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The impact of super‑spreader 
cities, highways, and intensive 
care availability in the early stages 
of the COVID‑19 epidemic in Brazil
Miguel A. L. Nicolelis1,2,3,4,5,6*, Rafael L. G. Raimundo7, Pedro S. Peixoto8 & 
Cecilia S. Andreazzi9

Although international airports served as main entry points for SARS-CoV-2, the factors driving the 
uneven geographic spread of COVID-19 cases and deaths in Brazil remain mostly unknown. Here 
we show that three major factors influenced the early macro-geographical dynamics of COVID-19 
in Brazil. Mathematical modeling revealed that the “super-spreading city” of São Paulo initially 
accounted for more than 85% of the case spread in the entire country. By adding only 16 other 
spreading cities, we accounted for 98–99% of the cases reported during the first 3 months of the 
pandemic in Brazil. Moreover, 26 federal highways accounted for about 30% of SARS-CoV-2’s case 
spread. As cases increased in the Brazilian interior, the distribution of COVID-19 deaths began to 
correlate with the allocation of the country’s intensive care units (ICUs), which is heavily weighted 
towards state capitals. Thus, severely ill patients living in the countryside had to be transported 
to state capitals to access ICU beds, creating a “boomerang effect” that contributed to skew the 
distribution of COVID-19 deaths. Therefore, if (i) a lockdown had been imposed earlier on in spreader-
capitals, (ii) mandatory road traffic restrictions had been enforced, and (iii) a more equitable 
geographic distribution of ICU beds existed, the impact of COVID-19 in Brazil would be significantly 
lower.

Barely 6 months after its first report of a COVID-19 case, on February 26th, 2020, Brazil recorded the staggering 
tally of more than 4,000,000 cases and 125,000 deaths1 as a consequence of the rampant SARS-CoV-2 epidemic 
that raged through the entire country. Those numbers ensure that, by September 16th, Brazil was the third most 
affected country globally, right behind the United States and India in terms of both accumulated COVID-19 cases, 
and second only to the US in terms of deaths1. By early March, it became clear that the country’s international 
airports, located mainly in large state capital cities on the Brazilian Atlantic coast (with only three main excep-
tions: Brasilia, Belo Horizonte, and Manaus) had been the main entry points of SARS-CoV-2 into the country2. 
However, even though the main coronavirus genotypes arriving and spreading through the country were rapidly 
identified3, the routes taken by SARS-CoV-2 to reach the entire Brazilian territory remained mysterious until 
now. In addition, the heavily skewed and heterogeneous spatial distribution of COVID-19 cases throughout the 
country’s five official regions [North (NO), Northeast (NE), Central-West (CO), Southeast (SE), and South (S)], 
even after 6 months of an out of control epidemic, as well as the discrepancy between cases and death distribu-
tions caught our attention.

From the biogeographical standpoint, one can analyze the new coronavirus spread in Brazil as the anthro-
pogenic mass dispersal of a zoonotic agent expanding its geographical range. Such a process typically involves 
multiple sources and entry points that follow several dispersal pathways, through which the biological invasion 
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propagates over space4. Understanding the geographical spread of directly transmitted infectious diseases into 
uninfected regions requires one to focus on human and pathogen population traits, instead of environmental 
factors, since the former are the primary drivers of the biological invasion5. Indeed, environmental factors, such 
as climate or temperature variations, are poorly related to the large-scale geographical spread of the new corona-
virus, since SARS-CoV-2 seems to expand its geographical range mostly by the flow of people in transportation 
networks6,7. Therefore, to unravel the pathways that shaped the geographical distribution of COVID-19 cases and 
deaths in Brazil, we examined human-mediated processes that turned particular capital cities into SARS-CoV-2 
“superspreaders” at the geographical scale, while leading other towns to act only as entry points of the pandemic 
and limiting their contribution to the local spreading of the infection. As such, the present work aims at enlight-
ening the fundamental processes that accounted for the macro-geographical patterns of COVID-19 cases and 
deaths arising from the rapid spread of the new coronavirus over large continental areas in Brazil during the first 
stages of the pandemic. Therefore, in this first study, we did not consider local and regional dynamics, which are 
certainly relevant for the understanding of patterns at coarser spatial scales but are beyond the scope of this study.

Although often considered a key parameter in mathematical models of epidemics8–11, population density 
alone does not necessarily determine which cities will become superspreaders12. This happens because cities are 
embedded within complex transportation networks whose connectivity plays a major role in determining the 
geographical spread of infected individuals and, hence, in shaping emerging epidemiological patterns at broader 
scales13. The influence of road transportation networks on infectious disease spread is a well-documented phe-
nomenon worldwide (e.g.14–19). In Brazil, previous work addressed the spread of SARS-CoV-2 at the state scale 
(e.g.20,21). However, how SARS-Cov-2 rapidly spread over the entire Brazilian federal road network to shape 
highly uneven patterns of COVID-19 cases and deaths over a complex and heterogeneous country remains an 
unaddressed question.

While most of the travel network can be halted during a pandemic, essential transportation and travel must 
be maintained at all costs. For instance, specialized healthcare facilities, such as intensive care units (ICUs), are 
unevenly distributed in Brazil22–25. Therefore, health-related travel is vital for delivering effective patient care. 
Consequently, in Brazil ICU facilities are frequently shared, not only locally and regionally, but also beyond the 
state level. Here, we hypothesized that this pattern was likely a key driver of the uneven geographical distribu-
tion of COVID-19 deaths in Brazil. The aims of the present study, therefore, were two-fold: (1) to identify the 
spreading cities and Brazilian federal roads that contributed to the definition of the geographical patterns of 
COVID-19 cases in Brazil; and (2) to understand how the distribution of ICU beds across the country contrib-
uted to the uneven spatial distribution of COVID-19 deaths during the first 6 months of the pandemic in Brazil.

Results
Figure 1 compares the distributions of all cases and deaths for all 5570 Brazilian cities from April 1st until August 
1st, 2020. A simple visual inspection of such distributions reveals striking spatial patterns in each of them and 
also a clear dissimilarity among them. For instance, while by August 1st most of the country was reporting a high 
number of COVID-19 cases, a larger incidence of fatalities was concentrated on the coastal state capitals and 
medium-sized interior towns (see Fig. 1C,D). To account for such features, we first analyzed the spatial spread 
of COVID-19 cases and deaths over time through the extensive network of highways that crisscross the whole 
Brazilian territory, including the North region’s vast rain forest. Figure 1A–T illustrates the temporal evolution 
of the spread of COVID-19 cases over Brazilian micro-regions (each containing several towns) plotted on top 
of the routes taken by all longitudinal (north–south, Fig. 1A–D), transversal (east–west, Fig. 1E–H), diagonal 
(Fig. 1I–L), radial (Fig. 1M–P), and connector (Fig. 1Q–T) Brazilian federal highways. Beginning with the early 
phase of the epidemic (April 1st), one can easily spot the spread of COVID-19 cases across the cities either 
crossed or located near the routes of two major longitudinal highways (BR 101 and BR 116, Fig. 1A–D) that 
run from the southern-most state of the country, Rio Grande do Sul (RS), to the north coast states of the NE 
region. Subsequent snapshots in time (June 1st and August 1st) show COVID-19 cases climbing in cities along 
other major highways, which became hotspots for the epidemic. Using a multivariate linear model, we observed 
that a set of 26 federal highways significantly contributed to approximately 30% of the initial COVID-19 spread 
throughout Brazil (see Supplementary Table 1). In addition to BRs 101 and 116, these included other longitudi-
nal (BRs 153, 156, Fig. 1A–D), transversal (BRs 222, 226, 232, 272, Fig. 1E–H), diagonal (BR 316, 319, 324, 364, 
374, 381, Fig. 1I–L), radial (10, 20, 40, 50, 60, Fig. 1M–P), and connector (BR 401, 408, 425, 447, 448, 450, 460, 
Fig. 1Q–T) federal highways. Similarly, a set of federal highways (BRs 101, 116, 222, 232, 272, 308, 319, 374, 381, 
20, 40, 50, 408, 447, 450, and 465) was highly correlated with the distribution of COVID-19 deaths across the 
whole country (Supplementary Table 2).

Figure 1.   Maps of Brazil were used to represent the routes of the main longitudinal (A–D), transversal (E–H), 
diagonal (I–L), radial (M–P), and connector (Q–T) federal highways, as well as the evolution of the geographic 
distribution of COVID-19 cases on three dates (April 1st, June 1st, and August 1st), and the distribution of 
COVID-19 deaths on August 1st (D). Overall, 26 highways (see text) from all five road categories contributed to 
approximately 30% of the COVID-19 case spreading throughout Brazil. The numbers of some of these spreading 
highways are highlighted in red. Notice how many hotspots (red color) for COVID-19 cases occur in micro-
regions containing cities located along major highway routes like BRs 101, 116, 222, 232, 236, 272, 364, 374, 
381, 010, 050, 060, 450, and 465. Although the distributions for COVID-19 cases and deaths were correlated, 
geographic discrepancies between the two distributions can be seen by comparing them on August 1st (C,D). 
A color code (see figure bottom) ranks Brazilian micro-regions (each comprising several tows) according to 
their number of COVID-19 cases and deaths. Maps generated using the R (https://​cran.r-​proje​ct.​org/) package 
brazilmaps 0.1 by R. P. Siqueira (https://​github.​com/​rprad​osiqu​eira/​brazi​lmaps).

◂

https://cran.r-project.org/
https://github.com/rpradosiqueira/brazilmaps
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Next, we focused on identifying the major Brazilian cities contributing to the COVID-19 case spread through 
the Brazilian highway grid. A spatially coupled dynamical model, using human mobility data for the whole coun-
try (see “Materials and methods”), revealed that, during the first 3 weeks of the epidemic (from the last week of 
February to mid-March), by itself, the city of São Paulo, which is situated near the largest Brazilian international 
airport and is responsible for the highest highway traffic flow in the country, accounted for the spread of more 
than 85% of the original cases that found their way throughout Brazil (Fig. 2). Because of such a staggering initial 
contribution, and the fact that it never dropped below 30% during the next 3 months, São Paulo was the main 
Brazilian superspreader city of the SARS-CoV-2 epidemic.

Following this initial 3-week epidemic period, other major Brazilian capitals began to contribute their share 
to the spread of COVID-19 cases throughout the country. Thus, during the next months, cities like Rio de Janeiro 
(SE region), Belo Horizonte (SE), Fortaleza (NE), Recife (NE), São Luís (NE), João Pessoa (NE), Porto Alegre (S), 
Curitiba (S), Brasilia (CO), and Manaus (NO) all made significant contributions. By considering only the top 17 
spreading cities and the highways highlighted above, we were able to account for the spread of about 98–99% of 
the COVID-19 cases reported in Brazil during the first 3 months of the epidemic. Since our model is based on 
mobile geolocation data, not road traffic, other routes were also accounted for in our study, such as the state of 
Amazon’s widespread river-based transportation system.

Although the distributions of COVID-19 cases and deaths were significantly correlated in the initial 6 months 
of the pandemic (r = 0.886, p < 0.0001), our correlation analysis revealed the existence of an unaccounted residual. 
This meant that the distribution of deaths (Fig. 1D) could not be explained solely by the origin of the cases (i.e., 
the city in which the person was originally infected). Instead, to account for this residual, we had to bring to the 
foreground what soon became another fundamental factor in the Brazilian COVID-19 epidemic: the geographic 
distribution of the approximate 20 thousand intensive care unit (ICU) beds dedicated only for COVID-19 care 
across the entire country since February 2020.

In Brazil, the vast majority of tertiary hospitals, and hence the largest share of intensive care unit beds, is 
located in state capitals, their metropolitan areas, and a handful of mid-sized towns in each state’s interior. By 
tracking the flow of COVID-19 cases since the beginning of April, and taking into account patient admissions in 
ICUs nationwide, we were able to identify, in mid-June, a very peculiar flow of people all over Brazil (Fig. 3A). As 
mentioned above, during the initial stages of the epidemic, COVID-19 cases began to grow rapidly in the state 
capitals where major international airports were located. As smaller towns are highly dependent on state capitals 
for accessing public services, including health care, and for the acquisition of goods and services, and as cases 
increased in the capitals, many infected people moved towards the vast Brazilian interior through the highway 

Figure 2.   Individual contribution of the 17 state capital cities responsible for 98% of spreading of COVID-19 
cases for the 5570 Brazilian municipalities, from March 1st to June 11th. Notice how São Paulo contributed to 
more than 80% of all cases spreading during the first weeks of March. Throughout the period until June 11th, 
São Paulo’s contribution never decreased below 30%. For that reason, the city was labeled as the COVID-19 
super-spreader Brazilian city. Notice also the high contribution of Rio de Janeiro, Brasilia, and five state capitals 
in the Northeast region: Fortaleza, Recife, Salvador, São Luís, and João Pessoa. Manaus and Belém were the 
largest spreading cities in the North (Amazon) region, and Porto Alegre and Curitiba the most important in the 
South region. During this period, the contributions of Goiânia, Campo Grande, and Cuibá in the Central-West 
region were the largest in their region but much smaller when compared to other regions and their spreaders.
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grid. As a consequence of the interiorization of COVID-19 cases, the flow of severely ill patients from the coun-
tryside to capitals took place all over Brazil (Fig. 3A,B), multiple times during the first 6 months of the pandemic. 
We named the overall phenomenon that created the flow of infected people from state capitals to the interior 
and then brought severely ill patients back to the state capitals and large Brazilian cities, “the boomerang effect”.

Figure 3A summarizes all major boomerangs that took place throughout Brazil during the past 6 months. Arcs 
represent the countryside origins of the most intense patient flows towards state capitals and mid-sized interior 

Figure 3.   Quantification of the Brazilian “boomerang effect”. (A) Representation of all “boomerangs” that 
occurred around major Brazilian state capitals (see labels for names) and mid-size cities across the whole 
country. In this map, arcs represent the flow of people from the interior towards the capital. The arc color code 
represents the number of interior cities that sent severely ill patients to be admitted in hospitals in a capital or 
mid-size town; red being the highest number of locations, orange and yellow next, while a smaller number of 
locations are represented in light blue. Most of the flow of people represented in this graph took place through 
highways. Red arcs likely represent long-distance flow by airplanes. In the Amazon, most of the flow of people 
towards Manaus occurred by boats through the Amazon river and its tributaries. Notice that again São Paulo 
appears as the city with the highest boomerang effect, followed by Belo Horizonte, Recife, Salvador, Fortaleza, 
and Teresina. (B) Lethality and hospitalization data, divided for capital and interior (for lethality) and capital 
resident and non-resident (hospitalization), for a sample of state capitals in all five regions of Brazil. Yellow 
shading in the lethality graphs represent periods in which more deaths occurred in the interior, in relation to the 
capital. In the hospitalization graphs, yellow shading depicts periods of increasing admission of people residing 
in the countryside to the capital hospital system. The overall flow of people from capital to the interior and back 
to the capital characterized the boomerang effect, targeting the hospital system of the capital city. Notice that 
the boomerang effect was pervasive all over the country, occurring in every Brazilian state. Map generated using 
Gephi (https://​gephi.​org/, see Bastian et al.48).

https://gephi.org/
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cities for the entire country. Once again, São Paulo appears as the city with the highest boomerang effect, fol-
lowed by Belo Horizonte, Recife, Salvador, Fortaleza, and Teresina, all the latter being state capital cities (Fig. 3A). 
Boomerangs were so pervasive throughout the country that they triggered significant surges in hospital admis-
sions in most state capitals in all Brazilian regions (see yellow highlights in Fig. 3B), leading to lethality peaks 
in each of these cities (Fig. 3B). Moreover, the boomerang flow was not restricted to roads and highways. For 
instance, in the Amazon rain forest, severely ill people were transported by boats of all sorts, via its large rivers, 
from many small riverside communities, towards the two largest Amazon cities, Manaus and Belém (see Fig. 3A).

Severe Acute Respiratory Infections (SARI) data revealed that São Paulo was the city with the highest influx 
of non-resident patients and received patients from 464 different cities all over Brazil, followed by Belo Horizonte 
(351 cities), Salvador (332 cities), Goiânia (258 cities), Recife (255 cities), and Teresina (225 cities). São Paulo 
was also the city that sent more residents to be hospitalized in other cities (158 cities), followed by Rio de Janeiro 
(73 cities), Guarulhos (41 cities), Curitiba (40 cities), Campinas (39 cities), Belém (38 cities), and Brasília (35 
cities). As predicted, the influx of patients received by a city was significantly correlated with the number of ICU 
beds available (r = 0.41, p < 0.001, both normalized by population size). The accumulated number of deaths was 
positively correlated to both the number of influx connections (r = 0.65, p < 0.001; log-transformed data) and 
the number of outflux connections (r = 0.64, p < 0.001; log-transformed data). This indicates that cities that were 
highly connected to the health system network, either by receiving from or sending patients to other cities, also 
experienced a higher number of COVID-19 deaths.

At this point, we decided to test whether the skewed geographic distribution of ICU beds across the country 
could account for the death distribution residual we described before. Figure 4A illustrates the spatial distribu-
tion of ICU beds across all of Brazil. Once this distribution was plotted on top of the COVID-19 death distri-
bution (Fig. 4B), we observed that the two variables were highly correlated (r = 0.9255, p < 0.0001). In other 
words, independently of their original residence, either interior towns or large cities, a significant number of 
people died in the state capitals and mid-size cities where tertiary hospital facilities and ICU beds were highly 
concentrated. Therefore, as a result of the boomerang effect, a significant number of severely ill patients had to 
migrate to larger cities and, eventually, a high fraction of them perished there. Combined with the deaths of the 

Figure 4.   (A) Distribution of ICU beds across all Brazil. Bar height is proportional to the number of ICU beds 
in each city. Notice how the coastal state capitals accumulate most of the ICU beds in the whole country, with 
much fewer beds available in the interior of most states. The city of São Paulo exhibits the larger number of 
ICU beds in the whole country. (B) Superimposition of the COVID-19 death distribution (color code legend 
on the left lower corner) on top of the ICU bed distribution as seen in (A). For each bar, its height represents 
the number of ICU beds in a city, while color represents the number of deaths that occurred in that city. Again, 
the city of São Paulo, which has by far the highest number of ICU beds, accumulated the highest number of 
COVID-19 related fatalities, followed by state capitals like Rio de Janeiro, Fortaleza, Brasilia, Salvador, Manaus, 
Recife, and Belém. Maps generated using the online resources available at http://​kepler.​gl/.

http://kepler.gl/
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residents of large cities, the widespread boomerang effects contributed decisively to the geographic skewing of 
the COVID-19 death distribution in all of Brazil.

A multi-linear model that considered both COVID-19 cases and ICU beds as dependent variables to explain 
deaths showed that, while both variables contributed significantly to explaining COVID-19 lethality, on average, 
each ICU bed accounted for 1.23 deaths (95% CI = [1.139, 1.333]) by July 1st, and 3.8 deaths (95% CI = [3.685, 
3.922]) when the period of analysis was extended to September 12th (see Supplementary Tables 3 and 4 for 
details).

Discussion
Overall, we identified three major factors that concurrently accounted for most of the early stages of the COVID-
19 pandemic dynamics in Brazil. From its original entry at all major Brazilian international airports during 
March2, SARS-CoV-2 spread first to the large metropolitan areas of state capitals located next to these airports. 
From that point on, after community transmission was established and began to rise exponentially in these large 
cities, and given that no major road blocks were implemented during the early months of the epidemic, a small 
group of these state capitals began spreading SARS-CoV-2 to the entire country, through the extensive highway 
grid that covers all of Brazil. By itself, São Paulo, the city with the highest population in Brazil, emerged as the 
country’s superspreader city par excellence, accounting for the largest case spreading influence throughout the 
next 3 months. A small group of other 16 spreading cities contributed to the seeding of initial cases throughout 
the country via a subset of 26 major federal highways. This highway-driven spread was the primary mechanism 
through which initial cases arrived in all Brazilian cities. Thus, in about 30 days, SARS-CoV-2 was transported 
to all five regions of the country, across Brazil’s north–south axis, a distance of roughly 5313 km.

Despite the use of secondary data and Brazil’s low testing levels, especially at the beginning of the pandemic, 
we identified clear geographical patterns that accounted for the spread of the new coronavirus cases and deaths 
at the countrywide scale. Although the use of secondary data provided by many distinct health authorities at 
the state and federal levels, along with limited testing, imposed uncertainty to our analyses due to heterogeneity 
in data quality and completeness, it is important to emphasize that such secondary datasets have been compiled 
by institutional and research networks with a broad coverage over the country (see “Materials and methods”). 
As such, they represent the best currently available sources of information to depict broad scale patterns of 
COVID-19 cases and deaths in Brazil. In this context, even though synthesizing large amounts of secondary 
information poses a major challenge from the methodological standpoint, it has proved to be a fundamental 
approach to enlighten the large-scale processes shaping epidemical dynamics in continental countries like Brazil, 
by providing insights into effective measures, such as strategically designed roadblocks, to mitigate the spread 
of eventual future pandemics.

Understanding the dispersal pathways followed by a contagious disease over large continental areas over 
which the flow of people is not limited by political borders, such as Brazil, the European Union or the United 
States, requires us to face a multi-factor complex system that imposes numerous challenges for mathematical 
modeling attempts. Here, we implemented a dynamical model that used human mobility, based on georeferenced 
mobile data, to account for the regional spreading of COVID-19 cases throughout Brazil. The same approach was 
used to further investigate human mobility patterns through the entire Brazilian federal highway network. Our 
analysis confirmed yet again the extreme relevance of human mobility in spreading infectious diseases14,21,26,27. 
While known to be relevant for regional spread, in the literature, human mobility is usually investigated on a city 
level, considering the concept of social distancing as a non-pharmaceutical Intervention (e.g.3,28–31. And even 
though several studies have tried to analyze the spreading of COVID-19 among cities, these attempts focused 
solely on accounting for the observed COVID-19 cases and deaths (see, for example, references in32, without 
identifying the actual mobility paths that explained the spreading of cases. This latter issue became even more 
important recently when studies demonstrated the critical relevance of interventions on such regional mobility 
flows in China and the USA as a possibly effective way to reduce the spreading of COVID-19 cases. For instance, 
Mu17 discussed how constraints on inter-city travel (reaching a 70% reduction in people flow) in China slowed 
the spread of COVID-19 cases throughout the country. Furthermore, as we did in the present work, Davis et al.16 
employed a complex network model based on human mobility to inspect the domestic seeding of COVID-19 
cases within the USA. Their analysis revealed that, even though international travel was a key driver to the ini-
tial disease spread in certain metropolitan areas, many states were infected by domestic travel flows. Our work 
identified 17 spreader cities in Brazil and also highlighted the main 26 roads that acted as dispersion paths for 
SARS-CoV-2 in Brazil, and that should have become potential targets for interventions early on in the epidemic. 
Such interventions could have encompassed, for example, optimized road blocks or selective traffic control of 
non-essential travel. Our data also corroborated, at a national level, a recent analysis of the spreaders of COVID-
19 cases to the interior of the state of Pernambuco, which implicated a major transverse federal highway, BR 232, 
as well as other smaller state roads20.

Further investigation on the roles of super-spreader cities in the course of the early stages of epidemiologi-
cal dynamics should take into account other features of the complex and hierarchical organization of Brazilian 
rural and urban territories33. For example, the concept of a super-spreader city can be refined to account for 
epidemiological hotspots encompassing several interconnected metropolitan territories that are common in 
several states, such as São Paulo, Rio de Janeiro and Minas Gerais. Indeed, the contiguous diffusion among highly 
interconnected cities within metropolitan areas has been shown to act as a complementary spreading mechanism 
shaping geographical patterns of COVID-19 cases along with the hierarchical propagation via long-distance trips 
involving cities of regional relevance34.

Since Brazil’s air space remained open for international (and national) travel until the end of March and no 
travel restrictions were imposed on the main roads leaving the superspreading city (São Paulo) and other major 
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Brazilian state capitals, Brazilian highways provided transportation for people infected by the new coronavirus 
to all parts of the country for a full month after the first case was reported in São Paulo (February 26th). Thus, 
by the time (mid- to late-March) state governments began issuing decrees imposing social isolation measures 
for all people (except for those deemed essential workers), all the pre-conditions for COVID-19 community 
transmission around the entire country were already in place. Our analysis revealed that traffic through federal 
highways alone contributed to 30% of this COVID-19 case spread. However, since we did not analyze state and 
municipal roads like other studies20, the contribution of roads to the movement and spread of infected people 
all over Brazil is likely to be much higher.

Considering these results, one can conclude that had the Brazilian federal government decided to decree an 
early national lockdown in March 2020, including the establishment of road blocks for testing and detecting 
infected incoming travelers, as well as restrictions to non-essential traffic (e.g., inter-municipal and inter-state 
buses and private passenger cars) on major Brazilian federal highways, the number of COVID-19 cases and deaths 
would be significantly lower throughout the country. By the same token, if São Paulo’s government had decreed a 
complete lockdown of the city (and the state of São Paulo) and imposed severe restrictions to non-essential traffic 
through the main highways that originate or cross the city and its metropolitan region (in early March 2020), 
the number of COVID-19 cases and deaths during the early phases of the Brazilian pandemic would be much 
lower, throughout the country. In summary, had all these preventive non-pharmacological actions taken place 
in early March, Brazil would almost certainly have been spared the largest humanitarian tragedy of its history.

As community transmission began to happen in earnest, and case numbers rose rapidly in the countryside 
towns, a growing number of severely ill patients began to overwhelm smaller local hospitals that lacked enough 
qualified personnel and ICU beds to manage such an unusually high demand for critical care. Under these dire 
circumstances, a significant portion of these patients had to be transported to the large state capitals in search 
of better specialized care and available ICU beds. In some states, like São Paulo, this patient migration was also 
directed to mid-sized towns with large public university hospitals, such as Ribeirão Preto and Campinas. We also 
observed that the distribution of COVID-19 related deaths overlapped quite well with the equivalent spatial dis-
tribution of ICU beds throughout Brazil. Patient flow related to the medical care system in Brazil is well-known, 
particularly regarding the widespread need of long-distance travel for high complexity care35, which has the 
potential to disseminate and select resistant pathogen strains36. This structure affected the COVID-19 spreading 
pattern such that the higher the number of ICU beds in a city, the higher the number of deaths recorded from 
March to September 2020. A nationwide analysis of the cause of this overlap, which we named the boomerang 
effect, revealed that while state capitals, mostly located on the country’s Atlantic coast, provided the primary 
sources of infections to mid- and small-sized towns situated in Brazil’s vast interior,. As a result of this gigantic 
human flow, people from interior towns began to account for a large percentage of patient admissions in both 
public and private hospitals in state capitals. Thereafter, several of these hospitals in both mid-sized towns and 
state capitals became overwhelmed. Indeed, the health systems of some cities subject to boomerang effects, like 
Manaus37,38, where the boomerang effect was mainly operating through the Amazon River, collapsed altogether. 
During a few weeks, ICU bed occupancy reached more than 90% in multiple Brazilian state capitals, an event 
that has never been seen before in Brazilian medical history39. Although most state governments tried to mitigate 
this crisis by quickly adding new infirmary and ICU beds to their hospitals, the lack of specialized personnel, 
individual protection, and sophisticated medical equipment, such as modern artificial ventilators, reduced the 
efficiency of such countermeasures. As a result, each ICU bed available in the country for COVID-19 accounted, 
on average, for 1.23 deaths by July 1st and for 3.8 deaths by September 12th, according to our partial correla-
tion analysis. An independent investigation, reported in a technical note, also identified the boomerang effect 
herein reported.

The Brazilian federal health care system, known as the “Sistema Único de Saúde” (SUS; in English: Unified 
Health System) was created more than 30 years ago40 with the mission of ensuring the constitutional right of free 
health care to every Brazilian citizen anywhere in the country. Today, SUS constitutes the only option through 
which 7 out of 10 Brazilians have access to high-quality medical care for free41. Yet, the COVID-19 epidemic crisis 
exposed the inadequacy of the policy of concentrating the largest share of tertiary hospital facilities and ICU 
beds in a handful of mid-sized towns and state capitals throughout Brazil. Although our study did not address 
this issue directly, our findings suggest that had the geographic distribution of ICU beds been less skewed toward 
big cities, many more lives could have been saved throughout the country. Indeed, critically ill patients in less 
populated areas would have had regional access to ICU beds and, therefore, would have received quicker treat-
ment and had a better chance for improved clinical outcomes. Regional access to specialized healthcare would 
also have reduced the demand for critical logistical resources and medical personnel necessary for transporting 
such seriously ill patients over long distances to metropolitan hospitals, eliminating the widespread boomerang 
effect documented here.

In conclusion, our work identified the key factors that allowed the rapid spread of the SARS-CoV-2 across 
Brazil during the early stages of the ongoing pandemic. It also identified candidate processes that are likely to 
play key roles in shaping the geographical patterns of cases and deaths, not only for COVID-19, but also for any 
contagious disease spreading over a country in which: (1) the logistics and passenger transportation are highly 
dependent on a highway system; and (2) the responses for public health emergencies rely mostly on the structure 
of a public health system. Our results sustain the notion that a restricted number of “super-spreader cities’’, key 
federal highways and the extremely biased spatial concentration of ICU bed availability, seeded the pattern of 
spatial and temporal spread of the pandemic over the Brazilian countryside. In the years to come, this notion 
should be considered a departure point for the design of urgently needed public policies aimed at preparing Bra-
zilian federal and state-level health institutions to coordinate robust non-pharmacological responses when facing 
severe nationwide epidemiological emergencies, such as the ongoing SARS-CoV-2 pandemic. Such responses 
could include, for example: (1) the planning and implementation of strategically placed roadblocks and extensive 
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border closures between states as soon as epidemiological emergencies are officially declared; (2) funding for the 
development of information systems and associated research networks to ensure the availability of high-quality 
datasets to inform the design case-specific mitigation strategies at the federal, state and regional levels; and (3) 
the gradual decentralization of the availability of ICU beds and associated services to cover a larger territory of 
the Brazilian countryside that is currently unassisted in terms of complex medical care, hence making the access 
to public health truly universal—a central milestone of the 1988 Brazilian Constitution.

Materials and methods
Data sources for COVID‑19 cases, deaths and hospitalization.  We obtained data describing the 
temporal evolution of COVID-19 cases and deaths in Brazil at the municipal and state levels from several 
sources, including the Brazilian Ministry of Health42, official daily epidemiological bulletins issued by each Bra-
zilian state43, and other sources as compiled by Cota et al.44. Both cases and death data refer to notifications per 
day. To compute incidence (cases per 100,000 inhabitants), we used population size estimates for each of the 
5570 Brazilian municipalities for 2019. Such population size estimates were aggregated to allow the computation 
of COVID-19 at the state level. The data regarding COVID-19 reported cases and deaths included the period 
from 25/02/2020 until 12/09/2020, with sub-periods mentioned, when appropriate, in the main text. ICU bed 
data took into account both adult and pediatric beds that were used specifically for COVID-19 patients. This 
data is available at DATASUS CNES (Physical Resources, Hospital Complementary Beds). We used the informa-
tion for July 2020, which was the last period available.

We also employed the Ministry of Health’s data on Severe Acute Respiratory Infections (SARI) data, in which 
COVID-19 cases represents close to 98% of the data in 2020, to obtain detailed information about patients’ resi-
dence and hospitalization location throughout Brazil (https://​opend​atasus.​saude.​gov.​br/​datas​et/​bd-​srag-​2020). 
The SARI data contains only a subset of the official reported COVID-19 cases since they cover only hospitalized 
cases. The weighted directed network of patient flux was built with SARI data. Because the weight of the influx 
(i.e., in-degree) and outflux (i.e., out-degree) showed high positive correlations with population sizes, we used 
the unweighted network to explore the effects of city interaction patterns on COVID-19 deaths.

All correlation analyses were performed with Pearson correlation (r) on original or transformed variables 
(normalized by population or log-transformed). A multi-linear model considering deaths as dependent on 
COVID-19 cases and bed availability was also considered (see Supplementary Tables 3 and 4). While some 
multicollinearity was observed, the condition number was deemed small enough to allow the interpretation of 
the results.

Data source for the Brazilian federal road system.  The shapefile with geospatial data describing the 
Brazilian federal roads’ distribution was obtained from the Brazilian National Road System. Roads were catego-
rized according to the official typology: longitudinal roads (codes starting with 1, as in BR101) are those crossing 
the country from north to south; transversal roads which cross the country from east to west (codes starting 
with 2); diagonal roads (codes starting with 3); connector roads are shorter roads connecting major federal 
roads (codes starting with 4); and radial roads, those departing from Brazil’s capital, Brasilia, which has a central 
geographical position (codes starting with 0).

Highway multi‑linear model.  To investigate the most representative highways concerning the COVID-19 
spatial distribution pattern, we built a multi-linear model on a city level. Highways were included in the model 
as dummy variables, considering 1 for cities it crosses, and 0 for cities it does not cross. Model selection started 
from all federal highways, and then a 3 step filtering process was performed. The first filter eliminated variables 
(representing highways) with coefficients with statistical p-values larger than 0.10, then two subsequent steps 
of elimination were performed for variables with p-values larger than 0.05. The resulting multi-linear model 
significantly adjusted 26 highways (R2 = 0.3, p < 0.025 for all variables) when the response variable was the accu-
mulated COVID-19 cases on September 12th, 2020, and significantly adjusted 16 highways (R2 = 0.23, p < 0.015 
for all variables) for accumulated COVID-19 deaths on the same date. Model details in Supplementary Tables 1 
and 2.

Spatial spreading model.  The spatial spreading of COVID-19 throughout the country was modeled fol-
lowing the approach described in Peixoto et al.21. This approach is based on a complex mobility network of all 
Brazilian cities coupled with a compartmental model containing infected and susceptible individuals (SI model), 
adequate for simulations of initial epidemic dynamics. The mobility data is based on individual pairwise mobile 
geolocation data, resulting in multiple daily travel information between cities, collected from the Brazilian com-
pany Inloco45. The compartmental model consists in a simulation of a local SI model (with infection rate r) 
with added in/out flows of infected individuals to cities connected via the mobility data. The mobility data, with 
methodological aspects described in details in Peixoto et al.21, describes counts of trips between Brazilian cities, 
summing tens of millions daily trip counts between all major Brazilian cities. The main difference between this 
study and Peixoto et al.21 is that here we consider all Brazilian cities, whereas Peixoto et al.21 only investigated 
dissemination within cities of São Paulo and Rio de Janeiro states.

We adopted an infection rate of r = 0.2 individuals per day because it provides more realistic forecasts for the 
initial growth of the pandemic in Brazil, compared to the initial infection rates obtained for the country (e.g.46,47). 
The flux intensity parameter proposed in Peixoto et al.21 was set to s = 1, that is, no compensation of the flux 
intensity was performed, and the real daily sampled movement counts were used to infer the mobility between 
cities. The code and mobility data are available at the GitHub repository https://​github.​com/​pedro​speix​oto/​mdyn.

https://opendatasus.saude.gov.br/dataset/bd-srag-2020
https://github.com/pedrospeixoto/mdyn
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Model of the super‑spreaders.  For each state capital of Brazil, a separate simulation was performed using 
the spatial spreading model, considering as initial condition one infected individual in the city. As discussed in 
Peixoto et al.21, the simulation encompasses the potential spreading due to mobility between cities considering a 
fixed starting point (one city). The simulations were run, for each capital city, from 2020-03-01 until 2020-05-01, 
with a result, on the final day, consisting of the potential spatial spreading pattern for each capital city. Therefore, 
for each capital city, we have a vector ( −→v j) indicating the potential spreading intensity with respect to all Brazil-
ian cities. It is important to emphasize that here we used the actual observed mobility patterns of the period cov-
ered in this study, therefore our data captured lockdowns or other mobility restriction measures implemented 
during this period. The super-spreaders linear model was built by projecting, in the least-squares sense, the daily 
observed COVID-19 cases into the sub-space generated by the linear combination of the spreading patterns 
(vectors) obtained for each capital city. The final model, for each city (i) can be represented as

where I(t) is the observed number of infected individuals for all locations (Brazilian cities) and −→v j is a capital 
city spreading vector (obtained from the spatial spreading model), with dimension given by the total number 
of locations (Brazilian cities) and j varying for all capital cities. Time is considered on a daily basis, and αj(t) is 
calculated with Least Squares Approximation for each day.

As a result, we have a linear model for each day of observed COVID-19 cases, with coefficients (αj(t) ) rep-
resenting the degree of participation of a given city in the observed spatial pattern of COVID-19 cases. Based 
on the most representative 17 capital spreading patterns (largest coefficients), the super-spreaders linear model 
accounted for at least an adjusted coefficient of determination of 0.94 in all dates analyzed in this study (over 
0.98 in the first 2 months analyzed).

Methodological limitations.  While fully coupled in space by mobility, the dynamical model adopts a sim-
plified compartmental dynamic, with susceptible-infected only. This limits the model’s ability to foresee longer 
periods in time compared with the many existing variants of SEIR models. However, this approach reduces the 
complexity in the parameter calculations and, most importantly, in the estimates of initial conditions for unob-
served compartments. To compensate for this limitation, we only used the model for short periods and focused 
our conclusions on the spatial distribution patterns of the forecasted results rather than on the precise case count 
calculated.

Dataset information and limitations.  The mobile mobility dataset was provided by Inloco45, available 
upon request, and samples approximately one-fifth of the Brazilian population. While having extensive coverage 
of the Brazilian population, our data may have uneven distribution in space, age, and social classes. However, 
although adults and large cities dominate the data, samples comprise more than 90% Brazilian municipalities. To 
the best of our knowledge, this dataset is the largest database of the kind available for research in Brazil.
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