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Abstract

Latin America is underrepresented in genetic studies, which can exacerbate disparities in personalized genomic
medicine. However, genetic data of thousands of Latin Americans are already publicly available, but require a
bureaucratic maze to navigate all the data access and consenting issues. We present the Genetics of Latin
American Diversity (GLAD) Project, a platform that compiles genome-wide information of 54,077 Latin
Americans from 39 studies representing 45 geographical regions. Through GLAD, we identified heterogeneous
ancestry composition and recent gene-flow across the Americas. Also, we developed a simulated-annealing-
based algorithm to match the genetic background of external samples to our database and share summary
statistics without transferring individual-level data. Finally, we demonstrate the potential of GLAD as a critical
resource for evaluating statistical genetic softwares in the presence of admixture. By making this resource
available, we promote genomic research in Latin Americans and contribute to the promises of personalized
medicine to more people.
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Introduction

Latin Americans/Latinos/Latinx/Latine, or Hispanics, as an ethnic label, represent a set of populations across the
Americas characterized by admixture between populations from many parts of the world with distinct ancestry
compositions *. As such, treating Latin Americans as a single group is an over-simplification that may limit
opportunities to improve health and clinical treatment. Latin Americans comprise 656 million people (8.5% of the
world’s population)?. In the United States, Latin Americans represent 18% of the population and are the fastest-
growing demographic®. Unfortunately, these populations remain understudied and underserved in biomedical
research and are at risk of being left behind by the precision medicine revolution. For example, Latin Americans
only represent about 0.23% of participants in genome-wide association studies (GWAS) performed”. Several
important efforts have been made to understand Latin American (LAm) genetic history and to identify genetic
variants associated with complex traits >2°. However, most of these samples are thinly spread across many
projects with few initiatives (e.g., the Mexico City Prospective Study®’) to obtain the 100K+ individuals necessary
to have statistical power comparable to other population groups (e.g., Europeans® and East Asians®*%).

To remedy the under-representation of Latin Americans in genomic studies, we have created the Genetics of
Latin American Diversity database (GLADdb), a resource to infer fine-scale patterns of population structure
across the Americas and boost statistical power for the discovery of genetic factors contributing to LAm health
and disease. By gleaning LAm individuals through dbGaP and whole genome sequencing projects across the
Americas, we gathered over 54,000 unrelated individuals, either genotyped and imputed, or sequenced, from
ten countries (Figure 1A) spanning 45 geographical groups (Table S1 and Table S2). These group labels
reflect administrative division level (e.g., country, state, or city level information) when available. Using GLADdb,
we addressed two major goals regarding LAm genomics: (i) in population genetics: to identify recent fine-scale
patterns of distant relatedness and differentiation along the Americas, providing insights into regions with
genetic underrepresentation, and (ii) in genetic epidemiology at two levels: (a) by developing a web tool for
matching the genetic background of GLADdb individuals with external pools of samples providing additional
power to discover genotype-phenotype associations and (b) by demonstrating how GLADdb can be utilized for
testing statistical genetic software in diverse LAm cohorts.

We start by exploring distant genetic relatedness among LAm countries. Several studies have focused on
determining the sources and timing for admixture events that led to the current genetic composition in some
LAm countries ®*7131831-38 However, understanding LAm genetic diversity goes beyond the initial continental
admixture and involves bottlenecks, founder effects, and migration into and along the Americas, especially as it
relates to fine-scale population structure within the continental sources (i.e., Indigenous American, European
and African groups). We explored population structure and recent migration among LAm regions by analyzing
allelic frequencies and identity-by-descent (IBD) sharing.

We then address issues about data availability when performing large-scale analyses in LAm populations. Many
association analyses in LAm populations have smaller sample sizes than similar studies in Europeans and other
populations. Data, even when publicly available, is often prohibitively restrictive for investigators to access
because of quality control efforts and data curation, in addition to the bureaucratic maze typically required to
obtain the data . Artomov et al. ** showed that with a large control cohort, a matching procedure, which is the
identification of individuals with similar genetic backgrounds with external data, and sharing of their summary
statistics (e.qg., allele counts), is possible without the transfer of individual-level data. The matching procedure is
designed to guard against genetic control inflation and reduce spurious associations due to population structure.
Given Artomov's approach was developed on European ancestry individuals, we adapt this idea to the complex
ancestral composition of LAm individuals. We devised an enhanced matching algorithm to explore the principal
component space derived from our diverse GLADdb cohorts, into which we project external samples and match
them to GLADdb individuals using ancestral background summary statistics. From the selected GLADdb
individuals, we will generate and return summary statistics of genome-wide genotype frequencies and aggregate
local ancestry composition to increase the sample size and power of the end-user study. Since GLADdb
consists of both cases and controls for different phenotypes, we will also use phenotype filters to select
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individuals useful as controls. We implemented all these features through an interactive web portal
(glad.igs.umaryland.edu).

Finally, we demonstrate the potential of GLADdb as a critical resource for evaluating the performance of
statistical genetic software in the presence of admixture. We do so by comparing three polygenic risk score
(PRS) algorithms for estimating PRS in admixed individuals in a scenario where the ancestries corresponding to
the GWAS summary statistics do not match the target cohort. PRS, the linear summation of risk variants
weighted by their GWAS effect size, are highly impacted by the European-ancestry bias underlying much of the
available GWAS data, and their transferability across populations remains a critical limitation of the approach
3637 GLADdb is uniquely situated to support methods development efforts that help ensure cross-population
transferability of statistical genetic applications.

Results

Data Description and QC

Our main workflow is described in Figure S1 and Supplementary methods. Briefly, we have explored over
268K samples by gathering data from 39 dbGaP cohorts and other WGS projects that include US Hispanics
LAm individuals >®'*® (Table S1). As inclusion criteria, we gathered individuals self-described as “Latino” o
“Hispanic” and ADMIXTURE-defined individuals. This latter criterion was applied to identify possible LAm
individuals using ADMIXTURE analysis®, keeping any individuals with more than 2% Indigenous American (IA)
ancestry (See Methods). For genotyped cohorts (Table S1), we imputed all self-described (GLAD-SD,
n=25,627) and ADMIXTURE-defined (GLAD-AD, n=17,642) individuals within each cohort using the TOPMed
Imputation server®. After imputation QC, we kept 42,539 individuals that were combined into a single datase!
with sequencing data from TOPMed Project® (27,088 individuals) and 1000 Genomes Project®® (345 individuals)
with 9,121,629 overlapping variants with an imputation r> > 0.3 across all datasets. For all analyses here, we
kept overlapping variants with imputation r? > 0.9 in each dataset before merging. The final merged dataset with
r’ > 0.9 for analysis contains 3,248,494 biallelic variants. Finally, to remove the family structure in GLADdb, we
inferred kinship coefficients using IBD segments on the complete dataset, keeping 54,077 unrelated individuals
(See Methods).

Continental Population Structure of GLADdb

Using 54K unrelated samples and ancestry-reference groups (Table S3), we explored the patterns of diversity
and differentiation throughout the Americas using principal component analysis (PCA), uniform manifold
approximation and projection (UMAP), and ADMIXTURE analyses (Figure 1B and C, Figure S2-S5). Both
results highlighted some important points. First, the samples cluster according to ancestry and not technology or
other batch effects (Figures S3 and S4). Notably, GLAD-AD individuals cluster well with other GLAD-SD
individuals validating our inclusion criteria (Figure S4A and B). By coupling UMAP and ADMIXTURE results, we
reaffirm the heterogeneous ancestry distribution of LAm individuals, with some groups showing predominantly IA
ancestry (Peru, Mexico, and Guatemala) and others showing majority admixture between European and African
ancestries (USA and Brazil) (Figure 1C and Figure S5). Regarding sample sizes, the best-represented regions
in GLADdb included Brazil, Central America, Mexico, Peru, and the United States.
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Figure 1. Dimensionality reduction of genetic data for more than 52K unrelated Latin Americans from the GLAD database. A)
Geographical distribution of GLADdb cohorts. B) Principal Component Analysis of the entire dataset based on high-quality imputed SNPs
(r2 > 0.9) showing the sampling spread of Latin Americans. C) Uniform Manifold Approximation and Projection (UMAP) of the first 10 PCs
showing clusters of different population groups.

Levels of genetic diversity within Latin American groups

Although our population structure analyses identified a wide diversity of LAm groups, these groups originated
from continental progenitors that suffered a significant drop in effective population size during the colonial period
of the Americas**™2. This resulted in a higher level of consanguinity and enrichment of long runs of
homozygosity observed in some LAm groups (e.g., CLM and PEL from 1000 Genomes Project) compared to
Finnish*, a population notably shaped by a strong founder effect. Based on demographic information available
for the cohorts, we organized GLAD-SD individuals into 45 self-described LAm groups, consistent with
geographic labels based on administrative division level (e.g., country, state, or city level information) (Table
S2). In addition, we included 12 IA populations from the Peruvian Genome project as well as 5 European (EUR)
and 5 African (AFR) populations from the 1000 Genomes Project (See Methods).

We explored the levels of diversity in each group by inferring runs of homozygosity** (ROH) (Figure 2, See
Methods). As expected, individuals from Africa showed lower values for total ROH compared to individuals from
Europe and Indigenous groups from Peru. Analogously, LAm groups with higher proportions of African ancestry
(e.g., Peru-lca and Northeast Brazilian regions) tend to have the lowest total ROH. Furthermore, taking
advantage of the detailed sample representation for 13 Peruvian and 12 Brazilian regions, we determined the
correlation between average genome-wide ancestry proportions (Table S2) and the median total ROH for each



122
123
124
125

126
127

128
129

130
131

132
133
134
135
136
137
138
139
140

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.07.522490; this version posted January 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

population. We observed a positive correlation between the average Indigenous American (r=0.81, p-value =
0.00246) and European (r=0.88, p-value = 1.12 x 10™) ancestries with a higher density of ROH in Peruvians and
Brazilians, respectively. Interestingly, both correlations follow a North to South line.
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Figure 2. Distribution of Genome-wide amount of Runs of Homozygosity for Latin American groups and Reference populations
included in GLADdb. The upper part of the plot shows continental reference populations—the lower part details the distribution in Peru
and Brazil. Populations are sorted in a North-to-South pattern.

Fine-scale population structure revealed by IBD network

To obtain a fine-scale picture of population structure among LAm groups, we built a sample-pair genome-wide
total IBD matrix using all IBD segments > 5cM shared in our 54K dataset. Clusters in this matrix are mainly
consistent with geographic labels, with strong intra-cluster sharing among individuals from Puerto Rico,
Dominican Republic, and Costa Rica (Figure 3). Given the sample size and genetic diversity, finer-scale
population structure is observable in clusters representing the USA/Mexico, Peru, and Brazil. To reveal the
substructure, we employed an IBD network-based community detection algorithm to further analyze relatedness
patterns. We selected the top 20 IBD-network-based communities that accumulated 69% of GLADdb individuals
(other communities each have less than 270 individuals). Each of these communities (labeled as CA1 to 20 and
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141  ordered from largest to smallest) showed enrichment of individuals from a particular country, such as Costa Rica
142  (99.6%, IBD community CA5), Puerto Rico (98%, IBD community CA2), Dominican Republic (95.0%, CA4),

143  Cuba (89.8%, CA6), Colombia (89.4%, CA13), and Chile (84%, CA19) (Figure 4). In contrast, individuals from
144  Mexico, Peru, and Brazil were grouped in several communities (Mexico: 7, Brazil: 5, Peru: 13 communities).

145  These communities were represented by individuals from a particular region, reflecting the extensive sampling
146  performed in these countries (Figure 4).
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Figure 4. IBD network community detection. We infer the community structure using the infomap algorithm based on a matrix of IBD
segments greater than 5cM. A) Top 20 IBD network communities. For visualization purposes, only individuals with connections > 30 are
included in the layout calculation. The community labels, such as CA1 and CA2, are nhamed according to the IBD version used and the
rank of the community sizes, with CA1 representing the largest community when using all IBD segments. For communities inferred from
short and long IBD segments, the corresponding labels are CS1 (Figure S6A) and CL1(Figure S6B), respectively. B) IBD sharing among
the top 30 inferred communities (ordered by agglomerative clustering; the same order was followed in C and D). C) Distribution of IBD
shared among individuals in each community. D) Enrichment of IBD community membership in the country of origin (i.e., proportions of
community labels for individuals born in a given country). To visualize the dynamics before and after the Spanish colonization of the
Americas, two different IBD networks were built based on IBD segments between 5-9.3cM (Figure S6A) and those > 9.3cM (Figure
S6B), respectively, which revealed distinct patterns of detected communities.

Long-distance relatedness among Latin American groups

To explore recent migration among 45 LAm regions, we restricted our analyses to IBD segments greater than 21
cM, representing a recent common ancestor in the last seven generations corresponding to post-colonial times
> and after the admixture process. We reasoned that sharing of larger IBD segments could be originated
predominantly from gene flow among regions. At the inter-regional level, we detected higher levels of sharing
between Puerto Rico with New York (Specifically with Puerto Ricans in New York) and Hawaii groups. Another
tight sub-network of sharing is observed in Brazil (Figure 5A), where the South East region (S&o Paulo and



173
174
175

176
L77
178
179
180
181
182
183
184
185
186
187

188

189
190
191
192
193
194

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.07.522490; this version posted January 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Minas Gerais states) have major connections with other Brazilian populations. Interestingly, there are IBD-
sharing connections between Uruguay, South Brazil, and Colombia. On the Pacific side, two Peruvian regions
(Ica and Trujillo) show high values of IBD sharing.

Considering the multi-way admixed origin of LAm populations, we devised a statistic (ancestry-specific IBD
score) that quantifies the level of relatedness among two admixed populations for a particular ancestry (AFR,
EUR, or IA) (Figure 5). We computed the ancestry-specific IBD score (asIBD score, see Methods) by coupling
the IBD and local ancestry inferences. Our asIBD score explains the relationship of ancestry-specific IBD
segments with respect to the global ancestry of the populations. We detected a different ancestry-sharing
pattern between Puerto Rico with New York, and Hawaii (Table S4A). A three-way sharing with predominant 1A
ancestry characterized the sharing among Puerto Rico and New York. On the other hand, the Puerto Rico and
Hawaii sharing is characterized by predominant IA and AFR-related ancestries (Figure 5). The sharing cluster in
Brazil has higher values of asIBD for the IA ancestry, indicating a more homogenous composition of IA ancestry
in those regions (Table S4B). For IBD sharing between Peru-Ica and Peru-La-Libertad, the EUR ancestry
showed the highest value for the asIBD (Table S4A).

A) Total IBD sharing
-

1.16x10°

1.16x10°

Figure 5. Identical-By-Descent (IBD) analyses of Latin American groups. We explored the relationship among LAm regions by
inferring the average IBD shared among regions (A) and an ancestry Specific IBD Score (asIBDScore) for Indigenous American (B),
European (C), and African ancestries (D). Dots represent Latin American regions. For African and European Ancestries, we remove the
sharing between Peru-Ica and Peru-La Libertad due to their higher sharing and to improve visualization. Plot A range showed the
average amount of cM shared among two individuals from populations 1 and 2. On the other hand, the plot range for B-D represents the
same statistic focused on segments of a specific ancestry and controlled by global ancestry proportions in each population.
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Supporting external studies through the GLADdb matching algorithm and
statistical genetic software benchmarking

One of GLADdb’s ultimate goals is to provide controls for GWAS and admixture mapping studies. We addressed
this goal by developing a genetic matching algorithm. Our method, nearest neighbor simulated annealing
matching, shown in Figure 6A and outlined in Methods, employs local search to find the optimal cohort from a
set of candidates. The algorithm operates on a principal component space in which the external-user-provided
guery cases can be used to search for controls without needing individual genotypes. The algorithm computes
variance-weighted Minkowski distance pairwise between query cases and potential controls, selects the nearest
neighbors as candidate controls, samples a set of matches from the candidates, and iteratively resamples and
refines the set of matches using simulated annealing, optimizing for the genomic control statistics [ *®*’.

To evaluate both our matching algorithm and the extent to which GLAD cohorts can provide valid control sets,
we performed the following experiment. Using 1000 Genomes populations and some GLAD cohorts as cases, in
which the pseudo-phenotype belongs to the query cohort, we ran a greedy bipartite matching baseline ***° and
our matching algorithm and returned summary statistics (i.e., alternative allele frequency, genotype counts, and
haplotype ancestry counts by segment) for various control set sizes. Then, for each pair of cases and controls,
we ran a GWAS for which the genomic control O statistics are reported in Table 1 and more extensively in
Figure 6B. For the analyzed cohorts, which represent a variety of admixed groups, the matched controls yield
genomic controls close to 1, suggesting that GLAD will be able to provide useful controls for a variety of cohorts,
and our matching algorithm shows slight improvements for larger and more varied query cohorts. These
improvements narrow progressively as the number of matches required increases (Figure 6C).

Table 1. Comparison of genomic control results (7 statistics) when returning 500 control individuals from GLAD using the Greedy
Bipartite Matching and the Simulated Annealing Nearest Neighbor Matching algorithm.

Source 1000 Genomes populations GLAD Cohorts
. HCHS |
Population or Cohort MXL | CLM PEL PUR SoL MESA | SIGMA JLARGE-PD
Case N 64 94 85 104 6646 1046 1146 1463

0.9438 + [1.0951 + 0.9555 + 0.9928 + 0.9939 + 1.0080 + 1.0721 1.0268 +

Greedy Bipartite Matching 00009 fo.oois o001z fooo17  Jo.oosz o016  fo.oora  |o.o177

Genomic
INearest Neighbor control

Simulated Annealing
IMatching Algorithm

0.9400 + [J1.0905 + 0.9496 + 0.9881 + 0.9612 + 0.9820 + 1.0480 + 1.0045 +
0.0001 0.0009 0.0010 0.0003 0.0045 0.0047 0.0072 0.0050
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Figure 6. Nearest Neighbor Simulated Annealing Matching Algorithm and Results. A) Visual overview of the algorithm. B)
Comparison with baseline bipartite matching algorithm (x-axis), where points below the line y=x indicate our algorithm outperforming the
baseline (small box highlights high density region). C) Effect of number of matches on improvement over the baseline.

1C



248
249
250
251
252

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.07.522490; this version posted January 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In addition to control matching, GLADdDb is an optimal resource for benchmarking statistical genetic software in
complex, heterogeneous cohorts with a wide range of available traits. We demonstrated this potential by
comparing several popular PRS algorithms (Clumping + Thresholding using PRsice-2*°, PRS-CS>, and PRS-
CSx>?) using a subset of GLAD-SD (Table S5, see Methods) with type 2 diabetes (T2D) status, height, or BMI
data under a hypothetical scenario where LAm GWAS data is not available (Table S6). The GLAD-SD subset
includes LAm cohorts with very different population histories and ancestry proportions (e.g., Afro-Caribbeans,
Brazilians, and Peruvians). Though the use of the Bayesian PRS-CS method, in general, outperformed PRsice-
2, the inclusion of non-European GWAS data using PRS-CSx yielded the largest increase in PRS predictive
performance (Figure 7A-C, Figure S7). PRS-CSx improved single-ancestry PRS predictive performance (e.qg.,
East Asian PRS from PRS-CSx versus PRS-CS or PRSice-2) in nearly every instance (Table S7). Combining
the posterior effect sizes estimated by PRS-CSx further improved models (Figure 7A-C, Table S7). Note that the
best approach for combining PRS information varied by cohort, likely reflecting cohort heterogeneity (Figure S8).
Model performance, as measured by partial R?, was negatively associated with mean African ancestry (-0.02 per
standard deviation African ancestry, p-value 0.005, Figure 7D). While the percent improvement achieved when
leveraging non-European GWAS data can be as high as 80% over the clumping + thresholding model, the R? of
each PRS still can be modest. For example, in the Alzheimer’s cohort from the Caribbean, the T2D PRS-CSx
model improved prediction by nearly 80%, but the R? of that model was only 0.03 on the observed scale (Figure
7D).
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Figure 7. PRS in select cohorts from GLAD-SD. A) Comparison of Height model performance as percent improvement over a
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model performance. D) Total R2 of best PRS model by African ancestry. Cohorts are labeled by color, traits are labeled by shape. Partial
R? was calculated by squaring Pearson’s r followed by subtracting the full model (PRS + covariates) from the base model (covariates
only, see methods). African ancestry proportions were estimated using ADMIXTURE.

Discussion

Latin American individuals are not well represented in genomic and epidemiological studies. This means we
have a poor knowledge of their genetic diversity and environmental backgrounds, which limits the applicability of
personalized medicine and our understanding of the basis of complex phenotypes **. GLADdb aims to tackle the
underrepresentation of genomic data by gathering genome-wide data of LAm populations into a single resource.
Through GLADdb, we have two main contributions to LAm genomics: 1) Population genetics: we elucidated
population structure and gene flow across LAm regions. 2) Genetic epidemiology: we developed an algorithm
and an online portal (see Supplementary information 1) to provide summary statistics from control individuals
from GLADdb with a similar genetic makeup to external samples. Also, by assembling a collection of LAm
cohorts with very different population histories, we have created a unique tool for evaluating the performance of
statistical genetic software in the presence of admixture and other complexities.

For population genetics, continental migrations were the initial sources of LAm diversity. However, other
processes have shaped this diversity and the relationships across geographic regions. Through ROH and IBD
inferences, we have explored the relationships at intra- and inter-population levels in Latin America in terms of
diversity and relatedness. From both analyses, we observed that Peruvians, even with a higher level of
homozygosity, have differentiated groups associated with geographical regions ®’. Moreover, IBD sharing tells
us more about recent migrations when we restrict the analysis to 21 cM or greater, an interval size correlated
with post-colonial events corresponding to the last seven generations before the present. We detected two main
networks of sharing: Puerto Rico - New York and Hawaii, and the Brazilian internal sharing groups. In Latin
America, during the 20th century, migrations have followed a rural-to-urban or outside-the-country tendency due
to regional socioeconomic disparities®. Particularly, in Puerto Rico, during the early 1900s, a migration policy
was enacted in response to its social and economic problems®®. Hawaii, Dominican Republic, and Cuba were
the primary destinations during the first stage of the Puerto Rican diaspora, followed by a strong migration to
New York during the late 1940s *°. It is noteworthy that there were socioeconomic differences between the
groups participating in each migration stage >"*. For example, many individuals who migrated from Puerto Rico
to Hawaii were recognized as jibaros °, which are countryside people who farm the land in a traditional way.
However, Puerto Ricans who migrated to New York represented a cross-section of economic and social classes
>’ By inferring the ancestral background of IBD segments, we found that the Puerto Rico/Hawaii sharing is
characterized by predominant AFR and IA sharing compared to the 1A and EUR sharing between Puerto Rico
and New York. These contrasting patterns may reflect the differential composition of the two stages of migration.
Brazil is another example of recent migration due to economic factors. During the 1950s, South Eastern Brazil,
represented by Rio de Janeiro, Sdo Paulo, and Minas Gerais, experienced a huge economic growth that
triggered a massive migration to these regions *°. We observed huge connectivity among South Eastern regions
(Rio de Janeiro and S&o Paulo), showing higher values for EUR sharing suggesting higher mobility of European
components in Brazil. Moreover, EUR sharing was detected between Southern Brazilian regions and Uruguay.
This could reflect their recent shared history as Uruguay was annexed to Brazil before its independence *°, and
its demographic composition included a significant proportion of Brazilians at that time®®.

For genetic epidemiology, our genotype matching algorithm and subsequent provision of control summary
statistics meet a real need in the research community. Groups exploring the genetic architecture of traits in Latin
American cohorts can increase their sample sizes without further straining budgets. This will help facilitate the
discovery of genetic risk factors in a historically underrepresented population, which could lead to the discovery
of population-specific variation and reduce bias in GWAS data. While there are initiatives that significantly
increase the representation of Latin American subjects in genomics, access to that data remains a concern. In
some cases, navigating the bureaucratic maze presents a real barrier, while in other cases, the data is
proprietary. By constructing the first version of GLADdb, we have already acquired and aggregated Latin
American data from across 39 cohorts. In addition, our matching and data transfer processes only require
summary statistics (genotype counts and principal components), thus reducing the exposure of sensitive data.
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Also, by employing our matching algorithm, we can potentially provide a better set of controls than by simply
applying for individual cohorts from dbGaP or other public repositories, nor using allele frequencies from
heterogeneously sampled cohorts alone.

In addition to supporting genetic studies through control matching, GLADdb presents a valuable resource for
evaluating the performance of genetic epidemiology software for methods development and benchmarking.
Such software needs to be evaluated in the presence of admixture in addition to the more homogeneous
cohorts. This is particularly evident for PRS estimation, where the impact of long-standing biases in GWAS data
is well documented *¢*"%2_ In our test case, we evaluated three popular PRS algorithms: clumping + thresholding
implemented in PRSice-2, PRS-CS, and PRS-CSx. We found that PRS-CSx, which can model multiple GWAS
populations simultaneously, significantly improved predictive performance over single ancestry methods. This
was true despite not using GWAS data from any Latin American cohorts for this example. Variability in model
performance likely reflected population heterogeneity across the different cohorts, and model performance was
negatively associated with mean African ancestry. The sample sizes of the African-ancestry GWAS cohorts
used for this study were smaller by an order of magnitude than the East Asian and European Ancestry GWAS
cohorts. It is clear that well-powered, diverse GWAS is critical for equitable PRS performance. In the meantime,
methodological innovation is required to improve cross-population portability for GWAS traits lacking adequate
representation ®°. In addition to PRS-CSx, several methods such as LDPred-funct and Polypred include
functional data, and TL-Multi utilizes transfer learning ®**°®. The robustness of existing and new PRS methods to
admixture can be evaluated using the heterogeneous cohorts represented in GLADdb.

A major challenge in our study, and for LAm genomics, is the poor representation of Indigenous American
ancestries. Currently, the Indigenous American representation in public datasets is restricted to a few
populations with higher levels of isolation which could lead to caveats in global and local ancestry inferences.
This is important because several studies show that IA ancestry in an admixed LAm population closely relates to
their local Indigenous groups ®***°. To overcome the problems related to IA ancestry, we used a reference panel
of Indigenous Peruvians and Guatemalans. These populations have higher effective population sizes compared
to other native groups ®, which is helpful for avoiding problems related to higher levels of genetic drift. In this
way, we can get around the problem of IA inferences in Brazilians or USA individuals with some level of IA
ancestry (i.e., Individuals with ancestry related to tribal nations in which genetic studies have not been allowed).
Still, better ethically-aware representation in genomics is preferred. Furthermore, GLADdb allowed us to identify
geographical regions better represented (e.g., Brazil, Mexico, and Peru) than others in sample size and
genotyping technologies (WGS and array data). Moreover, even in these best-represented regions, there is an
unbalance of ethnic diversity (e.g., European ancestry descendants are predominant in these datasets). This
reality should motivate the need for urgently including regions like Bolivia or Paraguay as well as at the ethnicity
level (i.e., African and Asian ancestries in the Americas).

In conclusion, through GLADdb, we highlighted the heterogeneous ancestry composition across LAm
populations and inferred ancestry differences in gene flow events relatedness among LAm regions. Also, by
sharing summary statistics, we are contributing to improving global equity in genomic research, specifically in
epidemiological research in which GWAS is performed routinely. This is one more step to ensuring that health
disparities arising from genetic studies do not become pervasive in admixed and non-European populations.
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Methods

Data Description, Quality control, and imputation

We have gathered data sets for the GLADdb by combining accessible genomic information from Whole-Genome
Sequencing (WGS) and microarray genotyping chip sources. We have requested and received access to 39
dbGaP cohorts. Another important source was the WGS projects in TOPMed °. In total, we have explored over
268K samples in detail to find 70,702 Latin American subjects for this initial set. This search includes 172K from
general dbGaP datasets including the eMERGE °¢, PAGE ®, and SIGMA ? projects (Table S1). Figure S1
shows our general workflow. For each non-WGS dataset (Table S1), we converted their genome coordinates
(liftover) from the original reference (NCBI36/hg18 or GRCh37/hg19) to the genome reference GRCh38/hg38
using picard "°. After a first liftover run, we used the strand flip option of PLINK "* on the rejected variants and
performed a second liftover run. Furthermore, variants were filtered using PLINK for 5% missingness, a p-value
less than 1x10°® on the Hardy Weinberg exact test (HWE), keeping only biallelic autosomal variants with a
minimum minor allele frequency (MAF) of 1%. Samples were filtered for 5% missingness and heterozygosity
exceeding three times the standard deviation from the mean. Also, a linkage disequilibrium (LD) pruned dataset
was created using PLINK'’s indep-pairwise algorithm using the parameters 50 10 0.1.

For each data set for which we acquired genomic information and appropriate consent, we evaluated self-
described demographic variables such as an ethnic designation of Hispanic/Latino. We included the entire
cohorts where the primary study design was focused on Latin American individuals, e.g. SIGMA °. For the
remaining datasets, many without demographic information provided via dbGaP, we identified possible Latin
American individuals using genetic clustering analysis *.

We merged each of these remaining datasets (the LD pruned data) with a custom panel of 361 individuals to
assess genome-wide ancestry proportions for European, African, East Asian, and Indigenous American
ancestry. This custom panel included 100 each for European, African, and East Asian from the high coverage
1000 Genomes Project data *® (Table S3). In addition, we included 61 unrelated, previously estimated as near
100%, Indigenous American high coverage genomes from the Peruvian Genome Project ®. Each data set was
combined with this reference sample, then we ran a supervised ADMIXTURE analysis *. These results were
then evaluated for admixture proportions and any sample found to have greater than 2% Indigenous American
ancestry was extracted and included for additional analyses. These samples were then designated as
admixture-defined, which will persist in our evaluations of the database as to their utility as matches or
exclusion.

After we collected all self-described and admixture-defined individuals in each dataset (non-LD pruned data), we
imputed the genotype panel against the TOPMed Imputation server *°. The TOPMed imputation panel contains
over 90K individuals and was shown to accurately impute Latin Americans °. To date, after we have combined
across all studies analyzed, including the non-imputed TOPMed WGS data, we have 63,589 non-duplicate
samples. This comprises 9,121,629 variants with an imputation r? > 0.3 across all datasets (i.e. no missing data)
and includes 8,626,916 SNPs and 494,713 INDELSs.

Importantly, GLADdb includes 30,078 individuals with non-ambiguous geographical information (Table S2). This
means that we have country-level or, in some cases, state or city-level information like Peru, Brazil, and the
USA. For the latter three groups, we did not include individuals without state-level information. A particular case
is the Rio Grande do Sul state in South Brazil. Two of three cohorts that were sampled in this state correspond
to specific cities (Porto Alegre and Pelotas) and were considered as independent groups. To support the
clustering of individuals of different project into groups of similar geographical regions (e.g., USA-Wisconsin,
Chile, Brazil-S&ao Paulo), we performed an Fst analysis. We calculated the Fst among individuals sampled by
different projects but of the same sample region. No regional cluster showed an Fst value above 0.07 (Table
S2). Finally, these 30K individuals were organized into 45 different regions (Table S2). We used this information
for ROH and IBD analyses.
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After imputation, for each dataset, we kept only variants with r* > 0.9. Then, we merged all datasets and
removed variants with missing information in more than 0.1% of the final dataset using bcftools:

bcftools filter -e 'F_MISSING > 0.001' ${mergedGLAD} -O b -0 $QC1
For normalizing and keeping biallelic SNPs we applied the following command line:

bcftools norm -m +any -s $QC1 | bcftools view -m2 -M2 -v snps | bcftools sort -0 b -0 $GLAD

Our initial freeze of GLADdb consists of 3,248,494 biallelic SNPs (r2 > 0.9) and 63,589 individuals (R0.9
dataset).

To avoid any phase issues during the merging process, we infer the haplotype phase for the complete GLADdb
using SHAPEIT ver4 "% using the TOPMed freeze9 dataset ® (160K individuals) as a reference panel. We ran
SHAPEIT with the following parameters

shapeit4 --input $GLAD --map $map --thread 60 --region chr${chr} --reference $TOPMEDRef --output $Phased GLAD
--log phased_chr${chr}.log --mcmc-iterations 1@b,1p,1b,1p,1b,1p,1b,1p,10m

Identical-by-Descent and Relatedness analyses

Phased biallelic R0.9 dataset together with HapMap genetic maps (GRCh38) were used as input for inferences
of IBD (Identical-By-Descent) segments using hap-ibd “3. For hap-ibd, we set the parameters “min-seed=3" and
“min-output=3" to reduce the rate of false positiveness; defaults were used for all the other parameters. Given
IBD coverage is dramatically increased by the paucity of SNP markers, we defined low SNP density regions as
1-cM windows with the number of SNPs less than 30 and processed all IBD segments overlapping with these
regions by splitting them and removing the parts within the low SNP density regions. The processed IBD
segments were then used as input for ancestry-specific downstream analysis. For non-ancestry specific
analyses, we further merged and flattened the processed IBD segments for each sample-pair when two
segments are either overlapping or close (gap no longer than 0.6¢cM and the number of phasing-informative
discordant markers no more than 1) ". The flattened and merged IBD segments were kept if the segment length
>= 5¢cM. Genome-wide total IBD length of all segments shared by each sample pair was then calculated and
organized to an IBD matrix with each element representing the relatedness between a pair of individuals. For
agglomerative clustering, we transformed the matrix into a dissimilarity matrix by the formula X = (max-min)/(X-
min+1e-9). The IBD post-processing steps including encoding, removing low SNP density regions, decoding,
sorting, merging, filtering, and matrix-building were implemented in a C++ toolkit ibdtools
(https://github.com/umb-oconnorgroup/ibdtools) to accelerate the computation for large IBD datasets, for
instance, hundreds of billions of IBD segments.

We estimated the kinship coefficient for each pair of individuals in GLADdb with IBDkin "°. After kinship
coefficient inferences, we pruned for relatedness in GLADdb using NAToRA " to exclude the minimum number
of related individuals while removing the main kinship relationships in the dataset. We used 0.03125 as the
kinship coefficient threshold which is the theoretical kinship coefficient expected for a 4th degree relationship.

Continental Population Structure

PCA and UMAP

Prior to performing dimensionality reduction, we used PLINK’* to narrow our biallelic R0.9 dataset by applying
LD pruning with a threshold of 0.5 to all 54K samples. Then, using the scikit-learn " implementation, we ran
Principal Components Analysis (PCA) on the LD-pruned sites, keeping the top 50 components. To help with
cluster visualization, we reduced the 50 principal components down to 2 dimensions by applying the UMAP
algorithm, using the umap-learn package ", with n_neighbors set to 10 and min_dist set to 0.25.
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Runs of Homozygosity (ROH)

We inferred the ROH segments for our 45 Latin American groups and 21 reference populations to explore the
level of homogenization in each group. For each group, we used PLINK to filter for monomorphic variants and
generate a transpose format. Then, we ran GARLIC 44 software that infers ROH based on the Pemberton et al
9 pipeline detecting short (tens of kb), medium (hundreds of kb to several Mb) and long (tens of Mb) ROH
segments. We set the --auto-winsize mode to allow GARLIC to estimate the best window size for ROH inference
starting from a 50 SNP window. We used the following command line:

garlic --tped ${pop}.tped --tfam ${pop}.tfam --build hg38 --error 0.001 --cm --winsize 50 --auto-winsize --
auto-winsize-step 10 --out roh_autosize_${pop} --threads 20 --map ${geneticmap}

For each individual in each group, we summed all ROH sizes to determine the genome-wide amount of ROH.
Considering the good representation of Peruvian and Brazilian regions, 13 and 12 respectively, we estimated
the correlation between the median for each group and the average genome-wide ancestry proportion in each
country using the Pearson correlation. Processing and plotting scripts are available in: https://github.com/umb-
oconnorgroup/GLAD_DemographicAnalysis

Local ancestry Inferences

We ran local ancestry inference using RFMix ver2 2 on GLADdb. We inferred local ancestry for the phased
dataset considering two Expectation-Maximization runs and eight generations since admixture. For the ancestry
reference panel, we selected 982 individuals including 250 Europeans, 250 East Asian, 250 Africans and 232
individuals with predominant Indigenous American ancestry (Table S2). Europeans, Africans and East Asian
reference populations are part of the 1000 Genomes Project. Individuals with predominant Indigenous American
ancestry includes Indigenous Americans from the Peruvian Genome Project ®’ and individuals with predominant
Indigenous American ancestry (above 99% of Indigenous American ancestry) from Guatemala (Table S2).

Distant genetic relatedness among Latin American groups

IBD-community detection

For community detection, we calculated an IBD matrix by summing up all IBD segments with length within a
specific range (>5cM, 5-9.3 or >9.3cM) across the genome for each pair of individuals, and set all elements with
values < 12 cM to 0 in this matrix to reduce the density of non-zero elements in the matrix. The resulting
symmetrical matrix was used as a weighted-adjacency matrix to build a bidirectional relatedness network. We
used the infomap algorithm implemented with the python-igraph ' package to infer the community structure of
the relatedness network. We kept individuals within the top 20 communities and with a degree >= 30
connections and used the Frutcherman Reingold layout ® for visualization purposes. Community enrichment in
a given birth country is defined as the largest proportion of community labels for individuals born in the country.
The number of communities enriched in a birth country is determined by counting the communities that have
>1% enrichment in this country.

IBD sharing among Latin American regions

To explore the recent relationship among Latin American regions, we focused on IBD segments greater than
21.4 cM. We calculated the IBD sharing at intra and interregional levels. For intraregional sharing, we summed
the total amount of shared IBD and divided it by the number of pairs: N(N-1)/2, where N is the total number of
individuals included for that region. For interregional sharing, we summed the total amount of shared IBD among
individuals of populations 1 and 2 and divided it by N;xN,, where N; and N, are the total number of individuals
included for populations 1 and 2 involved in the sharing, respectively.

Ancestry Specific IBD

From the multi-way admixed origin of Latin American populations, IBD (segments greater than 21.4 cM) and
local ancestry analyses provide an opportunity to detect ancestry-specific signatures related to bottleneck
(whitin-region analysis) and recent migration (across-region analysis) along the Americas.

17



555
556
357
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

574

575
576

577

578
579
580
581
582
583
>84
585
586
587
588
>89
590
591
592
593
594
595
596

597

598
599
500
501
502

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.07.522490; this version posted January 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We implemented a python algorithm called GAfIS ( that stands for “Getting Ancestry For IBD Segments” ) that
uses RFMIX outputs to identify local ancestry labels for an IBD segment shared by a pair of individuals under a
certain probability threshold. As a probability threshold for local ancestry inferences in GAflS, we set 90% for a
genomic region being of the K ancestry. For this analysis, we included our processed IBD segments to reduce
the proportion of false positives. Moreover, if an IBD segment contained several ancestries, we split the
segment into segments corresponding to independent ancestries for each pair of individuals.

After ancestry identification of the IBD segments, we filter out ancestry specific-IBD segments based on the
following criteria:

-The ancestry profile of one of the individuals for the IBD region was unknown for having a local ancestry
probability lower than 90%.
-Both individuals have different ancestry labels of the IBD segment.

After those filters, we kept individuals with demographic information and calculated an ancestry-specific IBD
score (asIBD score) within and across the 45 Latin American groups. Our asIBD score is defined in the following
equations:

Within regions:

Zi Ei IBDgnck
(Nyegioni—1

Nregion i X—F—X Proportionfmc K regioni X callableIBDlength

(Equation 1)

Across regions:
ZiZj IBD gk

Nregioni X Nregion j X Proportiongnc g regioni X Proportiongnc  region j X callableIBDlength

(Equation 2)

Where:

Anc K= African, European or Indigenous American ancestries

IBD anck: The total amount of ancestry K IBD shared between a pair of individuals from region i and j.
N regioni: TOtal number of individuals from region i.

N regionj: TOtal number of individuals from region j.

Proportion anc k region i - Global ancestry proportion for Ancestry K in region i.

Proportion anc k regionj : Global ancestry proportion for Ancestry K in region j.

callableIBDlength: Total size of the genome that was included for IBD analysis.

In both equations, in the numerator, for a specific ancestry, we summed the total amount of IBD per ancestry for
each pair of individuals from the same region (Equation 1) or between region i and j (Equation 2). To control for
sample size and ancestry proportions, for equation 1, we divide the total amount of shared IBD by the product of
the total number of combinations of individuals and the square of ancestry proportion. For Equation 2, we divide
by the product of sample size for each region and the product of the global ancestry proportion K for each
region, respectively. Finally, to get a value relative to the total size of the genome, we included the genome size
that was analyzed in the IBD inference in both equations. Codes and pipeline to estimate the asIBD score are
available in: https://github.com/umb-oconnorgroup/GLAD DemographicAnalysis

Polygenic Risk Scores in Latin American populations

Description of PRS cohorts

We utilized the following studies participating in GLAD: Columbia University Study of Caribbean Hispanics and
Late Onset Alzheimer's disease (phs000496), Slim Initiative in Genomic Medicine for the Americas (SIGMA):
Diabetes in Mexico Study (phs001388), eMERGE Network Phase Ill: HRC Imputed Array Data (phs001584),
Early Progression to Active Tuberculosis in Peruvians (phs002025), and EPIGEN-Brasil (Bambui, Pelotas, and
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SCAALA). These studies all ascertained one or more of the following traits: height, body mass index (BMI),
and/or type 2 diabetes (T2D). See Table S5 for a complete description of cohorts.

Ancestry proportions, relationship inference, principal components and imputation

Within each cohort, PCs were calculated using PC-Air 8 1o utilize as covariates. Related individuals were
resolved to the 3rd degree using a kinship matrix generated in Identical-by-descent and relatedness analyses
section. Genotyped data from each cohort was separately merged with the 1000 Genomes Project (LKGP) .
Global ancestry proportions were estimated using ADMIXTURE®, a K of 5, and 20 replicates. For PRS
estimation, imputed variants were filtered for a minimum imputation r? of 0.9 and a MAF of 0.01. Both imputed
and genotyped data were down-sampled to Hapmap Phase Three variants as required by PRS-CS °*.
Phenotype data was harmonized across cohorts, though all analyses were conducted on a per-cohort basis.

GWAS summary statistics

Genome-wide association statistics were obtained from the GWAS Catalog °, Biobank Japan *° (BBJ), and UK
Biobank *® (UKBB). African-ancestry GWAS summary statistics were combined using a random-effects meta-
analysis using the GAP package in R to improve sample size. See Table S6 for a description of summary
statistics used for this study.

Heritability estimation

Per-cohort additive heritability for each trait was estimated using GCTA ®, adjusting for sex, age, age?, and PCs
1-10. For each set of GWAS summary statistics, heritability was estimated using LD score regression #’, using
the appropriate 1KGP super-population for the calculation of LD scores.

Polygenic risk score calculation

Pruning/Thresholding PRS: We used PRS calculated with PRSice-2 *° as the representative pruning and
thresholding (P+T) method. For P+T, we trained the r* parameters (r* thresholds of 0.2, 0.4, 0.6, and 0.8),
window size (+/- 250 kb, 500kb, 750kb, 1000 kb), and p-value thresholds (iterated by PRSice-2) in one cohort
(eMERGE) and validated the parameters in the other cohorts.

Bayesian Mixture PRS: We used PRS estimated with PRS-CS®" as the baseline Bayesian mixture method. For
PRS-CS, we trained the phi (¢) parameter (phi=1e-06, 1e-04, 1-e02, and 1e+00) in one cohort (eMERGE, as
this cohort included information for all tested traits) via a small grid search and validated it in the other cohorts.
In addition, we also evaluated the fully Bayesian pseudo-validation method (phi=auto) for obtaining phi.

Multi-ancestry PRS using PRS-CSx: We leveraged PRS-CSx *? to compute a multi-ancestry PRS, which
simultaneously fits multiple sets of GWAS summary statistics while modeling population-specific LD, resulting in
more accurate posterior effect sizes for any relatively underpowered GWAS. PRS-CSx outputs a PRS
corresponding to each GWAS population and an inverse variance meta-analysis of the posterior effect sizes.
We trained the best linear combination of each single-population PRS in one cohort using the mixing weights
method proposed by Marquez-Luna et al. ## (Equations 3 and 4) with validation in other cohorts. Prior to
combining, each PRS is scaled (mean O, standard deviation 1). In addition, we also evaluated weighting PRS by
ancestry proportions (Equation 5), weighting by ancestry proportions after collapsing East Asian and Indigenous
American ancestries (Equation 6), and regressing on ancestry proportions prior to model fitting. We compared
these linear combinations to the PRS generated from the inverse-variance meta-analysis of PRS-CSx posterior
effect sizes.

Equation 3: PRS; = aPRSg,s, + (1 — a)PRSgyp,,

Equation 4: PRS; = a; PRSgus, + a;PRSgyg, + a3PRS,pg,, where a; + a; +az = 1,

Equation 5: PRS; = PRSgas,(Peas;) + PRSgur,(Peuri) + PRSarr;(Parr,)

Equation 6: PRS; = PRSgas,(Peas; + Pnar;) + PRSgur, (Peur,) + PRSArr,(Parr):

where a, a1, oz, and az represent mixing weights, PRS,gg,, PRSgyg,, and PRSg,s, represent a PRS calculated
using African, European, East Asian ancestry GWAS, respectively, for individual i. pg4s, :parr; » PEuri» @nd
pnar,FEPresent the East Asian, African, European, and Indigenous American ancestry proportions for individual i.
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For BMI, height, and T2D, GWAS summary statistics from East Asian, European, and African populations are
publicly available (see Table S6). In addition, we were able to train the full range of parameters thanks to
multiple independent Latin American cohorts containing data for these traits. We first compared pruning and
thresholding (P+T), PRS-CS, and PRS-CSx models. We then evaluated PRS-CSx based multi-ancestry models,
comparing linear combinations (the best performing linear combination model for each cohort) and inverse-
variance meta-analyses of PRS-CSx posterior effects. These multi-ancestry models were derived from East
Asian and European GWAS (referred to as SUM2 and METAZ2) or derived from East Asian, European, and
African GWAS (referred to as SUM3 and METAS). Finally, we compared these multi-ancestry models against
the best single ancestry PRS (EUR2 and EUR3 estimated using PRS-CSx).

PRS model evaluation

All models were evaluated using the 10-fold cross validation framework outlined by Pain et al *°. In this
approach, the primary metric is the Pearson correlation between the predicted and true values with a standard
error of SE, = (1 —1r?%)/,/(n — 2), where r is the Pearson correlation and n is the sample size. Correlations were
compared using the two-sided William’s test implemented in the psych R package that accounts for the non-
independence of the model predictions. R? was calculated as the square of Pearson’s r; partial R> was estimated
by subtracting the R? of the base model (only covariates) from R? of the full model (covariates and PRS). In
general, the base model included age, age?, sex, and PCs 1-10 with the exception of cohorts with a categorical
age variable (eMERGE for T2D). The Pelotas cohort, as a birth-year cohort, age and age? were not included as
all subjects were the same age. We tested the association of mean ancestry proportions of the cohorts with
model performance using linear regression, adjusting for the GWAS trait (R2~ scaled ancestry proportion +
trait).

Code Availability
From the code utilized for this project, we developed an R package called PRSHelpDesk that supports PRS
estimation and evaluation. It is available on GitHub at https://github.com/dloesch/PRSHelpDesk.

Matching

Both the baseline bipartite matching * algorithm and the nearest neighbor simulated annealing matching
algorithm operate on a principal components space composed of the first 50 components computed using
246,799 LD-pruned SNPs from GLADdb. The external-user-provided query is also embedded into the PCA
space with a saved transformation matrix and pairwise distances are computed with a variance-weighted
Minkowski distance metric. Once a suitable matching set has been found, we return summary statistics to the
external user including alternate allele frequency, genotype counts, and haplotype ancestry counts by segment.

The baseline algorithm is outlined in Algorithm 1 and consists of iteratively applying scikit-learn’s ’* bipartite
matching implementation until enough controls have been found.

Given a desired control cohort size m and hyperparameters (1, [, [1, and n, the nearest neighbor simulated
annealing matching algorithm, outlined in Algorithm 2, proceeds as follows. The computed pairwise distances
between query and GLADdb PCA embeddings are used to find the 7 nearest neighbors of each query genome
from the potential controls, which we then merge into a candidate set. We sample m controls from the candidate
set and do so I times to generate O control cohorts. We use the genomic control _, calculated between a
control cohort and the query, to evaluate the [ control cohorts. The [ 1 values are then used to select the optimal
starting control cohort and a function of their standard deviation is used to initialize our simulated annealing
temperature. We perform simulated annealing for n iterations, randomly swapping [ | genomes between our
control cohort and the candidate set at each iteration, evaluating the control cohort by its genomic control 1.
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Algorithm 1 Greedy Conirol Maich

Input: m - mmmber of matches, dist - distence metTic, E - g > ¢ embedding
mairix of the qoery, £ - 4 % e embedding muirix of the deiabese, {g is the
mmber of query gemoiypes, d is the ommber of datesst genotypes, and ¢ is

Output: M satisfying M CZU[1,d], M| =mV |M|=4d

1: M+—B

2 whils M| <mA |M| < d do

& x=mth(ELlﬁd{Eq.nED,=|)lzl Excz:lx|=ﬂ,-1$2i Sd)
2 ifwm—|M|>qthen

5 M+MUX

& alsa

T: while |[M| <m A |M| < ddo
B x ~UX)

o Me Mu{z}

1% X « X\ {=}

11: end while

12 endif

13 end while

12 return M

A]gm-ithngmnlntmiknnm]ing(hmdh{ntch

Input: m - nmober of matches, disf - distance motric, eval - evaluation met-
ric, E - g * ¢ embedding matrix of she query. £ - d x ¢ embedding mairie
of the datahass, & - £ x ¢ X 2 pemotype tensor of the query. G - s dx 2
pamtype tensar of the database, n - nomber of stoulated ammealing iters-
tiome, a - womber of pesred neighbon: to oxmider, § - muanber of starting
configurations to choose from, + - pumber of individuals per iteration to
swap, (¢ is the number of SNPs. g is the number of query genotypes, d is
the number of dataset genotypes, and ¢ is the embedding dimmension)

Qutput: M* satislyiug M* CZU1,d],|M* =m¥ |M* =d

LC«#§ & Define set of condidate matehes with nearest neighbors

2. for i « Oto gdo

% K+ ZU[Ld

N for § + 0 te ado

& C « C U {argmin,, dist{E;. £}

6 K+ K |k}

7

&

*

0

end for
: end for
: M@ » Select best starting match set from several random trials
for i +— 0to 3 do
11: M@
12 X+C
132 while |M| <mA|M|<ddo
14: 7z ~H(X)
15 M+ MU{z}
16: X + X\ iz}
1% end while
M« MU {M}
end for
M*  argminy (eval{X, G, G)| X € M)
M« M* > Run simulated annealing
C—C\M
o = std({cvel(X)| X € M}}
t = Tty
for i + 0 ton do
t= gt
X+« M
for 7 + 0 to v do
z ~ U(X)
e~ UH(C)
X+ (X\{ahu{e]
C—{C\{ehuiz]
end for ;
if cval(X) < eval(M) Vm(w) > Ujp,1 then
M+ X
if eval{M) < eval(M*) then
M+ M
end i
enid if
end for
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GLADdb

The GLADdDb portal provides both visualization and control matching functionality. The visualizations are built
with the Plotly library, enabling in-browser interaction, zooming, and filtering. The control matching page enables
filtering by self-identified ethnicity, phs numbers, and some phenotypic traits. The external user is asked to
prepare and anonymize their data using a Dockerfile provided at github.com/umb-oconnorgroup/gladprep.
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s SUPPLEMENTARY FIGURES

[J Datasets

O Process

{ GLAD outcomes

Figure S1. Workflow for the building and the use of the GLAD database. A) For each dbGaP cohort, we extracted and self-described
Latino and ADMIXTURE defined subjects with at least 2% of Indigenous American ancestry. Then each cohort was imputed in the
Michigan Imputation Center using the TOPMED Imputation panel. After imputation, we selected the best imputed loci (r*>0.9) and
merged the data. We characterized the GLADdb using PCA, IBD and local ancestry analyses. B) By identifying the GLAD individuals that
have similar genetic patterns of a query sample, we provide summary statistics of the control subjects from GLADdDb.
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Figure S2. Principal component (PC) analysis GLADdb and ancestral reference groups individuals. First ten PCs that include
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Figure S3. Principal component (PC) analysis GLADdb and ancestral reference groups individuals. Plot shows the relationships
between GLADdb individuals with different data types: Imputed (diamond) and sequencing data (cross).
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305 Figure S6A. IBD network community detection using IBD segments between 5-9.3cM. This interval was selected to explore the
306 population dynamics before the colonial times. A) Top 20 IBD network communities visualized using Fruchterman-Reingold layout

307 algorithm 82 For visualization purposes, only individuals with connections > 30 are included in the layout calculation. The community
308 labels, such as CS1 and CS2, are named according to the IBD version used and the rank of the community sizes, with CS1 representing
309 the largest community when using short IBD segments (5-9.3cM). B) IBD sharing among top 30 inferred communities (ordered by

310 agglomerative clustering; the same order was followed in C and D). C) Distribution of IBD shared among individuals in each community.
311 D) Enrichment of IBD community membership in the country of origin (i.e., proportions of community labels for individuals born in a given
312  country).
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Figure S6B. IBD network community detection using IBD segments greater than 9.3cM. This interval was selected to explore the
population dynamics after the colonial times. A) Top 20 IBD network communities visualized using Fruchterman-Reingold layout
algorithm 82 For visualization purposes, only individuals with connections > 30 are included in the layout calculation. The community
labels, such as CL1 and CL2, are named according to the IBD version used and the rank of the community sizes, with CL1 representing
the largest community when using large IBD segments (> 9.3cM). B) IBD sharing among top 30 inferred communities (ordered by
agglomerative clustering; the same order was followed in C and D). C) Distribution of IBD shared among individuals in each community.
D) Enrichment of IBD community membership in the country of origin (i.e., proportions of community labels for individuals born in a given
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Figure S7A. Predictive Performance as measured by the mean correlation of the trait with the prediction. A: Predictive
performance for BMI. B: Predictive performance for height. C: Predictive performance for T2D. AD: Columbia University Study of
Caribbean Hispanics and Late Onset Alzheimer's disease (phs000496), DMS: Slim Initiative in Genomic Medicine for the Americas

(SIGMA): Diabetes in Mexico Study (phs001388), EMERGE: eMERGE Network Phase Ill: HRC Imputed Array Data (phs001584), TB:

Early Progression to Active Tuberculosis in Peruvians (phs002025), and EPIGEN-Brasil (Bambui, Pelotas, and SCAALA).
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Figure S7B. Predictive Performance as measured by the mean correlation of the trait with the prediction. A: Predictive
performance for BMI. B: Predictive performance for height. C: Predictive performance for T2D. AD: Columbia University Study of
Caribbean Hispanics and Late Onset Alzheimer's disease (phs000496), DMS: Slim Initiative in Genomic Medicine for the Americas

(SIGMA): Diabetes in Mexico Study (phs001388), EMERGE: eMERGE Network Phase Ill: HRC Imputed Array Data (phs001584), TB:

Early Progression to Active Tuberculosis in Peruvians (phs002025), and EPIGEN-Brasil (Bambui, Pelotas, and SCAALA).
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379 Figure S7C. Predictive Performance as measured by the mean correlation of the trait with the prediction. A: Predictive
380 performance for BMI. B: Predictive performance for height. C: Predictive performance for T2D. AD: Columbia University Study of
381 Caribbean Hispanics and Late Onset Alzheimer's disease (phs000496), DMS: Slim Initiative in Genomic Medicine for the Americas
382  (SIGMA): Diabetes in Mexico Study (phs001388), EMERGE: eMERGE Network Phase IlII: HRC Imputed Array Data (phs001584), TB:
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386

387 Figure S8. PRS linear combination methods across three traits. Predictive performance of linear combination methods across 3 traits

388 and 7 cohorts. Error bars represent the standard error of the correlation. See methods for model definitions. AD: Columbia University

389 Study of Caribbean Hispanics and Late Onset Alzheimer's disease (phs000496), DMS: Slim Initiative in Genomic Medicine for the

390  Americas (SIGMA): Diabetes in Mexico Study (phs001388), EMERGE: eMERGE Network Phase Ill: HRC Imputed Array Data

38% (phs001584), TB: Early Progression to Active Tuberculosis in Peruvians (phs002025), and EPIGEN-Brasil (Bambui, Pelotas, and
SCAALA).
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