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Abstract

Human adipose tissue-derived stem cells (hASC) secretome display various therapeutically

relevant effects in regenerative medicine, such as induction of angiogenesis and tissue

repair. The benefits of hASC secretome are primarily orchestrated by trophic factors that

mediate autocrine and paracrine effects in host cells. However, the composition and the

innate characteristics of hASC secretome can be highly variable depending on the culture

conditions. Here, we evaluated the combined effect of serum-free media and hypoxia pre-

conditioning on the hASCs secretome composition and biological effects on angiogenesis

and wound healing. The hASCs were cultured in serum-free media under normoxic (NCM)

or hypoxic (HCM) preconditioning. The proteomic profile showed that pro- and anti-antian-

giogenic factors were detected in NCM and HCM secretomes. In vitro studies demonstrated

that hASCs secretomes enhanced endothelial proliferation, survival, migration, in vitro tube

formation, and in vivo Matrigel plug angiogenesis. In a full-thickness skin-wound mouse

model, injection of either NCM or HCM significantly accelerated the wound healing. Finally,

hASC secretomes were potent in increasing endothelial density and vascular coverage of

resident pericytes expressing NG2 and nestin to the lesion site, potentially contributing to

blood vessel maturation. Overall, our data suggest that serum-free media or hypoxic pre-

conditioning enhances the vascular regenerative effects of hASC secretome in a preclinical

wound healing model.
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Introduction

Human adipose tissue-derived stem cells (hASCs) are a promising therapeutic strategy in

regenerative medicine explored in various models of tissue repair, ischemic injuries, immune

disorders [1, 2], also to improve chronic non-healing or recurrent cutaneous wounds, such as

age-associated delayed healing, chronic diabetic wounds, and irradiated wounds [3, 4]. Many

preclinical and clinical studies have demonstrated that the hASCs secretome enhances wound

healing and vascularization mainly by stimulating cell survival, angiogenesis, cell proliferation,

ECM cell migration/adhesion, and reducing inflammation [5, 6]. Administration of the

hASC’s secretome to injured skin also increases its local metabolic activity, oxygen supply, and

extracellular matrix remodeling [7], accelerating tissue healing.

The beneficial effects of in vivo hASCs are primarily orchestrated by their secretome

enriched with trophic molecules (represented by cytokines and growth factors) and a

vesicular fraction (microvesicles and exosomes) that mediate autocrine and paracrine cell

communication [8, 9]. Therefore, identifying critical factors secreted and characterization

of their functional roles in cutaneous wound healing can be a practical approach to design-

ing more potent secretome-based therapeutics with more predictable clinical outcomes

[4]. Recently, proteomic analysis of hASCs secretome has found many players that

improve wound healing in vivo, including epidermal growth factor (EGF), fibroblast

growth factor-2 (FGF2), hepatocyte growth factor (HGF), fibroblast growth factor (FGF),

platelet-derived growth factors (PDGFs), insulin-like growth factor (IGF)-1 and 2, and

stromal cell-derived factor [4, 5, 10]. Kim and colleagues [11] identified MCP-1, IL8,

VEGF, and angiogenin as efficient secretome biomarkers for predicting vascular regenera-

tive efficacy in wound healing [11]. MicroRNAs that could be taken up by endothelial cells

and stimulate in vitro and in vivo sprouting angiogenesis were also described in hASC

secretome [12–15].

However, the hASC secretome’s composition and innate characteristics can vary depending

on the cell source and culture conditions. Hypoxic preconditioning is one of the most frequent

ways to improve hASC secretome, as hypoxic stress reduces oxygen, improves cellular func-

tion, and increases the concentration of paracrine factors [16, 17] that promotes wound heal-

ing [18–21] with fewer scar formation [22–24] in comparison to normoxic conditions.

Furthermore, hASCs secretome produced in serum-free media has enhanced immunosup-

pressive and anti-fibrotic abilities because of increased vascular endothelial growth factor

(VEGF) and hepatocyte growth factor (HGF) secretion [25, 26]. These findings led us to the

hypothesis that serum-free media and hypoxic preconditioning would synergistically enhance

the therapeutic effects of hASCs secretome on wound healing.

In this study, first, we characterized cultivated hASCs and the soluble angiogenic-related

and tissue repair factors secreted in serum-free media under 1% O2 (hypoxic) (HCM) or nor-

moxic conditions (NCM). Next, we assessed the secretomes’ angiogenic and tissue regenera-

tion potential using HUVECs primary culture. We demonstrated that the hASCs secretome

activated the PI3K/Akt signaling cascade and enhanced endothelial proliferation, survival,

migration, and in vitro tube formation. A Matrigel plug assay showed that NCM and HCM

were potent promoters of in vivo angiogenesis. Next, using a pericyte labeled (or reporter)

transgenic nestin-GFP/NG2-DsRed mice revealed that hASC secretomes accelerated wound

healing, increased endothelial density, and vascular coverage with resident pericytes expressing

NG2 and nestin to the lesion site, potentially contributing to blood vessel maturation. Overall,

our data suggest that serum-free media or hypoxic preconditioning enhances hASCs secre-

tome’s vascular regenerative effects by directly recruiting NG2+nestin+ pericytes to the injury

site.
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Material and methods

Ethics statement

This study was approved by the institutional review board of the Health Science Institute (Federal

University of Bahia, approval no 2.074.627). This study is in compliance with the ethical principles

of the revised Declaration of Helsinki. All participants read, understood and gave written consent

in the form approved by the institutional review board before agree to the study activities.

Animals

All animal experiments were reviewed, approved and performed in accordance with Brazilian

guidelines and regulations. The institutional review board approved animal handling and proce-

dures for animal experimentation (CEUA, UFBA-2018-131). All animal procedures were carried

out in strict accordance with the Guide for the Care and Use of Laboratory Animals and the regula-

tion of animal protection committee to minimize the suffering and injury. The animal studies are

in compliance with the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines.

C57BL/6 mice and Nestin-GFP+/NG2-DsRed+ double-transgenic mice colonies were

housed at the Health Science Institute of the Federal University of Bahia in a pathogen-free

facility under a 12-hour:12-hour light/dark cycle, with ad libitum feeding. Nestin-GFP

+/NG2-DsRed+ double-transgenic mice have been described [27]. In brief, they are transgenic

mice expressing GFP under the nestin promoter and DsRed+ under the NG2 promoter. Our

Nestin-GFP+/NG2-DsRed+ double-transgenic mice colony was maintained homozygous for

the transgenes on the C57BL/6 genetic background. Both male and female homozygous mice

were used, and their ages ranged from eight to twelve-week-old. The mice were monitored

daily and euthanized humanely by overdose (three times the dose used to anesthetize) of keta-

mine plus xylazine (80 and 20 mg kg−1 i.p.) at the end of the experiment or the first sign of

shortness of breath, reduced locomotion and reduced body weight.

Human cell culture

The hASC were isolated from lipoaspirate harvested as surgical waste products [28]. In order

to avoid gender-related variability, only female donors were selected for this study. Following

well-established isolation procedures, hASC populations were obtained from 8 healthy women

(S1 Table) (aged 25–45 years old). A volume of 50 mL lipoaspirate was treated with collagenase

I (1 mg/mL) (Sigma, C0130-1G) at 37˚C, and 30 min later, the digested material was centri-

fuged to obtain the stromal vascular fraction (SVF). The SVF was cultured in DMEM with low

glucose (Dulbecco’s Modified Eagle’s Medium, Life Technologies), supplemented with 10%

FBS, antibiotics (PenStrep and gentamicin) in adherent culture bottles. hASCs were expanded

in a standard culture medium in a humidified atmosphere at 37˚C with routine passaging at

80% confluence. The culture medium was renewed every three days. hASCs at passages three

to six were used for all subsequent experimentation.

Primary human umbilical vein endothelial cells (HUVECs) cells were isolated from umbili-

cal cords as described [29]. The HUVECs were cultured in EGM2/BulletKit medium (Lonza

Group Ltd.) supplemented with 100 U/mL penicillin/streptomycin (Life Technologies) at

37˚C in 5% CO2 and 95% air. HUVECs were seeded on 0.1% gelatin (Sigma), and EGM2/Bul-

letKit was replaced every 2–3 days. HUVECs at passages three to six were used for this study.

Immunophenotypic and multipotency characterization of hASCs

The expression of cell-surface antigens using fluorescein isothiocyanate (FITC)-conjugated

and phycoerythrin (PE)-conjugated antibodies was examined in hASCs (1 x 105 cells) using
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the following antibodies: anti-CD14 PE (clone 61D3, Lot: E026669, ebioscience), anti-

CD34FITC (BD, Cat No. 348053), anti-CD45PerCP (lot: ED7029, Exbio), anti-CD146 PE (lot:

91811, BD Biosciences), anti-HLA-DR PE (clone: MEM-12, lot: 1P474T100, Exbio), antiC-

D29FITC (clone: TS2116, lot: E031567, ebioscience), anti-CD73 PE (clone: AD2, lot:

1P675T100, exbio), anti-CD90 (clone: ebioE10, lot: E0228253, ebioscience) PE, anti-

CD105FITC (clone: SN6, lot: E029268, ebioscience) and appropriate isotype control antibodies

from the same manufacturers. Samples were run on a FACScalibur flow cytometer (BD Biosci-

ences, CA, USA) and analyzed using a BD Cell Quest pro software.

The multipotency capacity of hASC for trilineage differentiation (osteogenic, chondro-

genic, and adipogenic) and the intracellular expression of mesenchymal markers were assessed

as described [30, 31]. Immunofluorescence staining was carried out on hASCs (2.0 x 104 cells/

glass coverslips) with the following primary antibodies: mouse anti-SMA (Sigma, 1:500 in

BSA/standard serum solution), and rabbit anti-Collagen IV (Abcam, 1:100). After PBS wash-

ing, cells were incubated with the following secondary antibodies: Alexa Fluor-555 anti-

mouse; Alexa Fluor-488 anti-rabbit (Molecular Probes, 1:500 in BSA/standard serum

solution).

Conditioned Medium preparation and collection

Conditioned Medium (CM) preparation was performed as described previously [30], with

some modifications. The CM was obtained after 1 × 106 cell hASCs (passages 3–6) were cul-

tured for 48h with 3 mL of serum-free EBMTM-2 Basal Medium (Lonza), supplemented with

1% bovine serum albumin (Sigma-Aldrich Co) in T25 culture flasks either under standard

conditions (normoxic, NCM) or combined with 0.5% of oxygen preconditioning (hypoxic,

HCM) [30]. Hypoxic preconditioning was produced in an Anaerobac Jar (Probac, São Paulo,

Brazil) for 48h [32]. CMs were then collected, centrifuged at 3,000 rpm for 20 min at 4˚C to

remove cell debris and large apoptotic bodies, and maintained at -70˚C until use. The media

collected were referred to as normoxic hASC conditioned medium (NCM) or hypoxic hASC

conditioned medium (HCM), respectively. In order to obtain results that were not affected by

single donor variability and more representative of trophic factors released by hASCs, we

pooled CMs from 2 different hASCs at the same passage, and used these pools for each specific

analysis. Total protein content of conditioned medium samples was quantified using the Brad-

ford Protein Assay according to manufacturer’s protocol. Bovine serum albumin standards

were used. The total protein concentration of the CM pools was normalized based on the aver-

age total protein content (2.50 +/- 0.15 mg/mL) achieved after 48h of incubation of the conflu-

ent hASC monolayer. Identical replicate doses of these normalized CMs were used in all the

experiments.

Electrophoresis and Western blot analysis

HUVEC cell lysates were prepared in sodium dodecyl sulfate (SDS) buffer containing Com-

plete Mini Proteinase Inhibitor Cocktail Tablets (Sigma-Aldrich1). Samples (100μg) of the

protein lysates were loaded onto 12% polyacrylamide SDS gel, and the separated proteins were

then transferred to polyvinylidene difluoride (PVDF) membranes. After transfer, the mem-

brane was blocked and incubated overnight with the following primary antibodies: β-Actin,

AKT, and phospho-AKT (Ser473) (Cell Signaling Technology). The membrane was washed

and incubated for one hour with a secondary antibody (Peroxidase Goat Anti-Rabbit IgG

Antibody PI1000, Vector Laboratories). For development, the membrane was immersed in a

chemiluminescent solution (Immobilon Western Chemiluminescent HRP Substract, Merck

Millipore), and the bands were detected using a photo-documenter.
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Cell apoptosis, proliferation, and viability

Cell apoptosis was estimated with the Fluorescent terminal deoxynucleotidyl transferase nick

end labeling of DNA fragments (TUNEL)-in situ cell death detection kit (Fluorescein—

Roche), following the manufacturer protocol. Briefly, HUVECs were serum-starved for 4h, fol-

lowed by stimulation with NCM, HCM, or vehicle control medium for 20h. Only apoptotic

cells were stained by TUNEL, while propidium iodide (PI) was used for nuclear labeling. Five

hundred cells were counted in randomly chosen fields for each sample, and the numbers of

apoptotic cells were expressed as a percentage of the total cells counted.

The relative number of HUVECs incorporating 5-Bromo-2’-deoxyuridine (BrdU), indicat-

ing that these cells were going through the S phase, was performed with a cell proliferation kit

(Vector). Briefly, HUVECs cultured in EGM-2 medium with 0.5% FBS for 4h were stimulated

with NCM, HCM, or vehicle control medium. After 20h, HUVECs were incubated with

10 μM BrdU for 4h, before fixation. BrdU was detected by indirect immunofluorescence stain-

ing with a primary mouse anti-Bromodeoxyuridine antibody (1:200, VP-B209, Vector) and

secondary anti-IgG mouse conjugate (Alexa Fluor 488, dilution: 1:2000). Images were captured

with Eclipse TS100 fluorescence microscopy (Nikon Instruments Inc.). Cell viability was esti-

mated with the fluorescent viability staining calcein-acetoxymethyl ester (calcein-AM; 1 μM;

Molecular Probes, Life technologies).

Cell scratch wound healing assay

The scratch wounds were created in the confluent HUVEC monolayer using a sterile pipette

tip, followed by treatment with NCM, HCM, or vehicle control medium for 18h. The wound

width was determined at 0h and 18h after scratching using a light microscope equipped with a

digital camera. Reference points were marked close to the scratches to evaluate the same field

during image acquisition. The open wound area was quantified using the ImageJ (NIH, USA)

software. The extent of wound closure was presented as the percentage by which the original

scratch width had decreased at each measured time point.

In vitro 3D sprouting assay

The sprouting assay was carried out as described [33]. Briefly, HUVEC-coated microspheres

were resuspended in fibrinogen solution (2.5 mg/mL fibrinogen, Sigma-Aldrich) in EGM-2

medium (without FBS), supplemented with 50 mg/mL aprotinin (Sigma-Aldrich) and plated

with 0.15 U thrombin (Sigma-Aldrich) on top of a precoated fibrin layer at 37˚C for 20 min.

After the gels were allowed to polymerize, NCM, HCM, or vehicle control medium were

added and replaced every two days. After four days, the number of endothelial sprouts/beads,

branches, and tubule length was quantified in at least 30 microspheres per condition.

In vivo Matrigel plug assay

In vivo angiogenesis experiments were performed as described [34]. Briefly, a mixture of base-

ment membrane matrix (ice-cold, phenol red-free, reduced growth factor, Gibco) and 10x

conditioned medium (0.5 mL, 9:1 proportion) was subcutaneously injected into 8-week-old

C57Bl/6 wild-type mice (n = 8, 4 per group). Each mouse received two implants, totaling 8

plugs per group. Buffered saline was included as a negative control during the assay. After 11

days, the plugs were excised, photographed, and processed to assess the angiogenic response.

The relative hemoglobin content indicating the degree of blood vessel invasion into the plug

was measured as described [31].
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In vivo wound healing assay and immunofluorescent labeling

Two cohorts of mice were used in 2 independent experiments (n = 12, 6 per group). Nestin-

GFP+/NG2-DsRed+ double-transgenic mice (on the C57BL/6 genetic background) were anes-

thetized with a combination of ketamine plus xylazine (80 and 20 mg kg−1 i.p.) and shaved.

Four full-thickness (including the panniculus carnosus) were performed on the back of the

mouse, two on each side of the animal midline, by using a 4.0 mm biopsy punch. Wounding

day was coded as day 0. Immediately after excision, the wounds on the right side were treated

with vehicle control medium and those on the left side were treated with the conditioned

medium. One group was treated with normoxic hASC conditioned medium (NCM) and the

other group with hypoxic hASC conditioned medium (HCM). A total of 50 μL of conditioned

medium (2.5 ± 0.15 mg/mL) or vehicle control medium were subcutaneously injected into four

diametrically opposed points at the wound site (1 mm from the wound edges) on days 0 and 2.

Wounds were then left uncovered. Digital pictures of wounds were taken at indicated days after

wounding. After seven days, mice were euthanized, and the skin sample was harvested, pro-

cessed, embedded in OCT medium, and stored at—80˚C for further immunofluorescence stain-

ing, as described [30]. Quantification of blood vessels and perivascular cells was achieved using

immunofluorescent visualization of blood vessels on frozen sections. Frozen skin sections were

stained with goat anti-CD31 antibody (R&D System, 1:100 in BSA/standard serum solution),

rabbit anti-RFP (Abcam, 1:100), chicken anti-GFP (Abcam, 1:100), followed by incubation with

the following secondary antibodies: Donkey anti-rabbit 555 (Molecular Probes, 1:500 in BSA/

standard serum solution), Donkey anti-goat 647 (Molecular Probes, 1:500) and Donkey anti-

chicken 488 (Jackson Immuno Research, 1:500). Images were captured using fluorescence

microscopy analysis (Leika SP8). Quantitative analysis was carried out with the ImageJ (IJ2.3.0/

1.53f; Bethesda, MD) software. Colocalizations were assessed with the Leica Application Suite

Advanced Fluorescence software. Colocalization was quantified with the RG2B colocalization,

Colocalization_Finder, and JACoP plugins of the ImageJ program [35, 36].

Antibody-based protein array analysis

Analysis of different trophic factors in CM was performed using a Proteome Profiler Human

Angiogenesis Array kit (R&D Systems) according to the manufacturer’s instructions. All anal-

yses were performed starting from the same amount of proteins (3mg) for each preparation.

Briefly, either 1 mL of NCM or HCM were incubated with the membrane arrays, positive

spots were identified by chemiluminescence, and data quantification was performed by densi-

tometry using the ImageJ (NIH, USA) software.

Functional enrichment of genes associated with regulation of angiogenesis

We used the STRING database (http://www.string-db.org/) to assess the protein-protein inter-

actions (PPIs) of the most abundant proteins identified in our array analysis. The functional

enrichment of these PPI by Gene Ontology (GO), including biological process, cellular compo-

nent, and molecular function, was assessed and visualized with the Cytoscape 3.9.1 software

[37]. The hypergeometric test computed the p-values, the minimum required interaction score

was 0.7 for high confidence, and the Benjamini & Hochberg false discovery rate (FDR) correc-

tion was also defined at a significance level of 0.05.

Statistical analysis

Statistical analyses were performed with Statistical Package for the Social Sciences (SPSS) ver-

sion 25.0 software (IBM, Armonk, New York, USA) and GraphPad Prism v6.0 (Graphpad
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Software, San Diego, California, USA). The significance level (p values) was below 0.05. Quan-

titative variables distribution was carried out using the Shapiro-Wilk test. Unpaired t-test or

Mann–Whitney U tests were used to compare two groups according to the variable distribu-

tion, or one-way analysis of variance (ANOVA), followed by the Bonferroni post-hoc test for

three-group comparisons.

Results

Adult hASCs displayed multilineage potential and maintained viability

under serum-free medium and hypoxic preconditioning

First, adult hASCs were characterized according to their ability to adhere to plastic, the surface

antigen markers expression and the multilineage differentiation potential. In culture, the

hASCs were constitutively positive for typical mesenchymal markers, with high (>95%)

expression of CD29, CD73, CD90 and CD105, and low (< 2%) expression of hematopoietic

markers (Fig 1A). The isolated hASC were in vitro differentiated in adipogenic, osteogenic and

chondrogenic lineages, as showed in Fig 1B. The hASCs expressed low but detectable amounts

of α-SMA and collagen-IV as shown in Fig 1C. These data indicated that the isolated hASC

consistently meet all basic criteria required for human mesenchymal stem cells derived from

lipoaspirate samples, and can be used for subsequent studies. Characterized hASCs cultured in

serum-free medium under standard conditions (normoxic) or combined with low oxygen

level (hypoxic) preconditioning displayed elongated spindle shapes. Upon hypoxic precondi-

tioning, the viability of hASCs was maintained compared to normoxic condition, as indicated

by calcein cell-permeant staining (Fig 1D). These results suggest that 48h serum-free media

combined with hypoxic preconditioning did not affect hASCs viability.

The secretome profile of hASCs is enriched with trophic factors

Analysis of the conditioned medium revealed that of 55 angiogenic-related mediators ana-

lyzed, 27 were consistently detected on the membrane in at least three samples of at least one

group (Fig 2A). A total of 12 growth factors/cytokines with relevant expression (OD

Abs> 0.5) were expressed in both CMs, and eight trophic factors were differentially expressed

between NCM and HCM (Fig 2B). Since this result indicated the presence of both pro-and

antiangiogenic factors, we identified enriched pathways and biological processes in the whole

secretome. The list of consistently more abundant proteins in NCM and HCM samples was

analyzed to predict a protein-protein interaction network (PPI) with the String-online data-

base (Fig 2C). GO enrichment analysis showed that the more abundant proteins played an

essential role in angiogenesis, vasculature development, cell migration, and tissue repair (Figs

2D and S1A). The KEGG pathway enrichment analysis results showed that the differentially

expressed proteins were mainly involved in the pathways related to response to hypoxia, cell

proliferation, and migration, including PI3K-Akt, HIF-1, Rap-1 signaling cytokine-cytokine

receptor interaction pathways (S1B Fig).

hASCs-conditioned medium maintained viability and induced

proliferation of HUVEC

To verify the in vitro effects of NCM and HCM on the viability of endothelial cells, we per-

formed the TUNEL assay. The experiment indicated a decreased number of late apoptotic cells

in HUVECs treated with NCM or HCM when compared to the control group (0.6 ± 0.7,

0.8 ± 1.0 vs 5.2 ± 2.6, p<0.05), indicating that both conditioned media exhibited antiapoptotic

characteristics and had a positive effect on cell survival (Fig 3A). Next, we evaluated the
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Fig 1. Characterization of hASCs. (A) Flow cytometry histograms shows that hASC were positive for CD29, CD73,

CD90 and CD105, while negative for CD14, CD34, CD146 and HDLA-DR. The percentage of cells staining for each

marker (purple area) and the respective isotype-control (green line) are provided. (B) Phase-contrast microscopy

imaging of hASCs exposed to adipogenic, osteogenic, or chondrogenic differentiation media. Accumulation of

intracellular lipid vacuoles shown by oil red-O staining, calcium-rich extracellular matrix as evidenced by Alizarin red

S, and glycosaminoglycans stained with Alcian Blue. (C) Immunocytochemistry detection shows α-SMA and collagen-

IV-positive hASCs. Nuclei were stained with Hoechst dye (blue). (D) After normoxic and hypoxic preconditioning,

hASC displayed spindle-shaped fibroblast-like morphology. Staining with Calcein-AM indicated that hASC viability

remained unaffected by hypoxic preconditioning. Scale bars: 25μm in C and 75μm in D. Values are expressed as

means ± SD of at least three independent experiments (n = 8).

https://doi.org/10.1371/journal.pone.0277863.g001
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Fig 2. Characterization of HCM and NCM secretomes of human adipose mesenchymal stem cells (hASCs). (A) Heatmap depicts the

overall profile of 55 trophic factors, cytokines, and chemokines relative to protein abundance (mean pixel intensity). Each column represents

a different protein, while each row represents a sample. (B) NCM and HCM were analyzed by antibody-based protein array kit. Values are

normalized to positive reference spots. Data are representative of three independent experiments, and values are expressed in mean ± SD.

(C) STRING analysis uncovering protein-protein interaction (PPI) network of most abundant trophic factors expressed in NCM and HCM

visualized by Cytoscape. (D) David Gene Ontology analyses of proteins more abundant in hASC secretome. GO enrichment analysis showed

the biological process of most representative trophic factors ranked by p-value. The top 15 processes were selected based on the Benjamini p-

value (− Log10 Benjamini p-value are reported as blue bars). Fold enrichment is also reported as orange bars. � p<0.05. N = 8.

https://doi.org/10.1371/journal.pone.0277863.g002
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incorporation of BrdU in HUVECs treated with NCM or HCM. After 24h, a significant num-

ber of BrdU-positive HUVECs was observed in the presence of NCM and HCM when com-

pared with the control group (p<0.05). These results indicate that NCM and HCM were able

to induce proliferation in HUVECs (Fig 3B). Various signaling pathways, including

PI3K-AKT, have been implicated in the pro-angiogenic function of endothelial cells. Accord-

ingly, we tested if NCM and HCM conditioned media induced intracellular signaling in

HUVECs. Serum and growth factor starved HUVECs were stimulated in a time-dependent

manner. We found that serum-starved HUVECs stimulated with NCM or HCM activated the

PI3K-AKT pathway. Both conditioned media induced activation of the AKT pathway after

5min (p<0.05) (Figs 3C and 3D and S1). These data showed that both CMs were able to acti-

vate the PI3K-AKT pathway, which is involved in cell survival mechanisms, corroborating the

predicted PPI network and previous results about the effect of NCM and HCM on endothelial

cell survival and proliferation.

Fig 3. Normoxic- and hypoxic- hASCs secretomes increase cell proliferation and attenuate apoptosis in HUVECs. (A) HUVECs were cultured for 24h in

medium alone (control) or supplemented with either NCM or HCM. TUNEL-positive cells were counted, and the apoptotic index was calculated as the average

number of positive cells compared to the total number of cells in at least six visual fields. Values shown are the mean ± SD of at least three independent

experiments. (B) HUVECs were pulse-labeled with 10 μM BrdU, cultured for up to 24 hours in the presence of NCM or HCM, and BrdU was visualized by

immunocytochemistry and quantified by cell counting. (C) Representative western blots of pAKT and total AKT expression in HUVECs exposed to NCM or

HCM. (D) Quantitative data representing the average values of three independent experiments. The Fig 3C was cropped to improve the clarity and conciseness

of the presentation, and the full-length blots are presented in S2 Fig. Results indicate mean normalized expression relative to control ± SD. Cell experiment was

repeated three times independently. �p<0.05; �� p<0.01 (n = 4).

https://doi.org/10.1371/journal.pone.0277863.g003
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hASCs-conditioned medium stimulates migration and sprouting of

endothelial cells

Angiogenesis is a multistep process that requires cell migration, proliferation, survival, and

tube formation. We evaluated whether the hASCs-conditioned medium stimulates angiogene-

sis. First, the chemotactic potential of the conditioned medium was examined with the in vitro
scratch wound assay. HUVEC migration was significantly enhanced (~2.0-fold) in the pres-

ence of NCM and HCM, in comparison to the vehicle control medium (99.5 ± 0.5; 99.2 ± 0.9

vs 55.5 ± 8.5% of original scratched area, ��� p<0.0005), with monolayer scratching 100%

recovered after 18h (Fig 4A). Next, in vitro angiogenesis was examined in HUVECs seeded on

collagen-coated Cytodex beads embedded in a fibrin gel. Under control conditions, no sprouts

were formed, and this group was removed from the analyzed graphs. In the presence of either

NCM or HCM, endothelial sprouts appeared around day 2, and capillary-like structures were

formed around day 6. Fig 4B exhibits the formation of a more significant number of endothe-

lial sprouts/beads (6.5 ± 1.6 vs 5.0 ± 2.8 sprouts/beads, p<0.05) with greater lengths

(229.4 ± 49.6 vs 172.8 ± 73.7 μm, p<0.0001) in the presence of NCM, as compared to HCM. A

similar response was observed in the Matrigel plug assay to evaluate in vivo angiogenesis. Both

NCM or HCM conditioned media were able to induce invasion of blood vessels into the Matri-

gel plug when compared to control (p<0.05) (Fig 4C). These results indicate that NCM and

HCM showed pro-angiogenic capacity, and hypoxia preconditioning did not alter the effects

of hASCs.

The hASC-derived conditioned medium enhances skin repair in a wound

healing mouse model

The reparative potential of the conditioned medium was evaluated in a murine full-thickness

excisional wound healing model. The wounds were treated with a control medium, NCM, or

HCM, and observed on days 0, 3, 5, 7, 9, and 11. On day 7, the wound healing process was

accelerated in wounds exposed to NCM and HCM, when compared with the vehicle control

group, with a reduction of the injured area on days 9 and 11 (p<0.05) (Fig 5A). The relative

abundance of CD31+ (endothelial cell marker) and Nestin+NG2+ perivascular (pericyte cell

markers) populations were analyzed in wounded skin (Fig 5B). Upon injury, our immunofluo-

rescence staining demonstrated that NCM or HCM treatment led to a significant increase in

CD31+ capillaries. These CD31+ capillaries exhibited a higher percentage of endothelial ves-

sels associated with pericytes when compared to the control medium (p<0.05) (Fig 5C). These

results suggest that human hASCs secretome enhances endothelial blood vessel formation and

pericyte coverage during full-thickness excisional skin repair.

Discussion

Emerging evidence shows that the therapeutic effects of hASCs result from their intense para-

crine activity mediated by their secretome. However, hASCs represent a heterogeneous cell

population with varied secretory behavior. hASCs preconditioning is a valuable alternative to

improve secretome function and reduce inter-individual cell variability [38, 39]. The present

study used serum-free medium alone or combined with hypoxia as preconditioning strategies

to yield normoxic (NCM) or hypoxic (HCM) secretomes, respectively. We showed that both

secretomes enhanced endothelial cell proliferation and migration and reduced endothelial cell

apoptosis. Additionally, in vitro endothelial sprouting and in vivo Matrigel invasion were

almost equivalent for both normoxic and hypoxic secretomes. Moreover, we demonstrated

that both normoxic and hypoxic hASCs secretomes accelerated wound healing, blood vessel
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Fig 4. Hypoxic- (HCM) and normoxic- (NCM) hASCs secretomes accelerate in vitro cell migration and show in vitro and in vivo pro-

angiogenic potential. (A) Representative image of the migration of HUVEC cells after 0 or 18 h of incubation in HCM, NCM or control.

Quantification of the percentage of variation in the wound area (% migration area). Scale bars = 250 μm (B) Representative images of EC-

coated beads with NCM or HCM on fibrin gel and stained with calcein. Quantitation of EC sprouting formation and sprout length in arbitrary

units formed after 4 days. Scale bars = 100μm (C) Mixture of matrigel-filled plugs containing indicated conditioned medium (NCM or HCM)

PLOS ONE Adipose mesenchymal stem cell secretome and wound healing

PLOS ONE | https://doi.org/10.1371/journal.pone.0277863 December 19, 2022 12 / 21

https://doi.org/10.1371/journal.pone.0277863


formation, and resident pericyte coverage in the murine full-thickness excisional wound heal-

ing model. These findings suggest that serum-free media or hypoxia preconditioning pro-

moted the angiogenic and skin repair potential of hASCs secretomes.

Several studies indicate that serum-free media may benefit mesenchymal stem cells prolifer-

ation, differentiation, and paracrine activity while maintaining their stemness, immunosup-

pressive and antifibrotic abilities [40–42]. In general, secretomes collected under serum-free

conditions are much more appropriate for clinical use because of reduced contamination and

safety concerns related to xenogeneic infectious agents [43–45]. Serum-free conditions facili-

tate the proteomic analysis of secretomes [5, 46]. In addition, hypoxic preconditioning has

been widely studied to improve hASCs paracrine activity in models in which proangiogenic

and skin-repairing effects of secretomes are expected [4, 47]. Therefore, we investigate whether

serum-free media alone or combined with hypoxic preconditioning constituted an effective

strategy to increase the number and function of secreted molecules. The present study found

that serum-free condition induces paracrine activity in hASCs to produce a relatively enriched

secretome. In addition, the combination of serum-free condition and hypoxia preconditioning

has a limited effect on the secretome composition. Our results further indicated that serum-

free media and hypoxia preconditioning for 48h did not affect hASC’s spindle-shaped cell

morphology and viability, consistent with previous studies [40, 47, 48]. The predicted PPI and

the protein array profiling of NCM and HCM secretomes showed that the synergism

employed here caused no substantial alteration of the paracrine factor landscape, with only

minimal significant differences between these two types of secretomes. Similarly, Peltzer et al.

[39] showed that hypoxia preconditioning has no additional effect on mesenchymal paracrine

activity primed with Interferon-g, and only a limited number of secreted molecules was

affected by hypoxia. Moreover, Ferreira et al. [20] described that hypoxia preconditioning for

short periods significantly impacted cell proliferation and increased ASCs cell survival and

paracrine ability. These discrepancies are likely due to experimental conditions or donor inter-

variability [49]. Therefore, our results suggest that hypoxic preconditioning has no additional

effect on the serum-free media condition to improve the secretome composition.

hASCs secretomes enriched with angiogenic and other paracrine growth factors display a

notable function to accelerate healing and promote wound angiogenesis in various preclinical

animal models. In our study, both NCM and HCM secretomes showed strong angiogenic and

healing potential, as evidenced by HUVEC proliferation, sprouting formation, and in vivo
angiogenesis. In this context, we analyzed hASCs secretomes to identify possible paracrine fac-

tors that are functionally involved in the acceleration of wound healing processes. Predomi-

nantly, we identified regulators of tissue repair, including pro- (VEGF-A, angiogenin,

IGFBP3) and anti-angiogenic (Serpins F1 and E1, THBS1) factors, inflammatory response

mediators (CCL2, CXCL8, PTX3), migration (MMP-9 and TIMP-1) and coagulation (PLAU)

factors. Recently, Cases-Perera et al., [50] identified 8 proteins enriched in hASCs secretome,

including VEGF, TIMP-1, THBS1, Serpin F1/E1, IGFBP-3, and PTX3. Remarkably, our results

also indicated high expression of CCL2, Angiogenin, CXCL8, that are critical players with

proangiogenic effect, as previously described by Kim et al., [11]. Although the composition of

hASCs secretomes have differed slightly with culture preconditioning, the presence of these

proteins in similar amount suggests that their potential role are equivalents [50]. These results

are in agreement with previous reports suggesting that hASCs secretome are an abundant

or PBS (control) were injected subcutaneously in mice (n = 8). After 11 days, hemoglobin content representative of invading vessels was

measured. The two-way ANOVA test and the Bonferroni post-test were used to analyze the differences among the groups. Values are expressed

as mean ± SD of at least three independent experiments. (C) ��p<0.01; ���p<0.001 (n = 12, 6 per group).

https://doi.org/10.1371/journal.pone.0277863.g004
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Fig 5. NG2+Nestin+ pericytes surrounding the blood vessels and in close contact with the vascular wall in hASCs secretomes

treated animals. (A) Representative macroscopic images showing cutaneous wounds on days 0 and 7 after injection of control,

hypoxic- (HCM) or normoxic- (NCM) secretomes. (B) HCM and NCM accelerated wound closure and microvessel density.

Confocal images of the skin wound sections labeled NG2+(red)/Nestin+(green) pericytes and CD31+ blood vessels (blue). Use of

pseudocolor (white) to display colocalization of NG2+(red) and nestin+(green) pericytes around CD31+microvessels (blue). (C)
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source of trophic factors, with marked growth and angiogenic properties—factors, that could

be relevant to accelerate wound healing and enhance in vivo skin repair [3, 11, 50].

Even though available reports state that under standard culture conditions, hASCs secrete

high levels of VEGF-A and other proangiogenic factors [51, 52], which can be even higher

under low oxygen conditions [53, 54], we found equivalent expression levels of VEGF-A in

both normoxic and hypoxic secretomes. The serum-free condition has been shown to induce a

stress response that might be sufficient to stimulate a paracrine activity in hASCs, rendering

uncertain the effect of the low oxygen tension [55, 56]. Similarly, a recent report has shown

that normoxic or hypoxic hASCs secretomes contain equivalent levels of angiogenin, VEGFA,

CCL2, and IGFBP3 and accelerate the healing process by increasing fibroblast migration and

granulation tissue formation [57]. Additionally, after mass spectrometry analysis of hASCs

secretome, Riis and colleagues [24] could not detect a significant effect of hypoxic precondi-

tioning. Only a relatively small fraction (9.6%) of the proteome was affected by low oxygen

compared to normoxia and serum-free conditions [24]. From this perspective, An et al. [52]

analyzed the proteomic profile of serum-free hASCs secretome. They revealed a remarkably

high amount of protein molecules for wound healing, i.e., TGF-β1 and VEGF, besides more

than 700 proteins highly involved in the extracellular matrix organization, angiogenesis, and

cell migration. In accordance, a comprehensive quantitative proteomics approach recently

explored the protein composition of serum-free hASC secretome and identified more than

1977 proteins involved in ECM organization (hyaluronan and glycosaminoglycan metabolism)

and immunological regulation (e.g., macrophage and IkB/NFkB signaling regulation) [5].

Among the in-silico hASCs-enriched processes, platelet degranulation, extracellular matrix

organization, and regulation of smooth muscle cell-matrix adhesion pathways emerged. Our

in vivo results demonstrated that normoxic or hypoxic hASCs secretome enhanced blood ves-

sel density and pericyte coverage during wound healing. These results are consistent with

other preclinical studies of skin repair, demonstrating that paracrine factors increase vessels

density and accelerate healing in full-thickness excisional wounds [58, 59], diabetic wounds

[60–62], hypertrophic and keloid scars [63], skin flaps [64] and hair loss [65]. However, it is

noteworthy that most studies do not assess the presence of perivascular cells (i.e., pericytes)

surrounding the newly formed blood vessels mediated by the hASCs secretomes. Pericytes

play a pivotal role in maintaining vascular integrity and restoring skin function after acute

injury [66]. In this context, our results completely align with previously described results for

wound angiogenesis and skin repair [67].

In our study, we found that nestin+/NG2+ pericytes were surrounding blood vessels seven

days post-wound. We also quantified perivascular cells, and found the highest number of nes-

tin+/NG2+ pericytes in wounds treated with hASC secretome and accelerated healing. It is

suggestive that these perivascular cells may help vessel stabilization, maturation, or vessel

remodeling. These results were consistent with previous observations that nestin+/NG2+ peri-

cytes generate blood vessel tissues [27, 68], and NG2+ perivascular cells are co-localized with

blood vessels for up to 10 days post-wound [69]. Recently, do Valle et al. [67] demonstrated

that an increased number of nestin+/NG2+ pericytes and undifferentiated cells were mobilized

to wound edges in the initial experimental periods and accumulated in the dermal regions of

the wound afterward. Further work is needed to explore the role of nestin+/NG2+ pericytes in

stabilizing blood vessels, contributing to vascular maturation, remodeling, and regulating the

The extent of microvessel density was determined by assessing the CD31+ vessel area or NG2+nestin+ area in each of 4 randomly

chosen high-power fields within the injury site. Scale bar, 100 μm for images in (B). Results are given as the means ± the SD.
�p<0.05, ��p<0.01; ���p<0.001 (n = 12, 6 per group).

https://doi.org/10.1371/journal.pone.0277863.g005
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permeability and blood flow in wound healing. The healing effect accomplished by hASCs

secretome presumably was because it provided essential trophic and mediating factors that

helped create a proangiogenic response at different stages of the wound healing process. How-

ever, it remains unclear whether hASCs secretome contributes to the direct activation of peri-

cytes and endothelial cells or is indirectly responsible for the recruitment of these and other

cells (tissue-resident progenitors, inflammatory cells) due to metalloproteinases and chemo-

kines detected in secretomes.

hASCs secretomes are currently in phase I and II clinical trials for diverse applications [70–

72], even though the road toward an exhaustive characterization of this new generation of cell-

free therapeutic is still a very long one. Compared to cell therapy, the use of secretomes has

lower biological risks, less tumorigenicity and reduced cost [3]. However, the risk of disease

transmission as well as xenogeneic immune reactions in the recipient is a clear limitation. In

addition, the commercial use of secretome still requires challenges to be addressed, such as the

optimization and reproducibility of production methods, better characterization of its constitu-

ents (content of cytokines, growth factors, microRNAs, lipids and microvesicles), better preser-

vation and dose-effect evaluation to achieve the best efficacy profile for clinical applications.

The use of filter sterilization to remove biological contaminants during the preparation of com-

mercially intended hASCs secretomes should be carefully evaluated, as it could considerably

affect the contents of microvesicles and extravelllar vesicles with therapeutic potential [3, 4].

In conclusion, our results suggest that serum-free media or hypoxic preconditioning

hASCs secretomes display a very similar composition of specific bioactive factors. Both NCM

and HCM were potent in promoting in vitro and in vivo angiogenesis, tissue vascularization,

and vascular coverage of resident pericytes expressing NG2 and nestin to the lesion site, poten-

tially contributing to blood vessel maturation. Overall, normoxic and hypoxic preconditioning

enhanced the vascular reparative effects of hASCs secretome on the preclinical wound healing

model. Therefore, from the clinical translation perspective, hASCs secretome represents a

potential therapeutic product in a practical and minimal manipulation procedure, affording a

more feasible scale-up approach.
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