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Sandra Aurora Chavez Perez,  
Alejandro Marcel Hasslocher-Moreno,  
Gabriel Parreiras Estolano da Silveira,  
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Abstract

Chagas disease, caused by the protozoan Trypanosoma cruzi, is a major neglected 
disease endemic to Latin America, associated to significant morbimortality compris-
ing a remarkable socioeconomic problem mainly for low-income tropical populations. 
The present chapter focuses translational research on Chagas disease, approaching 
drug combinations and repositioning, particularly exploiting the parasite oxidative 
stress by prospecting prooxidant compounds combined with antagonists of antioxi-
dant systems, for developing low-cost and safe therapies for this infection. The per-
tinent literature on protozoal parasitic diseases is reviewed as well as on repurposing 
disulfiram aiming the combination with the Chagas disease drug of choice benznida-
zole. Both disulfiram and its first derivative sodium diethyldithiocarbamate (DETC) 
are able not only to inhibit p-glycoprotein, possibly reverting resistance phenotypes, 
but also to reduce toxicity of numerous other drugs, heavy metals, etc. Therefore, this 
innovation, presently in clinical research, may furnish a novel therapeutic for T. cruzi 
infections overcoming the adverse effects and refractory cases that impair the effec-
tiveness of Chagas disease treatment.

Keywords: drug combination, drug repositioning, translational medicine, Chagas 
disease, oxidative stress, Trypanosoma cruzi

1. Introduction

Chagas disease (CD), the parasitic infection caused by the kinetoplastid proto-
zoan Trypanosoma cruzi, is also known as American trypanosomiasis, for the huge 
endemic areas in South and Central Americas [1], but autochthonous human [2–4] 
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and domestic/wild animal [5–8] cases were reported in the United States, and due to 
migration, it is already considered a public health problem on a global scale reaching 
different continents [9–11]. It is noteworthy that climate changes may promote the 
northward insect vector propagation [12], possibly generating new foci or endemic 
areas, and suitable climatic conditions may be available in African and Asian nations 
[13]. Besides the vector bloodmeal, congenital, blood transfusion and organ trans-
plantation [14], CD may be transmitted orally via food and beverages contaminated 
by triatomine feces such as sugarcane and açai juices [15, 16] and even water, stored 
in/near domiciles in arid regions [15, 16], as the parasite is able to survive in such 
media [17].

It is alarming that 6–7 million people are estimated to have CD worldwide, with 
circa 173,000 new cases/year and over 75 million people are at risk. CD is the para-
sitic disease of highest mortality in Latin America as 9490 deaths were reported in 
2019. Furthermore, the real prevalence is largely unknown as most chronic patients 
are asymptomatic and even symptomatic patients have poor access to health public 
system. CD is endemic in 21 countries in Central and Latin America where about 5.7 
million people have CD and 25% of the population is at risk [18]. In 2020, it was esti-
mated that there were 3.2 million infected people, which can reach 1.5% of the general 
population. In addition, about 70 million are at risk of infection [19]. The prevalence 
of CD is presumably vastly underestimated. In January 2020, a study carried out 
by the ArtScience Initiative for Health Promotion, carried out by Oswaldo Cruz 
Foundation (Fiocruz) and collaborating organizations, showed a CD seropositivity of 
20% in a tested population of an endemic area [20]. It must be mentioned this study 
was not designed to access CD prevalence and was biased by the population intention 
to get diagnosis procedures.

CD represents economic losses in excess of $1.2 billion/year to endemic countries 
in South America, in addition to more than $7 billion a year at global levels [21], 
including treatment and loss of productivity. Since no proven effective and approved 
vaccines are available for this disease, chemotherapy represents the only therapeutic 
intervention, as well as an important way to control them.

CD etiological treatment is directed according to the phase and clinical presenta-
tion of the disease, which is mandatory in the acute phase, congenital cases, or reacti-
vation due to immunosuppression. In the chronic phase, the trypanocidal treatment 
is indicated in children and adolescents, recent infection, and women of childbearing 
age [22].

2. Therapeutics

Although CD was discovered and is studied for over a century [14], the 
etiologic treatment is still based on solely two drugs (Figure 1): the nitrofuran 
derivative nifurtimox (NFX; Lampit®, Bayer; 5-nitrofuran(3-methyl-4-(5′-
nitrofurfurylideneamine)tetrahydro-4H-1,4-tiazine-1,1-dioxide), and the 
2-nitromidazole benznidazole (BZ; LAFEPE; N-benzyl-2-nitroimidazole-acetamide) 
[23]. Both NFX and BZ were shown to produce remarkable ultrastructural alterations 
in mammal cells and tissues [24, 25], which were apparently more pronounced in 
NFX-treated animals [26]. Therefore, experimental chemotherapy studies approach-
ing parasites as T. cruzi should preferentially include ultrastructural analysis, in order 
to offer a subcellular compartmentation understanding to aid the antiparasitic agent 
mechanism(s) of action elucidation [27, 28] and ultimately leading to the understand-
ing of cell death pathways involved [29].
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The CD therapeutics remain unsatisfactory, as they are associated with adverse 
effects [30–32], affecting 84.8 and 95.2% of patients treated with BZ and NFX, 
respectively [33], which may be severe, leading to the irreversible suspension of 
therapy in CD, in ≈20% [34, 35], ≈30% [36, 37], 41.5% [38], and up to 50% of the 
cases [39, 40]. Treatment suspension using NFX was reported in 43.8% of patients 
[33]. In an early study based on small samples, NFX was reported to be associated to 
definitive treatment interruption in 75% of patients [38]. Nevertheless, treatment 
intolerance was reported at similar levels with the use of the two drugs, approached 
by the same team [34, 35], but adverse effects, including neuropsychiatric events, 
may be more frequently associated to NFX [33]. In addition, it was reported that 
among patients who had discontinued BZ treatment and were treated with NFX, 
12.3% also developed adverse effects that required definitive discontinuation of 
therapy [39]. Nevertheless, NFX was reported to be safe as a second-line therapy in 
patients who discontinued BZ [41].

Most CD patients are not treated because of the insufficient diagnosis and low 
cure rates observed in chronically infected patients [42], although treatment may 
diminish the disease progression and cardiovascular events [43, 44]. In addition, the 
CD treatment accomplishes only a parasitological cure, and a clinical cure is hardly 
proved [43, 45]. Whereas the bona fide sterile cure or complete clearance of the 
infection is considered a “prerequisite” for new anti-T. cruzi drug candidates [46], it 
is usually not achieved in murine model [47, 48] or human infection as immunosup-
pression often leads to infection reactivation [49]. In this regard, T. cruzi amastigotes 
may persist in a dormant or quiescent form, which may protect the parasites from 
antiparasitic agents [50, 51].

As the dormancy state of T. cruzi amastigotes is associated to drug resistance 
[50, 51], it is desirable to develop drugs able to affect dormant parasites. The mecha-
nisms that allow the establishment of persistence include the capacity to suppress 

Figure 1. 
Molecular structures of the nitroheterocyclic drugs employed in the treatment of Chagas disease: the 
2-nitroimidazole benznidazole (A) and the 5-nitrofuran nifurtimox (B).
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the oxidative burst produced by phagocytes largely depending on iron-containing 
superoxide dismutases (FeSOD) and trypanothione-acting enzymes [52]. Thus the 
use of disulfiram (DSF) is of potential relevance since it can diminish glutathione 
levels [53, 54], and the DETC first derivative of DSF is an SOD inhibitor [55, 56]. 
Furthermore, DSF could target T. cruzi dormancy. Although the signal transduction 
pathways involved in this process were not completely elucidated, it is interesting 
that DSF is able to reverse HIV latency affecting PKC (protein kinase C), AKT 
(protein kinase B), PI3K (phosphoinositide 3-kinases), NF-kB (nuclear factor 
kappa-light-chain-enhancer of activated B cells) [57, 58], which also affect T. cruzi 
infection [59, 60] that leads to the activation of PI3K [61], whereas DSF promotes 
PI3K inhibition [62].

An important study [63] approached the persistent parasite elimination, but the 
use of higher BZ doses might pose higher risks for patients. In this regard, the poly-
amine and thiol synthesis Leishmania are associated to macrophage M2 phenotype, 
leading to parasite persistence [64].

2.1 Drug resistance

Besides considerable severe adverse effects, one of the greatest problems of CD 
therapeutics is the selection of resistant parasites, impairing its effectivity, therefore 
causing refractory cases. BZ and NFX resistance is readily developed in vitro and in 
vivo [47, 65], in the former case, via different mechanisms that can act in concert [66].

Despite significant time and resources investments by innumerous research 
institutions over the world, only a few therapeutic candidates advanced the pipeline 
to treat neglected diseases such as CD [67]. It is alarming that it usually takes over 
10 years to develop new drugs, whereas resistant parasites are rapidly selected. Also, 
there are naturally resistant T. cruzi strains [68–70] that express a novel ABCG-like 
transporter [71]. Besides extrusion pumps, T. cruzi resistance may involve SOD and 
trypanothione (vide infra). Therefore, there is pressing demand for the development 
of novel effective therapies for CD.

3. Oxidative stress in Chagas disease

Oxidative stress is a central phenomenon involved in aging, cancer, transmissible 
or infectious diseases, including COVID-19 [72], nontransmissible chronic condi-
tions, such as metabolic diseases, autoimmune and degenerative disorders, inflam-
mation, metal poisoning, etc. [73–75], produced by the imbalance on the production/
uptake of oxidant/antioxidant species [76].

A plethora of antioxidant defenses evolved in order to balance the redox homeo-
stasis [76, 77]. Oxidant species such as superoxide (O2

●−) and hydrogen peroxide 
(H2O2) are detoxified by SOD and catalase, respectively. Most cells rely also on the 
peptide glutathione (GSH), able to chelate reactive oxidant species (ROS) via cysteine 
sulfhydryl (SH) group and function as substrate for enzymes including GSH reduc-
tase and GSH peroxidase [78].

Although most of these processes are evolutionary conserved, some of the antioxi-
dant defenses pathways differ between mammals and pathogens, therefore comprise 
potential chemotherapy targets. Contrary to mammals, GSH in trypanosomatid 
parasites mostly takes part in the adduct with the polyamine spermidine, forming 
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N1,N8-bis(glutathionyl)spermidine (trypanothione, TSH), and therefore its expres-
sion depends on the GSH, TSH [79], and polyamine [80] metabolism pathways.

Metabolomics and gene expression studies [81] reveal the participation of 
both GSH and the spermidine synthesis pathway, indicating the participation 
of trypanothione, in the regulation of redox metabolism in trypanosomatids. 
GSH is very relevant not only in oxi-reductive homeostasis, as this molecule is 
also related to detoxification and resistance to different drugs/xenobiotics in 
tumor cells [82, 83] binding to drugs that are extruded via multidrug resistance 
transporters [84]. TSH binding to NFX and BZ is involved in the detoxication of 
these trypanocides [85, 86]. Therefore, glutathione/trypanothione can promote 
the action/reverse resistance to different drugs. T. cruzi parasites overexpressing 
trypanothione synthetase tolerated higher doses of BZ and NFX [87]. Conversely, 
the GSH biosynthesis inhibition using buthionine sulfoximine increases the 
efficacy of NFX and BZ upon T. cruzi in vitro [88] and NFX in vivo [89] as well as 
of stibogluconate on Leishmania (L.) donovani [90].

Interestingly, polyamine play pivotal roles in parasite cells [91, 92], including  
T. cruzi antioxidant defense [93], and its synthesis and transport pathways provide 
valuable chemotherapy targets [94, 95], including repositioned drugs [96].

Parasitic diseases such as CD are correlated to oxidative stress [97, 98], associ-
ated to triggered chronic inflammatory reactions [99, 100]. Endogenous oxidative 
stress may be produced by cell organelles, mainly mitochondria [101, 102]. The CD 
myocarditis is characterized by intense oxidative stress due both to inflammatory 
response associated to neutrophils and macrophages NADPH oxidase (Nox) activity 
and the macrophage superoxide produced by Nox2 is required for parasite control in 
early infection [103]. The mitochondrial ROS produced by cardiomyocytes plays a 
relevant role in intracellular oxidative stress and inflammation, causing myocardium 
tissue damage [104–106]. These events are not independent since mitochondrial 
ROS may trigger proinflammatory cytokines via NFkB and PARP/PAR pathways 
[107], and the mitochondrial MnSOD activity may revert much of the inflammatory 
foci and necrosis [105], and ineffective antioxidant defense is associated to oxida-
tive stress [108]. Exosome or extracellular vesicles liberation may also contribute to 
inflammation and oxidative stress [107, 109]. The oxidative stress is also involved in 
neurodegeneration in both cardiac and gastrointestinal tissues [110]. The chronic 
oxidative stress in the nervous tissue is associated to cognitive deficit, which can be 
reversed by BZ treatment [111].

Thus, the use of adjuvant antioxidant agents may ameliorate the cardiac patho-
genesis [107, 112, 113]. Interestingly, vitamin C, widely considered antioxidant, can 
at high concentrations also function as a prooxidant, undergoing pH-dependent 
autoxidation, leading to H2O2 formation [114, 115]. In CD models, ascorbic acid can 
also reduce parasitemia, promote BZ action, and enhance animal survival in murine 
infection [116, 117].

ROS production comprises a well-known microbicidal immune effector mecha-
nism [118]; therefore parasite borne antioxidant systems are not only virulence fac-
tors [119]. Besides the parasiticidal activity, ROS may function as signaling molecules 
promoting parasite proliferation. As in the Paracelsus adage, “The dose makes 
the poison” (Latin: sola dosis facit venenum), ROS in mammalian cells may trigger 
different responses depending on concentration. Low ROS levels may have signal 
transduction roles, inducing responses such as activation, proliferation, and differ-
entiation, whereas at higher levels such molecules are generally cytotoxic, leading to 
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cell death [120]. Similarly, in T. cruzi, low ROS levels may signal for parasite invasion 
of host macrophages [121] and proliferation mainly in the acute phase [122], but high 
ROS levels culminate in programmed cell death, which may be inhibited by enhanced 
SOD expression [87]. Interestingly T. cruzi amastigotes undergo stress-induced 
proliferation [123].

4. Oxidative stress as a source of chemotherapy targets

Numerous therapeutic strategies exploit redox systems [124], including protozoal 
diseases [125], such as CD [126]. Therefore, antioxidant systems including SOD, 
trypanothione, and enzymes action on this glutathione-spermidine adduct (N1,N8-
bis(glutathionyl)spermidine), such as trypanothione reductase, can comprise 
important chemotherapy targets [127]. Natural products such as the naphthoquinones 
ᾳ-/β-lapachones [128–130] and their derivatives [131, 132] have microbicidal activity 
against T. cruzi, among other pathogens [132]. Interestingly, β-lapachone derivatives 
were shown to cause mitochondrial dysfunction [131], damage [133], and autophagy, 
including mitophagy as well as apoptosis and necrosis [134]. In this regard, mito-
chondria comprise important therapeutical targets for cancer [135], aging [136], 
cardiovascular diseases [137], and degenerative diseases such as rheumatoid arthritis 
[138], Alzheimer’s disease [139], Parkinson’s disease [140], etc. Mitochondria are also 
promising target for antiparasitic [141, 142] and particularly antiprotozoal [143–145] 
therapeutic agents, specifically approached in trypanosomatids [146–148].

Up to 2% of the O2 reaching the mitochondrial matrix is converted to O2
●− (super-

oxide anions) forming H2O2 via SOD [149]. Like mammalian cells, T. cruzi mito-
chondria are a source of ROS [150] producing superoxide. Therefore, the Mn-SOD is 
important for controlling oxidative stress in this redox organelle. Contrary to mam-
mals, the trypanosomatid mitochondria present FeSOD [151] that can protect from 
O2

●− produced by macrophages [152].
Because of the prooxidant effects of antiparasitic drugs [126, 153–155], ROS 

detoxifying systems may comprise valuable scape mechanisms from pharmaceutical 
intervention [156] and programmed cell death triggered by mitochondrial O2

●− [157].
The prooxidant capacity of both NFX and BZ, particularly in the former, is due 

to redox cycling with the production of O2
●− [126, 158–160]. Superoxide may be not 

produced by BZ in the parasite, but in the host cell [161]. Therefore, FeSOD is linked 
to BZ resistance in T. cruzi [66, 162, 163]. Proteome of BZ-resistant Trypanosoma 
cruzi revealed enhanced FeSOD activity [164]. BZ resistance was associated to 
decreased cytosolic SOD but enhanced mitochondrial MnSOD and tryparedoxin-1 
[165]. The deletion of the sodb1 gene enhances Trypanosoma brucei susceptibility 
to BZ and NTX [166]. FeSOD is also implicated in drug resistance in L. (Viannia) 
braziliensis and L. (Leishmania) infantum [167, 168] Entamoeba histolytica [169]. 
Tryparedoxin peroxidase is also associated to antimony resistance in L. (V.) brazil-
iensis [170]. In addition, SOD inhibition was reported to decrease parasitemia in  
T. cruzi murine infection [171].

Sirtuins are a highly conserved family of enzymes that deacetylate lysine residues 
on histone and non-histone proteins, using NAD+ as a cosubstrate, regulating cellular 
antioxidant/Redox mechanisms [172, 173]. It is noteworthy that SIRT3, 4, and 5 are 
found in the mitochondrial matrix [174]. As cardiomyocyte mitochondrial dysfunc-
tion plays a central role in chagasic myocarditis (vide supra), the activation of sirtuins 
such as SIRT1 by agonists including resveratrol may enhance antioxidant defenses 
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[175], and SIRT3 activates MnSOD, scavenging ROS [176]. Nevertheless, the sirtuin 
TcSir2rp3 was shown to increase T. cruzi resistance to BZ and NTX for overexpressing 
TcFeSOD-A activities [177].

Selenium and selenium-containing compounds show beneficial effects both 
in murine [178–180] and human T. cruzi infection [181, 182], therefore comprise 
promising coadjuvant therapies for CD [183–185], although selenium was previously 
reported to increase tissue parasitism [186].

This activity maybe largely dependent on redox regulation as this inflammatory 
infection is associated with intense oxidative stress, and selenium may be antioxidant 
[187] and anti-inflammatory [188], as well as catalyze hydrogen peroxide (H2O2) 
reduction [189], therefore possibly diminishing the oxidative stress in infected cardio-
myocytes, by impairing the Fenton reaction in the presence of iron.

5. Repositioning and combining drugs

The combination of different drugs may pose the advantage of supra-additive 
effects, which may be synergistic, in parasite models such as T. cruzi [190], 
Plasmodium falciparum, Trypanosoma rhodesiense [191]. The identification of syner-
gistic combinations is relevant since they tend to present higher selective indices [192, 
193], consequently, avoiding side effects and potentially permitting development of 
antiparasitic agents used at lower concentrations.

The identification of drug combinations with multiple targets can lead to the 
use of novel multitarget mechanisms able to cope with the challenge of multigenic 
diseases [194] and/or chronic infections with complex pathophysiology. It is note-
worthy that the pharmaceutical properties of the combination may be absent in the 
components alone [195], generating the innovative concept or science field termed 
polypharmacology with numerous applications on drug repurposing [196] and CD 
[197]. As the philosopher Aristotle (384–322 B.C.) stated: “The whole is greater than 
the sum of its parts.”1

Furthermore, drug combinations are largely employed for preventing drug 
resistance [198–204]. However, this strategy is not constantly successful as the reports 
of resistance to the sulfadoxine-pyrimethamine combination began in the same year 
this antimalarial regimen entered the clinic [205]. Similarly, the discovery of arte-
misinin (ART) costed Youyou Tu over 30 years of hard work [206] and was worthy a 
Nobel Prize, but P. falciparum resistance to the drug was detected after about 10 years 
of use [207]. The antimalarial combination therapies based on the use of ART were 
considered key to the elimination of malaria [208], but in the very same year [209, 
210] and even earlier [211], the arteminisin derivatives combination therapy failures 
were reported. In the case of CD, the problem may be even more upsetting as natural 
resistance isolates are arising, particularly in the Amazon region (vide supra). Thus, 
effective strategies to prevent different mechanisms of drug resistance to arise are 
immediately needed.

Approaching repositioned drugs with available pharmacokinetic and toxicological 
properties can shorten the long and expensive path between in vitro trials and new 
drugs. While the period between drug discovery and approval can be 12–16 years at a 

1  “Since that which is compounded out of something so that the whole is one, not like a heap (…), then, 
is something-not only its elements (…) but also something else (…)” ‘Metaphysics’ Book VII by Aristotle, 
Translated by W. D. Ross, often misquoted or mistranslated.
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cost of US$1–2 billion, repositioned drugs can enter the clinic in ½ the time, at circa 
1/3 the cost [212], with much higher success rates [213].

Drug repositioning maybe a promising approach in CD [214–227]. Similarly, drug 
combinations may be instrumental in CD [197, 228–233], and both strategies may 
be employed and associated [214, 234–236]. Furthermore, drug combinations can 
increase success of drug repositioning [237]. In addition, it was accurately hypoth-
esized that the combined use of repurposed drugs with BZ could be more efficacious 
than BZ alone [238].

5.1 Repositioning disulfiram

Disulfiram (DS, 1,1′-disulfanediylbis(N,N-diethylmethanethioamide) also termed 
tetraethylthiuram disulfide; CAS no. 97-77-8; Molecular Formula: C10H20N2S4), a 
repositioned drug used in alcoholism and marketed as Antabuse® (Figure 2), was 
approved for medical use over 70 years ago and is widely used since then [239, 240].

At the very beginning, the discovery of thiocarbamates and its derivatives was 
serendipitous and showed clear signs of versatile perspectives that unequivocally 
culminated in the present promising repurposing strategies for both pharmaceutical 
and industrial applications [241, 242].

In the 1930s and 1940s, dithiocarbamates such as dimethyldithiocarbamates and 
diethyldithiocarbamates were used as pesticides against fungal pathogens on different 
crops [243], besides biocides in household products [244].

The industry plant physician E. E. Williams in 1937 observed that workers using 
tetramethylthiuram monosulfide and disulfide to facilitate the rubber vulcanization 
became alcohol-intolerant and quit consuming alcoholic beverages. The DSF-induced 
alcohol aversion was described in 1948 [245]. At that time, DSF was approached as a 
vermicide and employed as an ointment to treat scabies.

Afterward, besides alcoholism, DSF started to be studied for heavy metal poison-
ing, cancer [246–249], HIV [243, 250], as well as cocaine dependence, pathological 
gambling, and other psychiatric disorders [239] and other form of addiction, for 
example, the d-methamphetamine abuse [251]. Further tests are being performed 
focusing applications such as Alzheimer’s disease [252], Lyme disease and babesiosis 
[253], tuberculosis [254], non-tuberculous mycobacteria infections [255], giardiasis 
[256], amoebiasis [257], obesity [258] and to revert drug resistance in different types 
of cancer [259–261], tuberculosis [262] bacterial infections [263], mycosis [264], 
giardiasis [265], etc. The repositioning of low-cost drugs such as DS is considered a 
“salvation” for global healthcare system [266].

Sodium diethylcarbamodithioate (Figure 2) (DETC also known as sodium (dieth-
ylcarbamothioyl)sulfanide; CAS no. 148-18-5; Molecular Formula: C5H11NS2.Na) is 
the first derivative of DSF, involved in many of the biological activities of the latter.

Figure 2. 
Molecular structures of disulfiram (A) and sodium diethyldithiocarbamate (B).
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Seemingly DETC is less toxic than aspirin [243], widely used, and well tolerated 
in humans [267] for decades being used up to 800 mg/twice/week, with no adverse 
effects [268]. DETC also known as Imuthiol or Dithiocarb was used as immunomodu-
lator with good results on AIDS patients [269, 270] and was clinically employed in 
chronic bronchitis, rheumatoid arthritis, tuberculosis, and chronic infection [271].

In a seminal report on its antiparasitic activity, DETC was demonstrated to be 
leishmanicidal [272]. Afterward, novel delivery systems were developed to optimize 
the leishmanicidal activity of DETC [273–275]. In this regard, novel drug delivery 
systems are also developed for DSF [276]. The data obtained on Leishmania amazo-
nensis motivated us to move to CD, employing the repositioned drug DSF combined 
to the drug of first choice BZ. Tests on NFX are in progress.

It is worth remembering that CD pathophysiology is associated with oxidative 
stress (vide supra), and both DSF [277] and DETC [278] can act as antioxidants. In 
addition, modulation of oxidative stress comprises a valuable tool in heart disease 
therapeutics [279]. In addition, DSF has antimutagenic properties [280].

5.2 Disulfiram combined to benznidazole in Chagas disease

Both DSF and DETC have antiparasitic activity on T. cruzi [281, 282], but the 
effectivity was not pronounced.

In our study, the DSF-BZ combination is promising since the antagonism of SOD 
activity can enhance oxidative stress in cancer cells [249] and T. cruzi [283]. In this 
regard, the antitumor activity of NTX is enhanced by SOD1 inhibition mediated by 
tetrathiomolybdate [284]. Both in vitro and in vivo experimental data confirmed the 
present assumption [Almeida-Silva et al., in press]. The SOD inhibition as well as TSH 
reaction by DSF/DETC can promote the intracellular accumulation of ROS leading to 
parasite death (Figure 3).

CD etiological therapy is often associated to severe adverse effects caused by the 
highly toxic drugs (vide supra). In this sense, the present innovation involves the 
advantage of employing DSF/DETC with cytoprotective properties [243] in different 
cell types.

DSF/DETC have neuroprotective [285], hepatoprotective [277], and nephropro-
tective [286] and even radioprotective [287, 288] activity. These protective effects 
may be beneficial in the treatment of parasitic diseases, because in the treatment of 
experimental infection by T. rhodesiense, DSF has marked protective activity (disul-
firam rescue) against the toxic effects of diaminodichloroplatin and preventing the 
death of the treated organism [289].

Thus, the development of low-toxicity therapies may be expected, as DSF may 
have a protective action against the toxic effects of drugs such as cyclophosphamide 
[290], ifosfamide [291], N-nitrosodimethylamine [292], isoniazid [293] and the 
toxicity of α-naphthylisothiocyanate [294], acetaminophen [295], pyrrolizidines 
[296], the lethal effects of hypoxia [297], ischemia [298], as well as lead [299], 
cadmium [300], mercury, and other heavy metals [301]. Thus, DSF combinations 
can enable the development of safe medicines. Regarding CD, the cardioprotective 
and antioxidant activities of DSF/DETC as well as atrial neuroprotection [302] are 
particularly desirable [303–306]. In addition, DSF is effective as prophylactics in 
experimental colitis [307].

As drug resistance limits the successful CD therapy, the T. cruzi PgP expression 
has a pivotal role [308]. Therefore, it is relevant in the present approach that DSF/
DETC inhibit PgP [261, 309, 310], causing the BZ accumulation within the parasite 
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cytoplasm, enhancing trypanocidal activity, potentially reversing resistance 
phenotypes, such as MDR+ (Figure 3). Interestingly, the ABCC proteins from  
T. cruzi are involved in thiol transport [311]. In view of the glutathione-drug 
adduct transport by ABC transporters (vide supra), it is interesting that DSF 
reduces GSH levels [54] at least in part through the formation of complexes with its 
different derivatives [312].

DSF [313] affects the redox balance of the cell, to GSH oxidation [314], reducing 
GSH levels [54] at least in part through the formation of complexes with its different 
derivatives [312, 315]. DETC can also reduce the GSH/non-protein thiol levels, also 
leading to the reduction of glutathione peroxidase activities [53, 316].

The combinations tested here may also contribute to resistance reversal, also 
through DETC-mediated inhibition of Fe-dependent SOD, which is linked to resis-
tance to BZ in T. cruzi [66, 162, 163].

Furthermore, DSF can be used against cancer cells targeting the ubiquitin-prote-
asome system [317], and the ubiquitin-proteasome pathway is a therapeutic target in 
T. cruzi [318].

In this way, the strategy based of combinations of the repositioned drugs proposed 
here can achieve effectiveness, with selectivity and, therefore, safety in the CD treat-
ment and sheds new light on perspectives for new therapeutic strategies.

Figure 3. 
Putative mechanisms of action of disulfiram (DSF) or diethyldithiocarbamate (DETC) in combination with 
trypanocides in T. cruzi infection. Benznidazole (BZ) and nifurtimox are toxic and produce adverse reactions 
(1), which are ameliorated via detoxification mediated by DSF or DETC (2). The anti-T. cruzi agents trigger 
the formation of reactive oxygen species (ROS, 3) via nitroanion radicals (RNO2

●−) that give rise to superoxide 
(O2

●−), that is detoxified by superoxide dismutase (SOD, 5), generating hydrogen peroxide (H2O2), which in the 
presence of iron can produce hydroxyl radicals (●OH) and hydroxide anions (−OH) via Fenton reaction. DETC 
inhibits SOD (4). ROS may be detoxified by reaction with sulfhydryl or thiol groups of trypanothione (N1,N8-
bis(glutathionyl)spermidine, 6), and this adduct can be removed by reaction with thiols of DSF/DETC (7). The 
BZ molecules in the parasite cytoplasm are extruded from the cell via p-glycoproteins or MDR transporters (8), 
which are inhibited by DETC (9), presumably reversing resistance phenotypes.
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6. The clinical stage

Translational research in biomedical sciences translates basic research and 
experimental discoveries into health taking the route from benchtop to bedside. 
This important field has gained substantial attention and investments in the last two 
decades [319].

In order to reach a proof of concept on the effectivity of the DSF-BZ combina-
tion in human infection, a partnership was established gathering different units 
of Fiocruz. The present study comprises a translational approach that began with 
experiments in vitro, on the bench and now reaches the clinical stage at the Evandro 
Chagas National Institute of Infectious Diseases-Fiocruz, coordinated by the team of 
the Clinical Research Laboratory of Chagas Disease, with assistance of the Clinical 
Research platform. Therefore, the phase I/II clinical trial was elaborated (Figure 4) 
and published recently [320].

7. Conclusions and future perspectives

The use of DSF/DETC combined to BZ in CD treatment comprises a potential 
innovative therapeutical tool, possibly overcoming adverse reactions and refrac-
tory cases. Since these repositioned drugs exert cytoprotective effects, reducing the 
adverse reactions of many drugs, safe combinations can be potentially identified, 
leading to the development of well-tolerated medication. Therefore, therapy inter-
ruption can be precluded, consequently increasing patient adherence. In addition, 

Figure 4. 
Design of the clinical trial for testing the BZ-DSF combination. Reproduced from Ref. [320] (with permission).
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as DSF/DETC can inhibit p-glycoprotein activity as well as reduce GSH levels, two 
molecules involved in drug extrusion from MDR+ parasites, it is reasonable to suppose 
the combination could eventually revert/downmodulate natural/acquired resistance 
phenotypes. Thus, treatment may be effective even in refractory cases. We are now 
approaching the clinical response of chronic phase CD patients. A possible proof of 
concept may lead to the development of a safe and effective medication, with pro-
found implications in treatment prognosis, presumably improving the quality of life 
of the patients.
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