4 Neg Neg Neg

P251 ND M 54 4 Neg Neg Neg

P195 ND F 23 6 Neg Neg Neg

P199 ND F 19 6 Neg Neg Neg

P216 ND F 30 2 Neg Neg Neg

P269 ND F 64 4 Neg Neg Neg

P430 DHF F 25 8 Neg Pos Neg

P586 DHF F 16 5 Pos Pos Pos

P557 DHF F 76 9 Pos Neg Pos

P549 DHF F 10 11 Pos Pos Neg

P543 DHF F 29 11 Pos Pos Neg

P586 DHF F 16 7 Pos Pos Pos

P414 DHF M 34 5 Neg - -

P305 DHF M 35 6 Pos Pos Pos

P677 DF F 69 8 Pos Pos Neg

P659 DF F 32 8 Pos Pos Neg

P650 DF F 58 8 Neg Pos Pos

P633 DF F 39 8 Pos Neg Neg

P634 DF F 27 8 Pos Pos Pos

P620 DF M 62 8 Pos Pos Neg

P600 DF M 52 8 Neg Pos Neg

P588 DF M 26 5 Neg Neg Pos

P310 DF F 30 3 Neg Pos Pos

In bold: samples used exclusively in the qPCR assays. DF: Dengue Fever; DHF: Dengue hemorrhagic fever; ND: Non-Dengue; M: male; F: female; Pos: positive; Neg:
negative; -: No information.
doi:10.1371/journal.pone.0007892.t001
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strands of cDNA as described for the first cycle. This cDNA was

used for IVT for synthesis of biotin-labeled cRNA, which was

fragmented and sent to Microarray Core Facility at The Johns

Hopkins University for target hybridization to Human Genome

U133 Plus 2.0 DNA Chip (Affymetrix), staining and scanning.

Microarray Data Quality Control
The quality of the microarray data was assessed using several

criteria: visual inspection, noise/efficiency measurements, spike-in

controls, housekeeping gene expression, and RNA degradation

plots. Visual inspection based on the high-resolution. DAT files

did not reveal smudges or streaks, and the B2-oligo probes (e.g.,

chessboard patterns around edges and name of array) were also

visible. Noise/Efficiency measurements made by the Affymetrix

MAS 5.0 software that can be used to evaluate the quality of the

arrays are displayed in the Supplement material S1. Noise Q

factors, background, scaling factors, and the percentages of present

calls were similar across all arrays. Average background values

were below 100 for 20 of the 26 microarrays; scaling factors were

within three folds of each other, for 25 of the 26 microarrays; and

the percentages of present calls were around 40% or higher for 25

of the 26 arrays. None of the six arrays that presented high

background had a rate of present calls significantly below 40%. All

39-probe sets and middle probe sets for all 4 spike-in poly-A

control genes (dap, thr, phe, lys) were called present in all arrays, as

were all probe sets for the four prokaryotic hybridization control

genes (bioB, bioC, bioD, cre) and the human housekeeping genes

GAPDH (human glyceraldehyde-3-phosphate dehydrogenase) and

Beta-Actin. Furthermore, RNA degradation plots showing the

average intensity of probes indicate an acceptable levels in all

probe sets displayed (see in Supplement material S2).

Quantitative Real Time PCR for Microarray Validation
Four DF/DHF differentially expressed genes (MT2A, PSMB9,

C3aR1 and HLA-F) were selected for quantification by quanti-

tative real time PCR (qPCR). Genes were amplified and detected

using TaqManH gene expression assays with primers and probes

commercially designed (Applied Biosystems). RNA extraction was

performed according to the manufacturer’s manual for the

RNeasy Kit (Qiagen). Total RNA was reverse transcribed to

cDNA using SuperScript III First-strand Synthesis System for

qPCR (Invitrogen) using random hexamer primers according to

the manufacturer’s instructions. Quantitative real time PCR was

carried out on the ABI PRISM 7500 device (Applied Biosystems).

Beta-Actin was selected as endogenous control and all data were

normalized against it. The reactions were performed in triplicates

and included 2 ml of cDNA, primers (20 mM each) and 6.25 mM of

the specific probe or commercially pre-designed Gene Expression

Assay Mix (Applied Biosystems), Human Beta-Actin (Applied

Biosystems), TaqMan Universal PCR Master Mix (Applied

Biosystems) and water added to a final volume of 25 ml. Triplicates

of non-template controls (NTC) were included each time qPCR

was undertaken. Cycle conditions were as follows: after an initial

2-min hold at 50uC and 10 minutes at 95uC, the samples were

cycled 40 times at 95uC for 15 sec and 60uC for 1 min. Baseline

and threshold for cycle threshold (Ct) calculation were set

manually with Sequence Detection Software version 1.4. The

efficiency of amplification (E) of a target molecule was calculated

from the slope of the standard curve (plot of Ct versus the negative

log10 concentration of the target) derived from the slopes

(E = 10ˆ (21/Slope)21). For relative calculation the Delta Ct

method was used [ABI PRISMH 7000 Sequence Detection System

and Applied Biosystems 7500 Real-Time PCR System - User

Bulletin, Applied Biosystems] once all assays met the amplification

efficiency criteria of 100%610% [Application Note 127AP05-02].

Samples used in the qPCR assays are described on Table 1

(samples of ND patients and DHF patients number 105 and 112

were not used).

Statistical Analysis
Patient data quality-control, statistical analysis, and plotting were

carried out using Affymetrix MAS 5.0 software [32] and the open

source R statistical package, version 2.5.0 [33], and add-on libraries,

in particular the BioConductor library, version 1.16 [34]. Dendro-

grams and MDS plots were produced with the R functions ‘‘hclust’’

and ‘‘isoMDS’’, respectively, whereas heatmaps were obtained with

the functions ‘‘hset.emap’’ and ‘‘heatmap’’. All microarray data is

MIAME compliant and the raw data has been deposited in a

MIAME compliant database as accession number # GSE18090 and

it is available at http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?token = lpofdqcuugmwsng&acc = GSE18090. P-values corre-

sponding to two-tailed Welch’s two-sample t-tests were obtained

with the function ‘‘t.test’’. Functional category overrepresentation

analysis was performed with the performed with the EASE program

(Expression Analysis Systematic Explorer) at the DAVID Bioinfor-

matics resource website (http://david.abcc.ncifcrf.gov/) [35]. The

Linear Discriminant Analysis classification method implemented by

directly estimating the sample means and covariance matrices for

each diagnostic class [36]. Classification accuracy was estimated by

the method of bolstered resubstitution [37], which displays

good properties for gene-set selection in small-sample situations

[38,39]

Results

Detection and Variance Filters
After careful quality control analyses of each genechip,

Affymetrix MAS 5.0 software was used to analyze the data. From

54,675 gene transcripts on each of the 26 arrays, 12,299 were

called present (p-value ,0.04) on all arrays, whereas 20,365 were

not called present on any of the arrays. In order to retain only

promising genes and enable significant statistical analysis, we chose

to analyze the genes that were called present on at least 24 of the

26 arrays used in this study. This filter resulted in a total of 15,848

genes and among those, 3,549 genes (15,848212,299 = 3,549) that

were called absent on one or two arrays. Subsequently we applied

a variance filter to eliminate constitutive or housekeeping genes,

which retained the top 1/8 gene in variance out of 15,848 previous

genes, which resulted in 1981 ‘‘best’’ genes.

Exploratory Analysis
Figure 1 displays the dendrogram for the hierarchical clustering

of the 26 samples according to the expression of the 1981 genes

selected at the preprocessing stage. Average linkage and Pearson

correlation of log-transformed expression values were employed.

We can see that the samples fell into two major groups; the one on

the right contains only ND samples, and half (4) of the DF samples,

while the group on the left contains all the DHF samples, a couple

of ND samples (including one outlier, ND_199), and the other half

of the DF samples. This agrees with intuition, since the two most

different groups should be ND and DHF, with the DF samples

forming an intermediary group. This is confirmed by the 2-D and

3-D multidimensional scaling (MDS) plots for the 1981 selected

genes, displayed in Figures 2A and 2B. The dissimilarity measure

used was 12r, where r is Pearson correlation of log-transformed

values. Arrays were colored according to diagnostic class. It can be

seen that the DHF samples constitute a tighter cluster than the ND

samples, as expected since ND samples were obtained from patient

DHF Biomarker
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with fever of unknown etiology, whereas the DF samples could be

divided in two groups, one similar to the DHF samples, and

another not similar to DHF, and in fact closer in expression to

some of the ND samples (these are the two groups marked in

Figure 2A). The small stress values (13.52% in the 2-D case and

7.32% in the 3-D case), particularly in the 3D case, mean that the

underlying structure of the data is intrinsically a low-dimensional

one, which indicates that a small number of signature genes might

be able to account for the discriminatory content in the data.

Differential Expression Analysis
Statistical tests of differences between means (Welch two-sample

t-tests) were performed to show the most differentially expressed

mRNAs among the diagnostic groups. We considered four

comparisons among groups: DF vs. DHF samples; Dengue

(DF+DHF) vs. ND samples; DF vs. ND samples; DHF vs. ND

samples. The first comparison corresponds to the 18 samples that

come from dengue patients and is the most important comparison

for our purposes, as it discriminates between the severe

hemorrhagic form of dengue and the benign one. Important

genes used to characterize these two clinical outcomes were

gathered on Table 2. The ‘‘volcano plot’’ on Figure 3 and the

correspondent gene list on Table 3, show that p-values were well

correlated to fold changes in DF vs. DHF samples as well as for the

other comparisons (Supplement material S3). The largest

differences were observed in the comparison of DHF vs. ND, as

expected, followed by differences in (DHF+DF) vs. ND and DF vs.

ND. The critical differences in gene expression between DF and

DHF are the least pronounced. The top 40 genes with the most

significant p-values among the 1981 genes previously selected, for

each of the four comparisons, along with fold change values,

average signal intensity, and annotation from the DAVID

Bioinformatics Database at NIAID/NIH (http://david.abcc.

ncifcrf.gov/) can be accessed in the Supplement material S4.

Figure 4 shows the heatmap expression for the 40 top genes that

discriminate the DF and DHF samples, according to the Welch t-

test criterion, as well as the dendrogram of hierarch clustering and

MDS plot for the 40 top DF-DHF discriminatory genes. Table 4

displays the results of functional overabundance analysis of the list

of top 40 DF-DHF discriminatory genes performed with the EASE

program (Expression Analysis Systematic Explorer) at the DAVID

Bioinformatics resource website. The EASE analysis indicated the

enrichment of certain categories of genes. Five categories

presented significant scores (p,0.05) after Bonferroni correction

for multiple tests, including the ones involved on immune and

defense responses, response to biotic stimulus, copper/cadmium

binding and copper ion homeostasis. The EASE results for all 4

comparisons can be accessed in the Supplement material S5.

Identification of Classifier Genes
In addition to univariate gene selection by t-tests, we did

exhaustive feature selection (all possible combinations) of single,

pairs, and triplets of genes out of the prefiltered set of 1981 genes,

using Linear Discrimination Analysis as the classification rule, and

bolstered resubstitution as the error estimator (see Methods

section). Table 5 displays the top-ten 1-gene, 2-gene and 3-gene

classifiers, respectively, ranked by estimated classification error.

Supplement material S6 displays top-40 1-gene and 2-gene

classifiers as well as the top-100 3-gene classifiers, also ranked by

estimated error. There are 37 unique genes among the top-40

pairs, while there are 86 unique genes among the top 100 triplets.

The list of gene triplets is heavily dominated by the genes PSMB9,

MT2A, and LOC400368. In fact, only one triplet in the top 100

does not contain any of these three genes, namely (SFRS5,

PDCD4, MKNK2), which has an estimated error of 0.0383. The

average estimated error for the top classifiers was as follows: 1-gene

classifier (40) = 0.163960.0286, 2-gene classifier (40) = 0.06866

0.0096, 3-gene classifier (100) = 0.039560.0040, which indicates

that classification with pairs is more accurate than with single

genes, while classification with triplets is more accurate than with

Figure 1. Dendrogram of hierarchical clustering considering 1981 genes.
doi:10.1371/journal.pone.0007892.g001

DHF Biomarker
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pairs (the error margins above refer to a 95% confidence interval).

Feature selection with two genes and three genes has the potential

of ‘‘fetching’’ genes that cannot otherwise be found by using

univariate methods (such as t-tests). This can be seen from the list

of top two-gene classifiers. For example, we can see the gene for

the HLA-F (which is lower expressed in DHF than in DF, data not

shown). Figure 5 displays the plot of the best 2-gene classifier

found by exhaustive feature selection, consisting of the pair of

genes PSMB9 and MT2A. The estimated probability of error on

future data for this classifier, as determined by bolstered

Figure 2. Multidimensional scaling (MDS) plots for the 1981 selected genes. (A) 2-D MDS plot. (B) 3-D MDS plot. The elipses in (B)
depmarcate two major groups of samples (please see text).
doi:10.1371/journal.pone.0007892.g002

DHF Biomarker
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Table 2. List of genes differentially expressed in DF patients in relation to DHF patients based on the lowest p and highest fold
change values.

Symbol Gene Title p-value Fold-change Average signal

RNF36 ring finger protein 36 0.000119 2.3447 6.7868

UBE2J1 ubiquitin-conjugating enzyme E2, J1 (UBC6 homolog, yeast) 0.000419 22.3147 7.3763

CD300A CD300a molecule 0.000864 2.1544 7.079

IGL@ Immunoglobulin lambda locus 0.001172 23.0718 6.3888

MT1X metallothionein 1X 0.001294 2.2122 7.5485

MAGED1 melanoma antigen family D, 1 0.001644 22.0342 7.0617

GBP1 guanylate binding protein 1, interferon-inducible, 67 kDa///guanylate binding
protein 1, interferon-inducible, 67 kDa

0.00216 1.9967 7.8344

VAMP3 vesicle-associated membrane protein 3 (cellubrevin) 0.002351 1.8814 7.1191

C3AR1 complement component 3a receptor 1 0.002707 4.5817 6.0814

MYD88 myeloid differentiation primary response gene (88) 0.002823 1.8194 8.0611

FCGR3B Fc fragment of IgG, low affinity IIIb, receptor (CD16b) 0.002868 4.1952 6.1543

SAMHD1 SAM domain and HD domain 1 0.003019 2.4624 5.7873

UBE2G1 ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, yeast) 0.003307 22.1036 6.9206

EGR1 early growth response 1 0.00334 3.2916 6.1035

MT1H metallothionein 1H 0.003445 2.0475 6.755

TPD52 tumor protein D52 0.003567 22.2114 7.0498

POU2AF1 POU domain, class 2, associating factor 1 0.00391 22.7707 8.0521

PPAPDC1B Phosphatidic acid phosphatase type 2 domain containing 1B 0.004347 22.3491 7.075

RP1-93H18.5 hypothetical protein LOC441168 0.004813 2.3726 8.0818

SIDT2 SID1 transmembrane family, member 2 0.00485 1.9548 8.3433

GBP1 guanylate binding protein 1, interferon-inducible, 67 kDa///guanylate binding
protein 1, interferon-inducible, 67 kDa

0.004938 2.3334 7.0136

GBP1 guanylate binding protein 1, interferon-inducible, 67 kDa 0.005006 2.4888 7.5899

LOC96610///IGL@ Hypothetical protein similar to KIAA0187 gene product///Immunoglobulin lambda locus 0.005057 22.9244 7.0226

HSP90B1 heat shock protein 90 kDa beta (Grp94), member 1 0.005488 21.9074 8.2753

CRR9 cisplatin resistance related protein CRR9p 0.006054 21.8843 7.3673

NDUFB6 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6, 17 kDa 0.006174 21.828 7.2738

RNASET2 ribonuclease T2 0.006686 2.0165 7.819

GBP2 guanylate binding protein 2, interferon-inducible///guanylate binding protein 2,
interferon-inducible

0.007125 1.8139 7.6419

EGR1 Early growth response 1 0.007242 4.6155 6.0488

CD97 CD97 molecule 0.007485 2.2044 6.8153

TYROBP TYRO protein tyrosine kinase binding protein 0.007507 2.8639 7.711

CTA-246H3.1 similar to omega protein 0.007524 22.578 8.6364

SERPINA1 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1 0.00763 2.463 7.455

FGL2 fibrinogen-like 2 0.007811 2.6573 7.5789

TUBA3 tubulin, alpha 3 0.008598 1.8686 8.6244

TNFRSF17 tumor necrosis factor receptor superfamily, member 17 0.009406 22.7543 7.2692

GMNN geminin, DNA replication inhibitor 0.009426 22.2142 7.1972

SMC4L1 SMC4 structural maintenance of chromosomes 4-like 1 (yeast) 0.009866 22.2396 6.6128

FGR Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog 0.009879 2.1941 7.2555

TNFSF13///TNFSF12-
TNFSF13

tumor necrosis factor (ligand) superfamily, member 13///tumor necrosis factor
(ligand) superfamily, member 12-member 13

0.010068 2.352 6.3382

IGL@ Immunoglobulin lambda locus 0.010428 22.6368 6.334

GNAS GNAS complex locus 0.010903 21.8682 8.2788

UAP1 UDP-N-acteylglucosamine pyrophosphorylase 1 0.010949 21.9816 6.8578

ARMET arginine-rich, mutated in early stage tumors 0.011018 21.8831 7.4254

--- Immunoglobulin kappa light chain (IGKV) mRNA variable region, joining region, and
constant region///Immunoglobulin kappa light chain (IGKV) mRNA variable region,
joining region, and constant region

0.011066 22.6563 7.408
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Symbol Gene Title p-value Fold-change Average signal

HLA-DPA1 major histocompatibility complex, class II, DP alpha 1 0.011235 1.9378 7.2184

IGKV1D-13///
LOC649876

immunoglobulin kappa variable 1D-13///similar to Ig kappa chain V-I region
HK102 precursor

0.011292 22.3235 7.5191

PYCARD PYD and CARD domain containing 0.011531 1.904 7.3968

KIAA1505 KIAA1505 protein 0.011735 2.152 7.5726

SEC11L3 SEC11-like 3 (S. cerevisiae) 0.011854 22.0503 6.9297

CX3CR1 chemokine (C-X3-C motif) receptor 1 0.012371 2.3472 7.8999

MT1E metallothionein 1E (functional) 0.012654 1.8414 6.5549

CFD complement factor D (adipsin) 0.013175 2.7446 6.5182

C11orf75 chromosome 11 open reading frame 75 0.013342 2.1468 6.628

SRPRB signal recognition particle receptor, B subunit 0.01398 21.8251 7.2025

SAMD9L sterile alpha motif domain containing 9-like 0.01406 2.3893 7.1224

RP1-93H18.5 hypothetical protein LOC441168 0.014525 3.2665 6.6864

PACAP proapoptotic caspase adaptor protein 0.015153 22.4229 7.0357

KIAA0746 KIAA0746 protein 0.015464 22.0754 7.0611

HLA-DPB1 major histocompatibility complex, class II, DP beta 1 0.015645 2.4265 7.8066

PRDX4 peroxiredoxin 4 0.01571 21.8982 7.3706

--- Transcribed locus 0.016136 21.9733 6.7522

LOC652745 similar to Ig kappa chain V-I region Walker precursor 0.016187 22.6756 7.035

TCF7L2 transcription factor 7-like 2 (T-cell specific, HMG-box) 0.016262 1.8697 8.0753

--- Immunoglobulin kappa chain, V-region (SPK.3) 0.01639 22.3461 6.3625

PACAP proapoptotic caspase adaptor protein 0.016535 22.367 7.8079

ITM2C integral membrane protein 2C///integral membrane protein 2C 0.016602 21.9904 6.6164

C9orf19 chromosome 9 open reading frame 19 0.0169 1.9849 6.9941

LRRC59 leucine rich repeat containing 59 0.017101 21.8304 7.1703

S100A9 S100 calcium binding protein A9 (calgranulin B) 0.017515 2.0885 8.328

SPTLC2 serine palmitoyltransferase, long chain base subunit 2 0.017518 1.9835 7.0682

PARP12 poly (ADP-ribose) polymerase family, member 12 0.017657 1.9566 7.7735

S100A6 S100 calcium binding protein A6 (calcyclin) 0.019028 2.0002 7.2831

PSMB9 proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional
peptidase 2)

0.00005 1.5788 8.4562

MT2A metallothionein 2A 0.000184 1.7931 8.322

PDCD4 programmed cell death 4 (neoplastic transformation inhibitor) 0.000465 21.4445 7.5556

NCL nucleolin 0.000569 21.5782 7.7589

HLA-F major histocompatibility complex, class I, F 0.000621 1.43 8.4362

MRLC2 myosin regulatory light chain MRLC2 0.001244 1.2847 8.6979

LRRFIP1 leucine rich repeat (in FLII) interacting protein 1 0.001476 1.4494 8.7862

IFITM1 interferon induced transmembrane protein 1 (9–27) 0.001576 1.5969 8.6038

ATP6V0E ATPase, H+ transporting, lysosomal 9 kDa, V0 subunit e 0.00176 1.3477 8.9288

CHSY1 carbohydrate (chondroitin) synthase 1 0.001841 1.4027 7.8411

C20orf118 Chromosome 20 open reading frame 118 0.001886 1.6089 8.5961

CD53 CD53 molecule 0.00198 1.3513 8.7833

C20orf118 Chromosome 20 open reading frame 118 0.001997 1.5776 8.6481

ATP6V0E ATPase, H+ transporting, lysosomal 9 kDa, V0 subunit e 0.00176 1.3477 8.9288

ATP6V0E ATPase, H+ transporting, lysosomal 9 kDa, V0 subunit e 0.002317 1.3355 8.2173

PIK3AP1 phosphoinositide-3-kinase adaptor protein 1 0.002432 1.784 7.8028

ADAR adenosine deaminase, RNA-specific 0.002492 1.3729 8.6116

METTL7A methyltransferase like 7A 0.002606 21.585 7.6029

GCH1 GTP cyclohydrolase 1 (dopa-responsive dystonia) 0.002631 1.6161 8.327

SELPLG selectin P ligand 0.002757 1.5125 7.4685

Table 2. Cont.
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Symbol Gene Title p-value Fold-change Average signal

WSB1 WD repeat and SOCS box-containing 1 0.00276 1.4536 8.0606

SQRDL sulfide quinone reductase-like (yeast) 0.003312 1.4912 7.7882

CXXC5 CXXC finger 5///CXXC finger 5 0.003382 21.6791 7.2149

FN5 ... 0.013342 2.1468 6.62795

LOC441168 ... 0.004813 2.3726 8.08179

SEC11L3 SEC11-like 3 (S. cerevisiae) 0.011854 22.0503 6.92968

LOC91353 ... 0.007524 22.578 8.63641

IGLC2 immunoglobulin lambda constant 2 (Kern-Oz- marker) 0.010428 22.6368 6.33398

TRA1 tumor rejection antigen (gp96) 1 0.005488 21.9074 8.2753

H3F3B H3 histone, family 3B (H3.3B) 0.018645 1.2441 9.03523

SFRS5 splicing factor, arginine/serine rish-5 0.027215 1.2557 8.35184

TMBIM4 transmembrane BAX inhibitor 0.310843 1.1017 8.58976

RHOA ras homolog gene family 0.016069 1.1702 8.59283

XRN1 59-39 exoribonuclease 1 0.007922 1.3637 8.3903

SAP18 sin3-associated polypeptide, 18 kDa 0.150022 21.1034 7.88139

ARHGEF6 Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6 0.161681 1.1065 7.99103

HLA-B major histocompatibility complex, class I, B 0.060992 1.2255 9.22158

DEK DEK oncogene (DNA binding) 0.098052 1.1739 8.34219

EIF4A2 eukaryotic translation initiation factor 4A, isoform 2 0.27169 1.0921 8.68518

doi:10.1371/journal.pone.0007892.t002

Table 2. Cont.

Figure 3. Volcano plot showing p-values correlated to fold changes in DF vs DHF samples. The genes highlighted in red and blue
represent the top 40 genes according to the p-values and fold change respectively.
doi:10.1371/journal.pone.0007892.g003
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resubstitution, is only about 5.38%. In this case, lower expression

of both genes is a signature for DHF, whereas higher expression of

both genes is a signature for DF.

Validation of Microarray Data Using Quantitative Real
Time PCR

Quantitative real time PCR assays were performed in order to

validate the results seen on the microarray assay. The following

genes that were selected: PSMB9, MT2A, HLA-F and C3aR1,

displayed expression levels that were predominantly increased in

DF samples compared to DHF samples. Quantitative PCR of the

genes cited above was performed using eight DHF and eight DF

samples obtained from the same patients tested in microarray

experiments. According to the Figure 6A, the qPCR quantifica-

tions showed a very good correlation with the microarray data.

In addition, qPCR was performed in a separate set of eight

DHF and eight DF independent samples collected from a different

set of patients from the same cohort. The qPCR results indicated

that the level of expression of the genes selected was expressed at

lower levels in DHF than in DF patients, in agreement with the

results obtained with the 2D LDA model based on the microarray

data shown in Figure 5. Hence, each of the four genes measured

were expressed at lower level in DHF and they classified correctly

the samples analyzed (Figure 6B). These results are very

promising. We are confident that they can be the basis for a

successful development of a reliable classifier to predict the clinical

outcome of dengue infection.

Discussion

A functional genomic study was performed in order to obtain

insights about the early immune mechanisms associated with

dengue severity and to identify biomarkers to predict the infection

outcome. Initial analysis resulted in the selection of 1981 candidate

genes to be statistically evaluated. The analysis of degree of

similarity between the samples in a 2 and 3-dimensional spaces has

indicated that the DHF group formed a very tight pattern,

whereas the remaining groups were more dispersed in the plot. In

the 3-dimensional MDS plot the non-dengue samples (green

spheres) are grouped close together, with only one sample outlier.

The DHF samples (red spheres) are all at the far right side, while

the DF samples (blues spheres) are more spread apart. These

observations suggest the presence of a specific pattern of gene

regulation against a dengue virus infection when compared to

non-specific febrile disease. Welch’s two-sample t-tests were used

for comparisons among the diagnostic groups: Non-Dengue vs.

Dengue (DF+DHF) samples; DF vs. DHF samples and so on

Table 3. List of genes shown on the ‘‘Volcano’’ plot according to the fold-change.

Fold-change .2 Fold-change ,22

Symbol p value FC Symbol p value FC

S100A6 0.019028 2.0002 MAGED1 0.001644 22.0342

RNASET2 0.006686 2.0165 SEC11L3 0.011854 22.0503

MT1H 0.003445 2.0475 KIAA0746 0.015464 22.0754

S100A9 0.017515 2.0885 UBE2G1 0.003307 22.1036

FN5 0.013342 2.1468 TPD52 0.003567 22.2114

CD300A 0.000864 2.1544 GMNN 0.009426 22.2142

FGR 0.009879 2.1941 SMC4L1 0.009866 22.2396

CD97 0.007485 2.2044 UBE2J1 0.000419 22.3147

MT1X 0.001294 2.2122 IGKV1D-13 0.011292 22.3235

GBP1 0.004938 2.3334 PPAPDC1B 0.004347 22.3491

CX3CR1 0.012371 2.3472 PACAP 0.016535 22.367

TNFSF13 0.010068 2.352 PACAP 0.015153 22.4229

LOC441168 0.004813 2.3726 LOC91353 0.007524 22.578

SAMD9L 0.01406 2.3893 IGLC2 0.010428 22.6368

HLA-DPB1 0.015645 2.4265 TNFRSF17 0.009406 22.7543

SAMHD1 0.003019 2.4624 POU2AF1 0.00391 22.7707

SERPINA1 0.00763 2.463 IGLC2 0.005057 22.9244

GBP1 0.005006 2.4888 IGLC2 0.001172 23.0718

FGL2 0.007811 2.6573

DF 0.013175 2.7446

TYROBP 0.007507 2.8639

LOC441168 0.014525 3.2665

EGR1 0.00334 3.2916

FCGR3B 0.002868 4.1952

C3AR1 0.002707 4.5817

EGR1 0.007242 4.6155

FC–Fold change.
doi:10.1371/journal.pone.0007892.t003
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Table 4. EASE analysis of functional overabundance in the list of top 40 DF-DHF discriminatory genes.

Immune Response Genes Defense Response Genes
Response To Biotic
Stimulus Genes

Copper/Cadmium Binding
Genes

Copper Ion Homeostasis
Genes

EASE
score Bonferroni

EASE
score Bonferroni

EASE
score Bonferroni

EASE
score Bonferroni

EASE
score Bonferroni

3.91E-06 1.19E-03 1.11E-05 3.38E-03 2.26E-05 6.89E-03 3.12E-05 9.53E-03 1.52E-04 4.64E-02

CD300A CD300A CD300A MT1H MT1H

CD97 CD97 CD97 MT1X MT1X

CX3CR1 CX3CR1 CX3CR1

C3AR1 C3AR1 C3AR1

CFD CFD CFD

FCGR3B FCGR3B FCGR3B

GBP1 GBP1 GBP1

GBP2 GBP2 GBP2

IGKV1D-13 IGKV1D-13 IGKV1D-13

HLA-DPA1 HLA-DPA1 HLA-DPA1

HLA-DPB1 HLA-DPB1 HLA-DPB1

MYD88 MYD88 MYD88

POU2AF1 POU2AF1 POU2AF1

S100A9 S100A9 S100A9

TNFSF12-TNFSF13 TNFSF12-TNFSF13 TNFSF12-TNFSF13

TNFSF13 TNFSF13 TNFSF13

TNFRSF17 TNFRSF17 TNFRSF17

TYROBP TYROBP TYROBP

FGR

Statistically significant overrepresented functional categories (p,0.05), after adjusting for test multiplicity.
doi:10.1371/journal.pone.0007892.t004

Figure 4. Top 40 genes differentially expressed between DF and DHF samples. (A) Expression heatmap with GenBank annotations. (B)
Hierarchical clustering dendrogram (only top 40 genes). (C) 3-D MDS plot (only top 40 genes).
doi:10.1371/journal.pone.0007892.g004

DHF Biomarker

PLoS ONE | www.plosone.org 11 November 2009 | Volume 4 | Issue 11 | e7892



(Supplement material S4) but we will focus the discussion on the

comparison between DHF versus DF.

The top 200 most differentially expressed genes between DF

and DHF cases according to Welch’s t-test was contrasted with the

list of the top 200 genes according to largest fold change of average

expression mRNA levels, resulting in 73 genes differentially

expressed among the dengue clinical manifestations that were

common to both lists. The list including all the 73 genes was

further analyzed using the EASE algorithm in order to identify

which categories of genes are overrepresented in this group of

genes. The statistically significant overrepresented functional

categories included the groups involved in immune and defense

responses (Table 2). Among the nineteen genes included in the

immune response category were the HLA-DPab genes, comple-

ment factor D, CX3CR, MyD88, TNFSF17 (BCMA), TNFSF13

(APRIL); and among the genes included in the defense response

were Mixovirus resistant gene (Mx), 29, 59-oligoadenylate

synthetase (OAS1 and OAS2) and interferon response factors

(Supplement material S7), which were all less expressed in DHF.

While the immune and defense response genes were expressed at

lower levels in DHF, several genes associated with apoptosis

responses (PDCD4, PACAP, Tumor protein D52, MAGED1, pro-

apoptotic caspase adaptor protein and TNF ligand super family)

were up regulated. Interestingly, CD53, a tetraspanin produced by

monocytes and B cells that prevents cells from undergoing

apoptosis [40] was down regulated in DHF patients, reinforcing

the indication of a pro-apoptotic environment in DHF.

It is not unrealistic to expect that some of these genes could be

mechanistically involved in the DHF immunopathogenesis or

might be used as the basis for the prediction of dengue infection

severity. Using this technology, a gene expression pattern was

identified in patients suffering the most severe forms of the disease.

Simmons et all [27] have shown a molecular signature on PBMCs

discriminating early and late phases of DSS and they reported that

genes transcripts of IFN-stimulated genes were less abundant in

DSS patients than in patients without DSS, whereas the genes

involved on apoptosis were up-regulated in the DSS patients.

Some of the genes differentially expressed that were found by

Simmons et al [27], such as MX, IFIT, pro-apoptotic caspase

adaptor protein and OAS, were also found in this study. However,

they were not among the most significant differentially expressed

genes according to p-value in our study, perhaps because of

differences on the stage and severity of the disease. In this study

DHF patients were grades I or II and were compared to DF,

Table 5. Top 10 classifiers based on either individual, duplet
or triplet genes ranked by estimated classification error.

Classifiers

Gene 1 Gene 2 Gene 3 Estimated Error

1-Gene Classifiers

MT2A - - 0.0870

PSMB9 - - 0.0927

IGLC2 - - 0.1182

ADAR - - 0.1202

LOC400368 - - 0.1277

FCGR3B - - 0.1301

HLA-F - - 0.1314

CD53 - - 0.1365

VAMP3 - - 0.1389

CXXC5 - - 0.1443

2-Genes Classifiers

PSMB9 LRRFIP1 - 0.0351

H3F3B MT2A - 0.0496

SFRS5 PDCD4 - 0.0501

LRRFIP1 LOC400368 - 0.0504

PSMB9 MT2A - 0.0538

MT2A TMBIM4 - 0.0589

HA-1 LOC400368 - 0.0602

RHOA MT2A - 0.0603

MT2A XRN1 - 0.0635

MRLC2 LOC400368 - 0.0351

PSMB9 LRRFIP1 - 0.0496

H3F3B MT2A - 0.0501

SFRS5 PDCD4 - 0.0504

LRRFIP1 LOC400368 - 0.0538

3-Genes Classifiers

HNRPA1 PSMB9 MT2A 0.0256

LRRFIP1 MRLC2 LOC400368 0.0302

PSMB9 SAP18 LRRFIP1 0.0316

PSMB9 LRRFIP1 LOC400368 0.0319

ADAR PSMB9 ARHGEF6 0.0321

PSMB9 HLA-B MT2A 0.0323

LRRFIP1 RPS21 LOC400368 0.0324

DEK LRRFIP1 LOC400368 0.0326

EIF4A2 PSMB9 LRRFIP1 0.0326

DEK ADAR PSMB9 0.0329

doi:10.1371/journal.pone.0007892.t005

Figure 5. Classifier for the best pair of genes, PSMB9 and
MT2A, in the discrimination of DF against DHF. Lower expression
of both genes is a signature for DHF, whereas higher expression of both
genes is a signature for DF. The estimated probability of error on future
data for this classifier is only about 5.38%.
doi:10.1371/journal.pone.0007892.g005
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whereas in the Simmons study the patients were DHF/DSS, grade

IV and were compared with DHF patients without DSS.

In a separate study, Ubol et al [28] using samples from a cohort

of children from Thailand obtained similar results associating

decreased innate immune response and increased apoptosis with

development of DHF. However, the individual genes identified

were quite different from the ones found in this and other studies.

One possible reason might be the age group used, since its known

that immune response repertoire differs during early ages, where

innate response predominates, as compared to adults [41]. In

another interesting study, Kruif et al (2008) reported a general

association of dengue severity and up regulation of genes involved

on innate immune response during acute phase of infection in

children [42]. However, in addition to the age group bias present

Figure 6. Expression levels of genes discriminating DF and DHF patients. A- For all tested genes, qPCR assays were performed using a mix
of eight DF or eight DHF samples used in microarray assays. B- For all tested genes, qPCR assays were performed for a set of eight DF and eight DHF
samples used in microarray assays (white solid columns), or a set of eight DF and eight DHF independent samples (grey solid columns). The
experiment was performed twice and each group was analyzed in triplicates.
doi:10.1371/journal.pone.0007892.g006
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in the Kruif study, the authors used RNA extracted from total

leucocytes, which is composed predominantly by granulocytes,

and this most have contributed for the difference in findings. This

result suggests that granulocytes may be up-regulating the

expression of innate immune response genes whereas the

monocytic cells are suppressing it, but more detailed studies need

to be done simultaneously on specific cell populations of the same

patient. In summary, despite differences between the study designs

and differences in the genetic background of our populations our

results are consistent with the similar studies reported by Simmons,

Ubol and Kruif [27,28].

As reviewed by Clementini and Gianantonio [43], there is much

evidence that genetic factors, involved on susceptibility/resistance

to infectious disease, influence the immune response in humans.

These factors are complex traits modulated by environmental

factors, such as previous dengue infection, and do not follow

Mendelian inheritance pattern. The differential expression of

some of these markers are possibly due to genetic polymorphisms

that can interfere with mRNA expression levels, either directly by

sitting at the promoter or indirectly by interfering on the pathway

that modulates the transcription of those genes. Host polymor-

phisms present in genes involved in dengue immune responses

have been correlated with altered gene expression and suscepti-

bility to DHF [44]. Among these genes are: the TNF-308 allele,

which is associated with increased levels of TNFa, is correlated

with a greater susceptibility to developing DHF [45,46]; the wild-

type AA MBL2 genotype, which is correlated with increased levels

of MBL and increased risk factors for the development of dengue-

related thrombocytopenia [47] and the polymorphism of the

CD209 promoter [48], which is associated with a decreased

expression of DC-SIGN and possibly with a lower susceptibility of

dendritic cells to be infected by the dengue virus. Thus, searching

for gene expression alteration among different dengue clinical

manifestation using microarray technology can suggest in a high

throughput fashion, genetic factors and immunopathology mech-

anisms involved on dengue severity.

Moreover, during the acute phase of infection, patients suffering

from DF or DHF have a very similar clinical picture. However, the

disease defervescence period (after 4 to 7 days of the beginning of

the symptoms) is accompanied by severity-varying circulatory

disturbance signs [2]. Thus, it seems that the events preceding the

defervescence may determine the outcome of the disease severity

and a question of interest is the selection of a small set of the best

DHF-prognosis gene markers. The MDS plot (Figure 2) including

the top 40 most discriminatory genes according to p-value shows

that expression patterns of DF and DHF patients are quite

different and appear to be distributed into three groups; one DHF

(red) group very distinct from the DF (blue) cases, and a third

group, which DF and DHF are closer. This result is not surprising

and it suggests that DF and DHF are extremes of a continuum

spectrum of the same disease, as suggested by Sierra et al (2007),

and not two separate diseases [49]. In addition, this result suggests

the potential of designing a reliable classification marker based on

the quantification of few gene products by qPCR or any other

method to quantify RNA or protein products. Towards this goal,

we selected the best multivariate sets of candidate genes for

prognosis, by means of exhaustive feature selection (all possible

combinations) of single, pairs and triplets of genes out of the pre-

filtered set of 1981 genes, using Linear Discrimination Analysis as

the classification rule, and bolstered resubstitution as the error

estimator (see the Methods section). According to our results, the

top 3-gene classifiers displayed an estimated rate of more than

95% chance of correct classification. We selected a few genes

(PSMB9, MT2A, HLA-F and C3aR1) to test by qPCR assays.

Initially, the qPCR assays were performed in the same blood

samples used for the microarray study. All gene expression levels

determined by qPCR were consistent with the results obtained with

the microarray. Subsequently, qPCR quantification was performed

in eight DF and eight DHF samples collected from an independent

set of patients (Figure 6). The qPCR quantification showed that the

genes (PSMB9, MT2A, HLA-F and C3aR1) were expressed at

higher levels in DF than in DHF and confirmed the expression levels

seen on the first set patient samples used in the microarray study and

were in agreement with the 2D LDA model shown in Figure 4.

Hence, each of the four genes measured were expressed at lower

level in DHF and they classified correctly the samples analyzed

(Figure 5B). Thus, the qPCR assay results confirmed that

quantification of those genes in samples collected on the first medical

visit of a dengue infected patient can be used to predict whether the

individual will develop DHF symptoms two or three days later.

Our data indicates that the classification of patients into DF and

DHF on the basis of gene profiling is feasible and may be a useful

means of guiding clinical management of dengue patients. Further

analyses using additional independent samples are underway to

confirm the value of these classifiers. However, some points need

to be addressed on future studies, including the validation of the

gene markers identified here on samples collected from people

infected with other dengue serotypes for ultimately support the

development of a qPCR-based kit to predict the clinical outcome

of people infected with any of the dengue serotypes during the first

days of the symptoms. Besides the patient-management benefits,

this study can also help on the characterization of natural dengue

infection and hopefully will facilitate the elucidation of the

molecular mechanisms involved in DHF.
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Material S1 Noise and efficiency measurements. Arrows
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Material S3 Volcano plots showing p-values correlated to fold

changes in four different comparisons: D (DF+DHF) vs. ND (A),

DF vs. ND (B), DHF vs. ND (C) and DF vs DHF (D).

Found at: doi:10.1371/journal.pone.0007892.s003 (4.20 MB TIF)

Material S4 The top 40 genes with the most significant p-values

among the 1981 genes selected, for each of the four comparisons

(D (DF+DHF) vs. ND, DF vs. ND, DHF vs. ND and DF vs DHF),

along with fold change values, average signal intensity, and

annotation from the DAVID Bioinformatics Database at NIAID/

NIH (http://david.abcc.ncifcrf.gov/).

Found at: doi:10.1371/journal.pone.0007892.s004 (0.11 MB
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Material S5 The EASE results for all 4 comparisons (D

(DF+DHF) vs. ND, DF vs. ND, DHF vs. ND and DF vs DHF).

Found at: doi:10.1371/journal.pone.0007892.s005 (0.03 MB

XLS)

Material S6 Classifiers based on either individual, duplet or

triplet genes ranked by estimated classification error.

Found at: doi:10.1371/journal.pone.0007892.s006 (0.17 MB

DOC)

Material S7 Genes included in the immune and defense

responses after analysis using the EASE algoritm.
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Found at: doi:10.1371/journal.pone.0007892.s007 (0.05 MB

DOC)
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