
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tciv20

Computer Methods in Biomechanics and Biomedical
Engineering: Imaging & Visualization

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tciv20

Uncertainty-aware membranous nephropathy
classification: A Monte-Carlo dropout approach to
detect how certain is the model

Paulo Chagas, Luiz Souza, Izabelle Pontes, Rodrigo Calumby, Michele Angelo,
Angelo Duarte, Washington Lc-Dos Santos & Luciano Oliveira

To cite this article: Paulo Chagas, Luiz Souza, Izabelle Pontes, Rodrigo Calumby, Michele
Angelo, Angelo Duarte, Washington Lc-Dos Santos & Luciano Oliveira (2022): Uncertainty-
aware membranous nephropathy classification: A Monte-Carlo dropout approach to detect how
certain is the model, Computer Methods in Biomechanics and Biomedical Engineering: Imaging &
Visualization, DOI: 10.1080/21681163.2022.2029573

To link to this article:  https://doi.org/10.1080/21681163.2022.2029573

Published online: 04 Feb 2022.

Submit your article to this journal 

Article views: 117

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tciv20
https://www.tandfonline.com/loi/tciv20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/21681163.2022.2029573
https://doi.org/10.1080/21681163.2022.2029573
https://www.tandfonline.com/action/authorSubmission?journalCode=tciv20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tciv20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/21681163.2022.2029573
https://www.tandfonline.com/doi/mlt/10.1080/21681163.2022.2029573
http://crossmark.crossref.org/dialog/?doi=10.1080/21681163.2022.2029573&domain=pdf&date_stamp=2022-02-04
http://crossmark.crossref.org/dialog/?doi=10.1080/21681163.2022.2029573&domain=pdf&date_stamp=2022-02-04


Uncertainty-aware membranous nephropathy classification: A Monte-Carlo dropout 
approach to detect how certain is the model
Paulo Chagasa, Luiz Souzaa, Izabelle Pontesb, Rodrigo Calumbyc, Michele Angeloc, Angelo Duartec, Washington Lc- 
Dos Santosb and Luciano Oliveiraa

aIvisionLab, Universidade Federal Da Bahia, Bahia, Brazil; bFundação Oswaldo Cruz, Instituto Gonçalo Moniz, Bahia, Brazil; cDepartamento de 
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ABSTRACT
Membranous nephropathy (MN) is among the most common glomerular diseases that cause nephrotic 
syndrome in adults. To aid pathologists on performing the MN classification task, we proposed here 
a pipeline consisted of two steps. Firstly, we assessed four deep-learning-based architectures, namely, 
ResNet-18, MobileNet, DenseNet, and Wide-ResNet. To achieve more reliable predictions, we adopted 
and extensively evaluated a Monte-Carlo dropout approach for uncertainty estimation. Using a 10-fold 
cross-validation setup, all models achieved average F1-scores above 92%, where the highest average 
value of 93.2% was obtained by using Wide-ResNet. Regarding uncertainty estimation with Wide-ResNet, 
high uncertainty scores were more associated with erroneous predictions, demonstrating that our 
approach can assist pathologists in interpreting the predictions with high reliability. We show that 
uncertainty-based thresholds for decision referral can greatly improve classification performance, increas
ing the accuracy up to 96%. Finally, we investigated how the uncertainty scores relate to complexity 
scores defined by pathologists.
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1. Introduction

Membranous nephropathy (MN) is a common autoimmune 
glomerular disease, usually associated with the cause of 
nephrotic syndrome in adults. The main characteristic of MN 
is the large quantity of immune complex sediments on the 
epithelial cells, visually indicated by a thickening in the glomer
ular basement membrane. Figure 1 depicts a normal glomer
ulus (left) and another one with MN (right), where we can 
identify the presence of thickened membranes (boundaries of 
white areas inside the right glomerulus). Distinguishing these 
visual characteristics is not a trivial task, demanding trained 
pathologists that do not always reach a consensus. This way, 
automatic classification approaches can aid pathologists in the 
decision-making pipeline. By developing deep learning models, 
computer vision applications have significantly advanced 
through time and its full potential for diagnostic-driven studies 
is still being investigated (Lit- jens et al. 2017).

Towards MN classification, the results in the literature (Chen 
et al. 2020; Uchino et al. 2020) have mostly relied on limited and 
highly unbalanced data sets, which hinder the development of 
reliable models. In terms of model variability, just a few deep 
learning architectures have been evaluated: we highlight the 
U-Net for glomeruli segmentation Chen et al. 2020), and a few 
other traditional convolutional neural networks (CNN) for clas
sification, e.g. InceptionV3 (Uchino et al. 2020) and ResNet 
(Chen et al. 2020).

In the literature, the proposals for MN classification have 
focused exclusively on label-only classification, presenting no 
supplementary data for the pathologist decision-making 

pipeline (Chen et al. 2020; Uchino et al. 2020). Begoli et al. 
(2019) emphasise the need to estimate a reliable uncertainty 
score for medical imaging applications, stating that a proper 
uncertainty score can help in both research and real-life pro
blems in the medical field. An optimal uncertainty metric 
should correlate to erroneous predictions, indicating that 
a high uncertainty score leads to a highly ‘confused’ model 
about its prediction.

Uncertainty information could be helpful when specialists 
interpret the model output: How much should the pathologists 
trust the input and its respective prediction? Hence we propose 
here an evaluation pipeline composed of two tasks: i) evaluat
ing deep learning architectures for MN classification, and ii) 
performing and investigating an uncertainty estimation 
approach for supportive information using the best architec
ture from task i). We adopted Monte-Carlo dropout (Gal and 
Ghahramani 2016) for uncertainty estimation because it does 
not require extensive modifications in the baseline architec
tures. Also, Monte-Carlo dropout showed noteworthy results in 
several works in medical imaging field (better described in 
Section 1.1). Inspired by the work of Combalia et al. (2020), 
which combines Monte-Carlo dropout and test-time data aug
mentation (TTA), we extensively evaluated Monte-Carlo with 
and without TTA along with different parameters. We also 
examine how our uncertainty scores correlated with erroneous 
classifications, and, more specifically, how these scores were 
distributed for each class. In addition, we evaluated whether 
the uncertainty scores can be used with a threshold to drop an 
‘uncertain’ image and consequently improve the classification 
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metrics. Lastly, we investigate the following question: ‘Are high 
uncertainty images “harder” for pathologists to diagnose?’. Trying 
to answer this question, we collected complexity scores (ran
ging from 1 to 5, representing from ‘no complexity’ up to 
‘highest complexity’) from five pathologists using the ten high
est and ten lowest uncertainty images. Our goal is to explore 
the correlation between uncertainty scores and pathologist- 
defined complexity scores.

The main contributions of this work are listed as follows:
• The experiments were carried out by using a large amount 

of MN images, allowing a more reliable evaluation of our clas
sification pipeline;

• a diverse set of deep learning architectures was used, 
achieving top results for all of them;

• thorough investigation of our proposed uncertainty esti
mation experiments with Monte-Carlo dropout, considering 
different parameters and the impact of using uncertainty 
thresholds; and

• analysis of the relationship between uncertainty scores and 
pathologists-defined complexity scores.

1.1. Related work

Uchino et al. (2020) carried out an extensive evaluation of deep 
learning models for classification of several glomerular lesions, 
including MN. They used class-specific binary models for each 
lesion by fine-tuning an InceptionV3 (Szegedy et al. 2016) net
work. Particularly for MN, among an amount of 3841 images, 
there were only 167 MN images. Even though their results 
showed high performance for some lesions, lower performance 
was achieved for the MN cases (AUC ¼ 0:816� 0:034 and 
AUC ¼ 0:734� 0:011 for PAS-stained and PAM-stained images, 
respectively). This decrease in performance might be due to the 
weakly representation of MN compared to the entire data set. 
Our work seeks to tackle this issue by using a more balanced 
data set.

Chen et al. (2020) introduced SPIKE-NET, a two-phase deep 
learning approach for MN recognition. Their proposed pipeline 
consists of an initial segmentation followed by classification. 
U-Net (Ronneberger et al. 2015) is used for glomeruli 

segmentation, while ResNet (He et al. 2016) is used (since it 
outperformed AlexNet (Krizhevsky 2014) and VGG16 (Simonyan 
and Zisserman 2014)) for the classification task. More specifi
cally, SPIKE-NET achieved an accuracy of 94.44% against 92.86% 
and 91.27% from UNet-VGG16 and UNet-AlexNet, respectively. 
Although achieving considerably high results, their experi
ments were also conducted in a limited data set with 1,267 
glomeruli (653 with MN and 614 normal), where only 126 
glomerulus images were used in a single final assessment.

Considering uncertainty estimation, as our proposal focuses 
on a Monte-Carlo dropout approach, we highlight some works 
that applied this method to medical imaging. Leibig et al. 
(2017) introduced a deep learning model for diabetic retino
pathy (DR) classification from fundus images. The authors used 
a custom sequential CNN and a VGG-inspired (Simonyan and 
Zisserman 2014) architecture. They used Monte-Carlo dropout 
for uncertainty estimation, adopting AUC, variance, and 
entropy as evaluation metrics. Leibig et al. (2017) accomplished 
not only competitive results for DR classification but also reli
able uncertainty measures. This reliability is validated by the 
direct relation between high uncertainty scores and erroneous 
predictions.

Similarly, Laves et al. (2019) proposed comparing two 
different Monte-Carlo dropout configurations with 
a variational inference method for optical coherence 
tomographies (OCT) condition classification. These two 
variations consisted of one adding dropout before the 
last classification layer and another adding dropout after 
each convolutional block. They adopted ResNet-18 as 
baseline model and compared it with the other three 
variations using the ResNet-18 backbone. They concluded 
that adding dropout after each convolutional block can 
lead to more model noise and lower results. Their conclu
sion justifies our choice of using dropout layers only 
before the last convolutional layer. They used variance as 
uncertainty metric, and, as the work of Leibig et al. (2017), 
high variance scores correlated to incorrect classifications.

Our uncertainty estimation approach was mostly inspired by 
the work of Combalia et al. (2020), which combined Monte-Carlo 
dropout and test-time data augmentation for skin lesion classi
fication. Our work differs from theirs on the following aspects: 

Figure 1. Example of a) a glomerulus with no lesion, and b) a glomerulus with membranous nephropathy.
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We evaluated different architectures before the uncertainty esti
mation phase (they used only Efficient-Net-B0 (Tan and Le 
2019)), we assessed Monte-Carlo dropout with and without test- 
time data augmentation, also evaluating different parameters.

Diving into the nephropathology field, Cicalese et al. (2020) 
introduced a deep-learning-based classification of kidney- 
level lupus nephritis with later uncertainty estimation. 
DenseNet (Huang et al. 2017) was adopted as CNN backbone 
and Monte-Carlo dropout was used for uncertainty estima
tion. Their pipeline was composed of a glomerular-level and 
a kidney-section-level classification, achieving competitive 
results for both types. Entropy was adopted as uncertainty 
score and, as occurred in previously cited works, high scores 
correlated to erroneous classifications. This correlation con
sistently occurring in several works justifies our proposal of 
using Monte-Carlo dropout for uncertainty estimation on the 
MN classification task.

2. Materials and methods

2.1. Data description and preparation

Our data set is composed of 4,682 images of human glomerulus 
labelled considering the following classes: Isolated membranous 
nephropathy (I-MN), mixed membranous nephropathy (M-MN), 
hypercellularity, glomerular sclerosis (cited here as sclerosis), and 
images with no lesion (cited here as normal). The following 
criteria were used: I-MN represents glomerulus that has MN 
characteristics only; conversely, the M-MN cases have MN prop
erties and other lesions involved. The images were collected 
from the digital histological image library of the Gonçalo 
Moniz Institute (FIOCRUZ) and properly dissociated from their 
respective patient information to avoid identification. The tissue 
samples were fixed in Bouin’s fixative or formalin–acetic acid– 
alcohol, included in paraffin. Haematoxylin and Eosin (H&E) were 
used to stain sections of 2–3 µm. All images were obtained using 
an Olympus QColor 3 digital camera connected to a Nikon E600 
optical microscope (applying 200 � magnification). From each 
section, pathologically relevant regions were individually 
cropped and annotated by pathologists for diagnoses. The 
final data set was created considering only the cropped images 
that included at least one glomerulus.

Since that differentiation between I-MN and M-MN is usually 
difficult to be done using only visual features, we decided to cluster 
isolated and mixed MN images into a single group called ‘mem
branous’. A typical training approach would be to use 
a membranous � no-lesion setup. Still, other lesions not related 
to MN may appear in real case situations. As the data set also 
included images with hypercellularity and sclerosis (both without 
MN), we grouped these classes into a class named ‘other lesion’. 
Therefore, our final 3-class configuration and class distribution can 
be summarised as follows:

• Membranous: glomeruli with isolated (712 images) 
and mixed MN (1354 images), thus comprising 2066 
images;

• Other lesions: glomeruli with hypercellularity (1237 
images) or sclerosis (510 images), thus comprising 1747 images;

• Normal: glomeruli with no lesion (869 images).

Figure 2 illustrates examples of the approached lesions, and 
for comparison, a non-lesioned glomerulus is displayed in 
Figure 1. These pictures exhibit the challenge of differentiating 
the glomerular classes, even though some of these classes are 
grouped into broader labels.

2.2. Evaluation protocol

Figure 3 illustrates our evaluation protocol, which can be sum
marised into the following steps: Architecture comparison, 
uncertainty estimation, and qualitative evaluation. In the first 
step, we compared four DL architectures in a 10-fold cross- 
validation setup, namely, MobileNet-V2 (Sandler et al. 2018), 
ResNet-18 (He et al. 2016), DenseNet-121 (Huang et al. 2017), 
and Wide-ResNet-121 (Zagoruyko and Komodakis 2016). The 
main goal of this first phase is to select the architecture that 
achieved the highest average F1-Score. After selecting the best 
architecture, we added a dropout layer and started the second 
step, which consists of performing an uncertainty estimation 
using Monte-Carlo dropout. In the final step, we carried out 
a qualitative study by evaluating the relationship between 
uncertainty scores and the labelling challenge-level defined 
by pathologists. In the next sections, we cover each step of 
the proposed protocol.

2.3. On selecting the best architecture for MN 
classification

Since our uncertainty estimation evaluation covers experi
ments with different hyperparameters, we perform an initial 
architecture selection to analyse the parameter combinations 
using a single architecture. We assessed four CNN architectures: 
MobileNet-V2, ResNet-18, DenseNet-121, and Wide-ResNet. 
Given the diversity of architectures in the literature, we selected 
networks that bring different deep-learning novelties on archi
tecture design. As the name suggests, ResNet-18 introduced 
the so-called residual block, innovating by adding skipping 
connections inside each block thus preventing the vanishing- 
gradient problem. Inception-V3 updated the inception block 
that, in the latter one, is composed of parallel convolutions of 
different kernel sizes. Expanding the concept of skipping con
nection, in a DenseNet architecture, each layer is connected to 
every forward layer, still reducing the vanishing-gradient pro
blem and also strengthening feature propagation. Wide- 
ResNets are a variant of ResNets with decreased depth and 
increased width (introducing wide residual blocks). These 
wide residual blocks are capable of learning more features 
with no deepening of the network, achieving faster conver
gence during the training phase. Finally, by combining residual 
connections and separable convolutions, MobileNet-V2 intro
duces a novel architecture focused on running on devices 
constrained by low memory and low computation.

As we do not wish to ‘waste’ training data with a traditional 
train/validation/test split, we used a K-fold cross-validation 
approach for training and validation of the candidate architec
tures. Instead of generating fixed training and validation sets, 
we split the data set into K folds, interactively leaving onefold 
for validation and using the remaining K � 1 folds for training. 
This way, we train and evaluate the model on K rounds of 
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different training and validation sets. Finally, as we do not have 
a final test set, we validated the architectures using average 
metrics (to be described later) across the K rounds. To avoid 
a large reduction on the training set, we adopted K ¼ 10.

2.4. Estimating uncertainty of deep-learning 
architectures

Neural networks are known to almost always return high con
fidence predictions, usually softmax-based probabilities (Hein 
et al. 2019). Tackling this issue of yielding high confidence 
scores for inputs far away from the training distribution is 
essential for some tasks, as safety-critical systems should be 
aware of inputs they ‘are not sure’ about the prediction. 
Considering medical applications, avoiding overconfident pre
dictions can aid specialists and students in the analysis of the 
input and model outcome. With a proper uncertainty score, the 
following questions arise: ‘How certain is the model?’, ‘should its 
prediction be reevaluated?’, ‘was this class present in the training 
data set?’.

Usually, one considers two types of uncertainty: Aleatory 
and epistemic (Kiureghian and Ditlevsen 2009). Aleatory uncer
tainty (also called data uncertainty) represents randomness 
inherent to the observed data, mostly related to the data set 
generation issues (such as labelling phase and domain 

characteristics). Conversely, the epistemic type (also called 
model uncertainty) captures uncertainty about the model and 
the generalisation over the data. Our uncertainty estimation 
pipeline is inspired by the work of Combalia et al. (2020), which 
combines Monte-Carlo dropout (Gal and Ghahramani 2016) 
and test-time data augmentation (Ayhan and Berens 2018) to 
estimate both aleatory and epistemic uncertainty.

Dropout is a regularisation method usually applied at train
ing time to avoid overfitting (Srivastava et al. 2014). This 
method consists in randomly dropping out weights on 
a given layer of the network. In this context, Monte-Carlo- 
based experiments use repetition through sampling to model 
probabilities of events constrained by random variables 
(Kroese et al. 2013). The idea of MCD is thus to use that 
randomness on the network to estimate model uncertainty 
on prediction. Gal and Ghahramani (2016) applied this sam
pling idea to the CNN context by keeping dropout activated 
during test time while performing multiple forward passes of 
a given input through the model. With a probability p of 
randomly dropping out weights, each forward pass results in 
a different set of weights, leading to different predictions. 
Consequently, each input xi yields M predictions 
p ¼ fpi1; pi2; . . . ; piMg. One common approach is to use the 
mean of these predictions as the final prediction yi and the 
variance as the uncertainty score ui.

Figure 2. Example of a) a glomerulus with isolated MN, b) mixed MN, c) hypercellularity, and d) sclerosis.
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Following a similar approach, Ayhan and Berens (2018) pro
posed the test-time data augmentation to estimate aleatory 
uncertainty. Data augmentation consists in applying random 
transformations to the input, usually during training. The core 
idea is to increase the variability of the training data and to 
improve the generalisation. By applying these random trans
formations on inference for every input xi, one can evaluate 
how much the network output varies with random and close 
samples from xi.

Combalia et al. (2020) combined those two uncertainty 
estimation methods by adding random data augmentation 
to each forward pass on MCD. This way, they included 
randomness on both data and model. For MCD implemen
tation, as Figure 3 illustrates, we selected the best architec
ture from the architecture evaluation phase and added 
a dropout layer right before the last classification layer. 
Then, we retrain the model considering different p (dropout 
probability) and M (number of forward passes) values. Since 
we are mostly interested in the uncertainty over the model 
prediction, we assessed MCD with and without TTA. Even 
though the experiments to assess the uncertainty methods’ 
performance have been performed by considering the best 

network architecture (without loss of generality), both MCD 
and TTA were originally developed to work regardless of the 
neural network.

2.5. Metrics

A quite traditional metric for evaluating classification models is 
accuracy, which corresponds to the percentage of correct pre
dictions among all instances. To assure the generalisation for 
each class, we adopted precision, recall and F1-score. 
Precision summarises how many positive predictions are 
indeed positive. Recall indicates how many positive samples 
were correctly classified. F1-score is the harmonic mean 
between precision and recall. Each metric is based upon the 
following definitions: True positive (TP) represents the correct 
predictions of the positive class, true negative (TN) represents 
the correct predictions of the negative class, false positive (FP) 
represents the incorrect predictions of the positive class, and 
false negative (FN) represents the incorrect predictions of the 
negative class. Each metric is then given by: 

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
(1) 

Figure 3. Proposed evaluation pipeline split into two steps: Evaluation of chosen architectures, and uncertainty estimation.
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Precision ¼
TP

TPþ FP
(2) 

Recall ¼
TP

TPþ FN
(3) 

F1 � Score ¼ 2 �
Precision � Recall
Precisionþ Recall

(4) 

For uncertainty estimation, we adopted two metrics: predic
tive variance and uncertainty ratio. Predictive variance (also 
cited here as MCD variance) is estimated by taking the variance 
of M predictions for each class and then computing the mean 
of these variances. As MCD variance is measured for each 
image, we used the uncertainty ratio to evaluate a set of 
images. The uncertainty ratio is the ratio between the average 
MCD variance of incorrect predictions and the average MCD 
variance of correct predictions. This way, we can analyse the 
relation between MCD variance and correctness in predictions.

3. Experiments and results

3.1. Implementation details

All architectures were modelled, trained, and validated using 
the Pytorch framework (Paszke et al. 2019). To achieve faster 
and better convergence for medical imaging (Raghu et al. 
2019), all models were initially loaded with weights pretrained 
on the ImageNet data set (Russakovsky et al. 2015) with an 
adapted dense layer with three nodes, respectively, to the 
target classes. For training parameters, we used AdamW opti
miser (Loshchilov and Hutter 2017) and set 100 epochs with 
a batch size of 32, defining an initial learning rate of 0.0001 with 
step decay of factor 0.1 at every 30 epochs. To apply data 
augmentation during training and testing (for TTA), we 
included the following transformations: Random rotations 
within an range of 90 degrees and probability of 0.5, random 
horizontal and vertical flips, and random crops of 224×224 
pixels after resizing the input height to 224, thus maintaining 
aspect ratio and matching the input size of 224×224 for all 
networks. All experiments were run on a machine with 8GB 
RAM and an NVIDIA GEFORCE GTX 1060.

3.2. Architecture evaluation

The first phase of experiments consists in evaluating the candi
date architectures in a cross-validation setup. Table 1 presents 
the results of each architecture for the classification metrics 
defined earlier. The four architectures achieved competitive 
results, presenting average metrics above 92% with low 

standard deviations. The models returned similar values for all 
metrics, indicating that the networks also achieved a good 
generalisation per class. As expected, Wide-ResNet returned 
the highest average F1-Score (in bold) with the closest values 
across all metrics, showing robustness among different training 
and validation sets. Also, Wide-ResNet achieved the lowest 
standard deviation for all metrics, showing more stable results 
across all folds.

Another noteworthy point is the performance of MobileNet, 
which, despite being the most lightweight model, still outper
formed ResNet-18. Table 2 brings the number of trainable 
parameters of each architecture, where we can observe that 
MobileNet is almost five times less costly than ResNet-18. In 
addition, MobileNet achieved results relatively close to the 
other architectures, still being approximately three times less 
costly than DenseNet, and thirty-three times less costly than 
Wide-ResNet. In this work, our uncertainty estimation experi
ments are performed regarding only the best architecture, 
namely Wide-ResNet. However, considering a performance- 
efficiency trade-off, MobileNet would be the right choice.

Despite a high F1-Score per si indicates great learning per 
class, we also computed the confusion matrix for Wide-ResNet 
to better visualise intraclass predictions. For an aggregated 
view, we analysed the confusion matrix sum over the 10 valida
tion folds. The confusion matrix is summarised in Table 3, 
where the rows represent ground-truth labels, and the columns 
represent the predicted classes. Thus, the main diagonal (high
lighted in purple) indicates the correct predictions. Besides, we 
calculated the F1-score for each class, where competitive scores 
for all classes were achieved.

3.3. Uncertainty estimation

The second phase of our evaluation pipeline can be defined as 
estimating uncertainty scores considering two methods: MCD 
and TTA. As pointed in Section 2.4, we evaluated MCD with and 
without TTA. To assess how MCD parameters impact model 
predictions, the experiments were performed considering p ¼

0:3; 0:4; 0:5; 0:6; 0:7f g and M ¼ 10; 50; 100f g. With Wide- 
ResNet selected as the best architecture, we added a dropout 
layer between the Wide-ResNet backbone and the last classifi
cation layer. For every combination of p, M, and the presence/ 
absence of TTA, we retrained the architecture starting from the 
pre-trained ImageNet weights. The results of each parameter 
combination can be found in Table 4. As occurred in 
Section 3.2, the average metrics also showed similar values for 
each combination. However, a greater variation can be 
observed if we consider all parameter combinations. The F1- 
scores ranged from 91.7% to 93.5%, where the top value is 

Table 1. Comparative results of MobileNet, ResNet-18, DenseNet and Wide-ResNet deep-learning-based architectures.

Model μAccuracy μF1-score μPrecision μRecall

MobileNet 0:926ð�0:008Þ 0:924ð�0:008Þ 0:924ð�0:008Þ 0:925ð�0:008Þ

ResNet-18 0:924ð�0:010Þ 0:922ð�0:008Þ 0:922ð�0:010Þ 0:922ð�0:009Þ
DenseNet 0:932ð�0:011Þ 0:930ð�0:011Þ 0:928ð�0:012Þ 0:933ð�0:013Þ
Wide-ResNet 0:937ð�0:007Þ 0:936ð�0:007Þ 0:936ð�0:008Þ 0:936ð�0:008Þ
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below but still close to the former no-uncertainty Wide-ResNet 
(93.6%). Taking the cases without TTA, the M values had little to 
no impact on the average metrics. Also, the absence of TTA 
returned lower uncertainty ratios for almost all cases compared 
to the cases with TTA, maybe due to the reduction of random
ness on prediction. Nevertheless, without the noise introduced 

by TTA, higher scores were achieved for average metrics. 
Regarding the probability values, the highest average metrics 
were achieved using p=0.4, which might be a good trade-off 
between an excessive amount of weights dropped (which 
could harm the generalisation) and too little weights dropped 
(that could introduce less regularisation). Interestingly, the 
highest uncertainty ratio was 9.252, which was achieved with 
p=0.3. We cannot conclude that lower dropout probabilities 
always led to greater uncertainty ratios because p=0.7 also 
returned a competitive score of 9.150.

For further investigation, we considered only the model 
trained with TTA applied, p=0.3, and M=100. the highest uncer
tainty ratio (9.252), it is possible to say that the average uncer
tainty of incorrect classification was approximately nine times 
higher than the average uncertainty of correct predictions, 
showing a relation between MCD variance and erroneous pre
dictions. For a better understanding of how the MCD variance is 
distributed, Figure 4 illustrates area charts for each class com
bination. We can note that MCD variance of correct predictions 
are clustered in a region close to the minimum variance, while 
the incorrect predictions have a wider distribution over areas 
with higher uncertainty scores. Since higher MCD variances are 
more likely to represent incorrect classifications, we can set 
a threshold value to remove or re-evaluate a given sample. To 

Table 2. Number of trainable parameters of the candidate architectures.

Model # trainable parameters

MobileNet 2:227:715

ResNet-18 11:178:051
DenseNet 6:956:931

Wide-ResNet 66:840:387

Table 3. Confusion matrix sum for Wide-ResNet predictions over the 10-fold 
cross-validation.

N M O F1-score

Normal (N) 808 49 12 0.93
Membranous (M) 49 1948 69 0.94

Other lesion (O) 19 95 1633 0.94

Table 4. Results of Wide-ResNet with MCD considering different parameters over 10 validation folds. The p parameter refers to the dropout probability, TTA refers to the 
presence (✓) or absence (✘) of test-time data augmentation, and M indicates the number of forward passes of the input over the network.

p TTA M μ Accuracy μ F1-score μ Precision μ Recall Unc. ratio

0.3 ✘ 10 0:933ð�0:008Þ 0:931ð�0:007Þ 0:930ð�0:008Þ 0:933ð�0:008Þ 7.060
✘ 50 0:934ð�0:009Þ 0:932ð�0:008Þ 0:931ð�0:009Þ 0:934ð�0:008Þ 6.583

✘ 100 0:933ð�0:009Þ 0:932ð�0:008Þ 0:931ð�0:009Þ 0:933ð�0:009Þ 6.811
✓ 10 0:921ð�0:012Þ 0:921ð�0:011Þ 0:920ð�0:011Þ 0:922ð�0:012Þ 8.481

✓ 50 0:925ð�0:008Þ 0:923ð�0:008Þ 0:922ð�0:008Þ 0:925ð�0:010Þ 9.008
✓ 100 0:921ð�0:015Þ 0:920ð�0:014Þ 0:919ð�0:014Þ 0:921ð�0:014Þ 9.252

0.4 ✘ 10 0:937ð�0:008Þ 0:935ð�0:009Þ 0:935ð�0:009Þ 0:936ð�0:011Þ 6.736
✘ 50 0:936ð�0:009Þ 0:935ð�0:009Þ 0:934ð�0:010Þ 0:936ð�0:011Þ 6.995
✘ 100 0:937ð�0:009Þ 0:935ð�0:009Þ 0:935ð�0:009Þ 0:936ð�0:011Þ 6.584

✓ 10 0:927ð�0:011Þ 0:925ð�0:012Þ 0:923ð�0:011Þ 0:927ð�0:014Þ 8.319
✓ 50 0:925ð�0:006Þ 0:923ð�0:005Þ 0:922ð�0:007Þ 0:926ð�0:007Þ 7.935

✓ 100 0:923ð�0:009Þ 0:922ð�0:009Þ 0:920ð�0:010Þ 0:924ð�0:011Þ 8.482
0.5 ✘ 10 0:933ð�0:011Þ 0:931ð�0:010Þ 0:931ð�0:010Þ 0:932ð�0:013Þ 7.725

✘ 50 0:933ð�0:011Þ 0:931ð�0:010Þ 0:931ð�0:010Þ 0:931ð�0:013Þ 6.801
✘ 100 0:933ð�0:012Þ 0:931ð�0:011Þ 0:932ð�0:010Þ 0:932ð�0:023Þ 7.006
✓ 10 0:924ð�0:008Þ 0:924ð�0:008Þ 0:923ð�0:008Þ 0:924ð�0:009Þ 8.306

✓ 50 0:921ð�0:007Þ 0:920ð�0:006Þ 0:919ð�0:008Þ 0:921ð�0:009Þ 9.117
✓ 100 0:927ð�0:009Þ 0:926ð�0:009Þ 0:925ð�0:009Þ 0:927ð�0:011Þ 8.578

0.6 ✘ 10 0:931ð�0:011Þ 0:928ð�0:011Þ 0:927ð�0:011Þ 0:930ð�0:012Þ 7.842
✘ 50 0:932ð�0:011Þ 0:929ð�0:011Þ 0:928ð�0:011Þ 0:931ð�0:012Þ 7.746

✘ 100 0:932ð�0:011Þ 0:929ð�0:011Þ 0:928ð�0:011Þ 0:930ð�0:013Þ 7.796
✓ 10 0:928ð�0:011Þ 0:927ð�0:011Þ 0:926ð�0:009Þ 0:927ð�0:014Þ 7.690

✓ 50 0:924ð�0:013Þ 0:922ð�0:014Þ 0:920ð�0:016Þ 0:925ð�0:014Þ 8.947
✓ 100 0:926ð�0:011Þ 0:924ð�0:011Þ 0:922ð�0:010Þ 0:927ð�0:013Þ 7.663

0.7 ✘ 10 0:931ð�0:011Þ 0:928ð�0:011Þ 0:929ð�0:009Þ 0:928ð�0:015Þ 6.720

✘ 50 0:930ð�0:011Þ 0:927ð�0:011Þ 0:928ð�0:009Þ 0:927ð�0:015Þ 7.208
✘ 100 0:931ð�0:011Þ 0:928ð�0:010Þ 0:929ð�0:008Þ 0:928ð�0:014Þ 6.710

✓ 10 0:923ð�0:013Þ 0:923ð�0:012Þ 0:922ð�0:012Þ 0:923ð�0:014Þ 7.811
✓ 50 0:920ð�0:011Þ 0:918ð�0:010Þ 0:918ð�0:010Þ 0:919ð�0:013Þ 8.652

✓ 100 0:920ð�0:009Þ 0:917ð�0:010Þ 0:916ð�0:010Þ 0:919ð�0:011Þ 9.150
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assess whether a threshold can improve the model perfor
mance, we evaluated several thresholds values ranging from 
the minimum to the max variance. For each threshold value t: 1) 
we drop samples that received an uncertainty score greater 
than t, 2) we recompute the accuracy with the new set of 
samples. Figure 5 illustrates a monotonic increase in accuracy 
as MCD variance thresholds decrease, where we can see the 
accuracy improve up to 96%.

Even though the models were trained considering a unique 
membranous class, we had the annotations for isolated MN and 
MN combined with other lesions. We expected mixed-MN sam
ples would be misclassified as ‘other lesion’ more frequently 
than the isolated MN cases. Since mixed-MN images can have 
any other lesion besides MN, there might be images visually 
similar to hypercellularity or sclerosis (both present in the ‘other 
lesion’ class). What was expected indeed occurred: Among all 

isolated MN cases, 3.65% were misclassified as ‘other lesion’; 
while among all mixed-MN cases, 6.72% were misclassified as 
‘other lesion’. It is necessary thus to investigate if higher uncer
tainty scores represent higher complexity for pathologists. To 
tackle this issue, we selected the ten highest uncertainty 
images and the ten lowest uncertainty images. To five pathol
ogists were asked to accomplish two tasks:

• Classify each image into one of the following classes: 
isolated MN, mixed-MN, other lesion, no lesion;

• ranging from 0 (no complexity) to 5 (highest complexity), 
which complexity would he/she give to the classification task?

Table 5 summarises the predictions and average complexity 
scores for each image. The top part (first ten rows) represents 
the lowest uncertainty images. If we group I-MN and M-MN 
cases, there is an agreement of 8/10 between the ground-truth 
and the majority voting considering all five pathologists. The 

Figure 5. Improvement in accuracy using a decision approach based on MCD variance threshold.

Figure 4. Distribution of variance score based on real/predicted class combinations.

8 P. CHAGAS ET AL.



bottom part (last ten rows) represents the highest uncertainty 
images. By grouping I-MN and M-MN cases, there is an agree
ment of 7/10 between the ground-truth and the majority vot
ing. We can highlight that there are only three images where 
the pathologists reached a consensus (images 5, 9 and 10): Two 
cases labelled as ‘other lesion’ and one sample labelled as I-MN. 
It is noteworthy that these three images belong to the lowest 
uncertainty group, and their respective majority voting classes 
match the GT labels. Overall, Table 5 indicates how unlikely it is 
to reach a consensus, where we have to consider different 
backgrounds, levels of experience, and expertise among the 
pathologists. Finally, we computed the mean of average com
plexity for both top- and bottom-10 groups. Although the 
lowest uncertainty group achieved the lowest mean of average 
complexity (2.82 compared to 2.9), further experiments need to 
be done to prove that MCD variance indicates complexity for 
specialists.

4. Concluding remarks

Recognising MN is an important and challenging task, which 
could be supported by automatic classification methods and 
proper uncertainty scores. We developed an evaluation pipe
line consisted of two tasks: Architecture evaluation and uncer
tainty estimation. For the first phase, we compared ResNet-18, 
MobileNet, DenseNet, and Wide-ResNet in a 10-fold cross- 
validation setup. We obtained average F1-Scores above 92% 
for all models, where the highest average F1-score was 
achieved by Wide-ResNet (93.6%). Also, it is noteworthy that 
MobileNet achieved competitive scores even with much fewer 
parameters, becoming a feasible choice for mobile applica
tions or other performance-constrained hardware 

configurations. The second phase consists in estimating and 
evaluating uncertainty for the best architecture (Wide-ResNet) 
. We applied Monte-Carlo dropout and assessed several 
experiments combining different values for parameters 
p (dropout probability), M (number of forward passes), and 
TTA (presence or absence of test-time data augmentation). 
The modified Wide-ResNet achieved slightly lower results, 
with F1-Scores ranging from 91.7% to 93.5%. Also, we could 
achieve an uncertainty ratio of 9.252, which indicates 
a relation between MCD variance and correctness on predic
tions. Regarding the evaluated parameters, p=0.4 returned the 
best average metrics and a competitive uncertainty score 
(8.482). We could conclude that M has more impact when 
used with TTA, and the use of TTA must consider that the 
data noise might increase the uncertainty ratio as the average 
metrics slightly decrease. Another experiment aimed to use 
thresholds based on MCD variance to drop samples and eval
uate the impact of these dropped samples on accuracy. We 
showed that our uncertainty scores correlated with correct
ness so that decreasing threshold values led to increasing 
accuracy scores. In a real-world scenario, the images surpass
ing a specified threshold, beyond being dropped, could be re- 
evaluated, re-labelled, or highlighted for further inspection. 
Lastly, our investigation on the correlation between MCD 
variance and pathologists-defined complexity scores did not 
show a great discrepancy among the highest and lowest 
uncertainty groups. This way, we cannot conclude that there 
is a correlation, so further experiments with more images and 
uncertainty scores need to be made. Although we could not 
prove the correlation, the pathologist’s predictions showed 
how challenging it is to diagnose a glomerular lesion and 
reach a consensus-based data set. For future work, we plan 

Table 5. Pathologists’ predictions and average complexity scores (μC) for the ten lowest uncertainty images (images 1–10) and ten highest uncertainty images (images 
11–20). We represent each pathologist as Px, with X ranging from 1 up to 5. For a better understanding, we also included the ground-truth labels (GT). The following 
abbreviations are used: Membranous nephropathy as MN; isolated membranous nephropathy as I-MN; mixed membranous nephropathy as M-MN; other lesion as O; 
normal as N.

Img P1 P2 P3 P4 P5 GT μ C

1 M-MN I-MN M-MN M-MN M-MN MN 2.4
2 I-MN M-MN M-MN O O MN 3

3 I-MN O I-MN O N MN 2.6
4 O O M-MN O O O 2.8
5 O O O O O O 2.8

6 O M-MN O O O O 2.8
7 O O M-MN M-MN O O 2.8

8 O O M-MN O O O 3.2
9 I-MN I-MN I-MN I-MN I-MN MN 3.2

10 O O O O O O 3.4
11 N N N I-MN N MN 2.4
12 I-MN O I-MN M-MN N MN 2.2

13 O O M-MN O M-MN O 3.2
14 O O M-MN O O MN 3.6

15 N O N O N N 2.4
16 N O O O O N 3

17 M-MN O O O O O 2.2
18 I-MN I-MN I-MN I-MN M-MN MN 3
19 O N N N N N 2.8

20 M-MN O O O N O 3.4
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to evaluate other uncertainty estimation methods such as 
Variational Inference (VI) (Posch et al. 2019) or deep ensem
bles (Lakshminarayanan et al. 2016). In addition, finding an 
optimal threshold value is an important task, especially con
sidering real-world scenarios. Novel lesions need to be 
assessed as well, and we plan to develop a robust approach 
considering more glomerular lesions in an open-set classifica
tion setup.

Note

1. https://pathospotter.bahia.fiocruz.br/pathospotterhome/

Notes
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