

Proceedings and abstracts book

SPONSORS

• • • • SYMPOSIA • • • •

BILL& MELINDA GATES foundation

care

OTHER • • •

Global Health Strategies

Ministério da Saúde

Fundação Oswaldo Cruz

FIOCRUZ

INFECTIOUS DISEASES DATA OBSERVATORY

SUS

CIDEPRO INNOVACIÓN PARA LA SALUD Y EL BIENESTAR DE LAS COMUNIDADES PANAFTOSA Pan American Center for Foot-and-Mouth Disease and Veterinary Public Health

© CIDEPRO Colombia ISSN:

PECET, Universidad de Antioquia Sede de Investigacion Universitaria -SIU-Calle 62 # 52 – 59, lab 632

First edition: August 23, 2022

Text correction: Sara Maria Robledo

Design and layout: Valeria Velez Wolff

Made in Colombia

Partial or total reproduction is authorized by any mean or any purpose by quoting the respective source.

The content of the work corresponds to the right of expression of the authors and do not compromise the institutional position of the University of Antioquia, PECET and/or CIDEPRO Colombia.

Medellin, Colombia.

WORLD KLEISH7

SCIENTIFIC AND ORGANIZING COMMITTEE

Ivan Dario Velez Chair PECET Colombia – University of Antioquia

> **Jorge Alvar** Co-chair DNDi

Sara Robledo PECET Colombia – University of Antioquia **Felix Tapia** Central University of Venezuela

Alexis Mendoza Central University of Venezuela

> Nancy Saravia CIDEIM

Carlos Costa Federal University of Piauí

Ana Cristina Patiño PECET Colombia – University of Antioquia **Gabriela Delgado** Universidad Nacional de Colombia

Carlos Muskus PECET Colombia – University of Antioquia

> **Felipe Guhl** Andes University

Elisa Cadavid PECET Colombia – University of Antioquia

Content

1.	WELCOME TO THE WORLDLEISH77	
2.	GENERAL SCHEDULE	
3.	SYMPOSIUMS	
	S1. ROLE OF ASYMPTOMATICS IN THE TRANSMISSION OF LEISHMANIASIS, SLEEPING SICKNESS AND CHAGAS DISEASE	
	S2. NEW VACCINES AND IMMUNOTHERAPIES FOR CANINE LEISHMANIASIS	
	S3. EMERGING FOCI AND CHANGING EPIDEMIOLOGY OF LEISHMANIASIS	
	S4. ELIMINATING VL AS A PUBLIC HEALTH PROBLEM IN THE WHO SOUTH-EAST ASIA REGION: THE LAST MILE CHALLENGES AND OPPORTUNITIES THROUGH THE NEW REGIONAL STRATEGY	
	S5. INFLAMASOMES AND Leishmania	
	S6. PATHOGENESIS OF KALA-AZAR	
	S7. INNOVATION IN R&D TO CONTRIBUTE TO VL ELIMINATION	
	S8. SAND FLY SALIVA AND IMMUNE RESPONSE OF BITTEN HOSTS	
	S9. ELIMINATING VL IN INDIA: THE LAST MILE CHALLENGES AND OPPORTUNITIES 66	
	S10. NEW TRENDS IN THE DIAGNOSIS OF CHAGAS DISEASE	
	S11. NEW INSIGHTS IN POSTTRANSCRIPTIONAL REGULATION IN Leishmania: IMPLICATIONS IN THE PARASITE DEVELOPMENT AND DISEASE CONTROL	
	S12. VL-HIV COINFECTION	
	S13. "ATYPICAL" CUTANEOUS LEISHMANIASIS	
	S14. EPIDEMIOLOGY OF LEISHMANIASIS IN AMERICA	
	S15. ANIMAL MODELS FOR VISCERAL LEISHMANIASIS: SUITABILITY AND APPLICATIONS	
	S16. DRUG RESISTANCE AND TREATMENT FAILURE IN LEISHMANIASIS: A 21ST CENTURY CHALLENGE	
	S17. VL ELIMINATION AS A PUBLIC HEALTH PROBLEM IN INDIA	

WORLD KLEISH7

0

C

S18. VECTOR COMPETENCE AND Leishmania-SAND FLY INTERACTIONS
S19. DRUG TARGET IDENTIFICATION
S20. LEISHMANIASIS VACCINE: PAST, PRESENT AND FUTURE
S21. NEW GUIDELINE FOR THE TREATMENT OF LEISHMANIASIS IN THE AMERICAS: WHAT HAS CHANGED?
S22. MOLECULAR PATHOLOGY AND STRATIFICATION OF LEISHMANIASIS
S23. FUTURE PROSPECTS IN THE TREATMENT OF CUTANEOUS LEISHMANIASIS FORM
S24. LEISHMANIASIS AND MOVEMENT: IMPORTED LEISHMANIASIS BY TRAVELERS AND MIGRANTS
S25. BIOMARKERS FOR DIAGNOSIS OF LEISHMANIASIS
S26. CELL BIOLOGY AND Leishmania INFECTION
S27. Leishmania EXTRACELLULAR VESICLES: IMPACT ON DISEASE PROGRESSION204
S28. VECTOR SURVEILLANCE AND CONTROL FOR VISCERAL LEISHMANIASIS ELIMINATION
S29. A GLOBAL VISCERAL LEISHMANIASIS DATA PLATFORM
S30. IMMUNOPATHOGENESIS AND HOST-DIRECTED THERAPIES IN LEISHMANIASIS
S31. RESERVOIRS OF LEISHMANIASIS
S32. GENOMICS AND EPIDEMIOLOGICAL SURVEILLANCE
S33. EXPERIENCE WITH mHEALTH AND LEISHMANIASIS
S34. EMPOWERING PEOPLE WITH CUTANEOUS LEISHMANIASIS THROUGH INTERDISCIPLINARY RESEARCH AND COMMUNITY-BASED INTERVENTIONS (ECLIPSE)
S35. DATA FOR DECISION MAKING FOR VL ELIMINATION
S36. LEISHMANIASIS AND IMMUNOSUPPRESSION
S37. LEISHVET: ANIMAL LEISHMANIOSIS: IS A CHANGE OF MIND NEEDED?
S38. THE CUTANEOUS LEISHMANIASIS IN THE MAGHREB REGION

WORLD KLEISH7

	S39. DRUG RESISTANCE & QUIESCENCE: UNRAVELLING MECHANISMS AND EXPLOITATION FOR BETTER/NEW DRUGS	296
	S40. IMMUNOLOGICAL PERSPECTIVES OF LEISHMANIASIS: BEYOND THE TH1/TH2 PARADIGM	
	S41. WHAT CAN SOCIAL SCIENCES CONTRIBUTE TO UNDERSTANDING AND ADDRESSING LEISHMANIASIS?: EXAMPLES FROM THE FIELD	307
	S42. MUCOCUTANEOUS LEISHMANIASIS	315
	S43. BRASILEISH. ANIMAL LEISHMANIOSIS: IS A CHANGE OF MIND NEEDED?	325
	S44 NEW HOPE FOR LEISHMANIASIS: HOW TO COMMUNICATE TO A BROADER NON-SCIENTIFIC AUDIENCE	334
4.	ORAL COMMUNICATION	336
	4.1 CANINE LEISHMANIASIS	337
	4.2 DIAGNOSIS - TREATMENT AND RESISTANCE - CLINIC	359
	4.3 DRUG DISCOVERY & DEVELOPMENT	418
	4.4 EPIDEMIOLGY/ECOEPIDEMIOLOGY/MOLECULAR EPIDEMIOLOGY/PREVENTION	
	4.5 IMMUNOLOGY - CELL BIOLOGY – PATHOGENESIS - VACCINES	547
	4.6 OMICS - MOLECULAR BIOLOGY – BIOCHEMISTRY - OTHERS	633
	4.7 SOCIAL INNOVATION - IMPLEMENTATION RESEARCH - OPERATIVE RESEARCH	
	4.8 VECTORS & RESERVOIRS	727
5.	POSTER	753
	5.1 CANINE LEISHMANIASIS	754
	5.2. DIAGNOSIS-TREATMENT AND RESISTANCE-CLINIC	827
	5.3. DRUG DISCOVERY & DEVELOPMENT	962
	5.4. EPIDEMIOLOGY – ECOEPIDEMIOLOGY - MOLECULAR EPIDEMIOLOGY - PREVENTION AND CONTROL	035

5.6 OMICS - MOLECULAR BIOLOGY – BIOCHEMISTRY - OTHERS
5.7. SOCIAL INNOVATION - IMPLEMENTATION RESEARCH - OPERATIVE RESEARCH
5.8 VECTORS & RESERVOIRS
6. LIST OF CHAIR, CO-CHAIR & SPEAKERS1470
7. LIST OF PARTICIPANTS

1.

1. WELCOME TO THE WORLDLEISH7

С

Every four years, leishmaniacs from around the world gather in WorldLeish to discuss the latest advancements around these neglected tropical diseases and the seventh version was not an exception. In 2022, we had the participation of around 700 people, from 47 countries. Also, we had a great response from 536 students and professionals from around the world who sent us their abstracts to be part of the event as a poster or oral communications presentation and we are glad to say that we counted 195 oral presentations and 341 posters.

The experience and knowledge of the 210 speakers enriched the 44 Symposia, 8 Round Tables, 4 Special Meetings, 5 Plenary talks and 4 Successful stories that took place in those 6 days.

For Colombia and specifically the University of Antioquia, it was an honor to be the host of this Congress. And, for PECET, is a recognition for its almost 40 years of effort, research and hard work to treat leishmaniasis.

I would like to express my gratitude for your participation in this seventh version of the congress. Thanks to the knowledge and contributions, of all participants, it has been a complete success.

We know that it was not easy at all, however seeing all of you in Cartagena filled us with deep pride for the great challenge undertaken and the achievement reached.

May these events strengthen our "leishmaniac" spirit and recharge us to continue working in favor of this NTD.

Thank you very much.

With the expression of my admiration and respect.

Ivan Dario Vélez Chair WorldLeish7

2. GENERAL SCHEDULE

Time SATURDAY August 6th		PLENARY TALK #5	COPEE BREAK	SPECIAL MEETING #4	AWARDS				CLOSING LECTURE	CLOSING REMARKS							
		8:30 - 9:30	$9.30 \cdot 10.00$	10:00 - 11:30			12:00:71 - 05:11		12:00 - 13:10 13:10 - 13:30								
FRIDAY 27 August 5th	REGISTRATION	PLENARY TALK #4	SUCCESSFUL STORY #4		SATELITE SYMPOSIUMS (seesions 33 - 38)	SPECIAL MEETING #3	SMUISOMWAS ATLETA	SATELITE SYMPOSIUMS (sessions 39 - 44)		ROUND TABLE (5 · 8)	ORAL COMMUNICATIONS (sessions 29 - 35)	POSTER PRESENTATION Session 4	COFEE BREAK	ORAL COMMUNICATIONS	(sessions 36 - 41)		
THURSDAY August 4th	REGISTRATION	PLENARY TALK#3	SUCCESSFUL STORY #3	REAK	SATELITE SYMPOSIUMS	(77.57 \$101553\$)	SATELITE SYMPOSIUMS (sessions 28 - 44) SPECIAL MEETING #2		POSTER PRESENTATION Session 3				LUNCH/ FREE AFTERNOON				
WEDNESDAY August 3rd	REGISTRATION	PLENARY TALK #2	SUCCESSFUL STORY #2	COPEE BREAK	SATELITE SYMPOSIUMS (sessions 12-16) (sessions 23-27)		SMUISOMMAS ELLER	(77. / I SUOISSAS)	LUNCH	ROUND TABLE (1 - 4)	ORAL COMMUNICATIONS (sessions 15 - 21)	POSTER PRESENTATION Session 2	REAK	ORAL COMMUNICATIONS (sessions 22 - 28)			
TUESDAY August 2nd	REGISTRATION	PLENARY TALK #1	SUCCESSFUL STORY #1		SMU	(c - 1 50015535)	SATELLTE SYMPOSIUMS (sessions 6 - 11)		LUNCH	SPECIAL MEETING #1	ORAL COMMUNICATIONS (sessions 1 - 7)	POSTER PRESENTATION Session 1	COFEE BREAK	ORAL COMMUNICATIONS (sessions 8 - 14)			
Time	7:00 - 8:00	00:6 - 00:8	05:0 - 9:30	$9.30 \cdot 10.00$	10:00 - 11:30		11:30 - 13:00		13:00 - 14:00	$14:00 \cdot 15:30$	1530 - 1630	16:30 - 17:30	$1730 \cdot 18:00$	18:00 - 19:00			
	MONDAY MONDAY							RECISTRATION			OPENING SESSION	INAUGURAL LECTURE	WELCOME RECEPTION				
	MC								14:00 - 19:00 17:30 - 18:00 17:30 - 19:00				$19:00 \cdot 20:30$				

3. SYMPOSIUMS

S8-02: ANTI-SALIVA ANTIBODY PRODUCTION IN NAIVE DOGS EXPOSED TO UNINFECTED *Lutzomyia longipalpis* BITES

Claudia Ida Brodskyn¹ Manuela da Silva Solcà², Yuri de Jesus Silva², Stefane C. S. Jesus¹, Amanda M. R. M. Coelho², Bruna Macedo Leite¹, Shaden Kamhawi³, Jesus Valenzuela³, Deborah Fraga^{1,2}

¹Laboratory of parasite-host interaction and epidemiology, Instituto Gonçalo Moniz – FIOCRUZ (Salvador, BA, Brazil); ²Veterinary Faculty, Federal University of Bahia (Salvador, BA, Brazil); ³Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (Rockville, MD, United States)

Canine visceral leishmaniasis (CVL) is caused by Leishmania infantum and transmitted to dogs and humans by sandflies. In Brazil, Lutzomyia *longipalpis* is the primary vector of this disease. When feeding, infected sandflies inoculate metacyclic promastigote forms of Leishmania and their saliva and other components into the hosts. Anti-saliva antibodies were associated with increased visceral leishmaniasis severity in naturally infected dogs. Although these compounds introduced by the vector favor the establishment of *Leishmania*, the early events that occur at the bite site are not fully understood. A better understanding of these initial events is essential to the development of better therapeutics and prophylactic strategies. Studies have demonstrated that sandfly saliva promotes *Leishmania* infection. *Leishmania major* co-injected with *Lu. longipalpis* or Phlebotomus papatasi saliva resulted in more severe disease manifestations in mice, as reflected by larger lesions compared to animals that received only parasites. This initial observation was further supported by additional studies demonstrating the enhanced infectivity of L. major when coinoculated with saliva from the sandfly Lu. longipalpis. Apart from antihemostatic properties, sand fly saliva promotes chemotactic activity in a variety of immune cells, such as macrophages, neutrophils, dendritic cells and lymphocytes. In addition, many other cell types, including monocytes, interact with sandfly saliva, thereby modifying inflammatory processes at

the blood feeding site. It has been proposed that the resulting effects on the host immune system contribute to increased parasite loads in mice exposed to sandfly bites compared to animals infected through needle injection7. Moreover, it has also been demonstrated that other vector-derived factors can additionally contribute to *Leishmania* infection, such as the microbiota of the vector, exosomes and the promastigote secretory gel. In recent years, our group has contributed compelling data linking the differential production of lipid mediators to inflammatory factors involved in the establishment of infection. Specific levels of lipid mediators, mainly the eicosanoids leukotriene B4 (LTB4) and prostaglandin E2 (PGE2), are important components of the inflammatory response to, and outcome of infection by intracellular pathogens. Previous in vitro studies have demonstrated the role of LTB4 as a factor that participates in parasite killing, while PGE2 was shown to favor *Leishmania* survival. More recently, lipid mediators were identified as biomarkers of cutaneous and visceral leishmaniasis severity. Anti-sandfly saliva antibodies could also represent an essential epidemiological tool to assess vector exposure in endemic areas. LJM11 and LJM17 recombinant proteins are present in the vector's saliva and have already been used for this purpose. Our goal was to follow up anti-saliva antibodies (anti-LJM11 and anti-LJM17) production in naïve dogs experimentally exposed to Lu. longipalpis sandflies. We also assessed the persistence of anti-saliva antibodies titers for one year, and after reexposure to the sandfly vectors. Blood samples from the dogs were collected weekly to assess the production of anti-LJM11 and anti-LJM17 IgG by ELISA. Six healthy naïve dogs were exposed weekly to 35 Lu. longipalpis female sandflies until at least 80% of the female were fed. Dogs were exposed to the sandflies until anti-saliva antibody production reached a plateau and remained elevated for at least three consecutive weeks. Afterward, we ceased sandflies exposures; we followed the dogs weekly until the animals tested negative for anti-saliva antibodies for three consecutive weeks. Then, we re-exposed the dogs to the sandflies and evaluated the time-period it took for the animals to resume anti-saliva antibody production. The Reactivity Index (RI) was calculated by dividing the optical density by the cut-off point obtained in each ELISA plate to compare antibody production. Soon after the first exposures, there was an immediate increase in the production of anti-saliva antibodies (between the first and the third week).

On the twenty-eighth day after the first exposure (with a median of 10.5 days), all six animals showed detectable anti-saliva IgG titers. Dogs were exposed to sandflies for six to nine weeks (with a median of 52.5 days). After the initial rising of anti-saliva antibody production post-exposure, antisaliva antibody titers fluctuated, remaining detectable for over a year. We found a statistically significant difference comparing anti-saliva antibodies titers before exposure and five weeks after the exposure (p<0,05). Despite the variations in titration, four dogs remained positive for 41 weeks (290 days) on average, two animals are still positive after 460 days. After the first week of re-exposure, dogs demonstrated antibody titers rising significantly. Throughout the evaluation, there was a considerable variation in antibody production among the six animals, especially concerning the time of seroconversion, time to reach the plateau, and titer decay. Although we observed differences among the animals, we can detect a similar pattern during the follow-up. Currently, studies evaluating the cellular immune response of these animals are being carried out. We have collected peripheral blood mononuclear cells (PBMC) in different time points after exposure and re-exposure and we intend to stimulate these cells with salivary gland homogenate and measure the cytokines production with LUMINEX specific canine kit. Moreover, we will measure canine serum cytokines produced during the follow-up after exposure and re-exposure to sand flies. This experimental approach allows us to better understand the early events among vector and host after exposure to sand flies and to delineate better strategies to control infection establishment.

Keywords SANDFLY; SALIVA; ANTIBODIES; RESERVOIR

Financing PROEP IGM-FIOCRUZ $N^\circ01/2020$ and Fulbright Junior Member Faculty Award

SPONSORS

• • • • SYMPOSIA • • • •

BILL& MELINDA GATES foundation

care

OTHER • • •

Global Health Strategies

Ministério da Saúde

Fundação Oswaldo Cruz

FIOCRUZ

SUS

CIDEPRO INNOVACIÓN PARA LA SALUD Y EL BIENESTAR DE LAS COMUNIDADES

INFECTIOUS DISEASES DATA OBSERVATORY

PANAFTOSA Pan American Center for Foot-and-Mouth Disease and Veterinary Public Health

