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Abstract: (1) Background: Malaria remains a significant global public health issue. Since parasites
quickly became resistant to most of the available antimalarial drugs, treatment effectiveness must
be constantly monitored. In Brazil, up to 10% of cases of vivax malaria resistant to chloroquine
(CQ) have been registered. Unlike P. falciparum, there are no definitive molecular markers for the
chemoresistance of P. vivax to CQ. This work aimed to investigate whether polymorphisms in the
pvcrt-o and pvmdr1 genes could be used as markers for assessing its resistance to CQ. (2) Methods:
A total of 130 samples from P. vivax malaria cases with no clinical and/or parasitological evidence
of CQ resistance were studied through polymerase chain reaction for gene amplification followed
by target DNA sequencing. (3) Results: In the pvcrt-o exons, the K10 insert was present in 14% of
the isolates. Regarding pvmdr1, T958M and F1076L haplotypes showed frequencies of 95% and
3%, respectively, while the SNP Y976F was not detected. (4) Conclusions: Since K10-pvcrt-o and
F1076L/T958M-pvmdr1 polymorphisms were detected in samples from patients who responded well
to CQ treatment, it can be concluded that mutations in these genes do not seem to have a potential
for association with the phenotype of CQ resistance.

Keywords: chloroquine; chemoresistance; malaria; P. vivax; pvcrt-o; pvmdr1

1. Introduction

Malaria is a major important public health problem worldwide. According to the
World Malaria Report from the World Health Organization (WHO), there were 247 million
new cases and 619 thousand malaria-related deaths in 2021 [1]. Plasmodium vivax is the most
widely distributed species causing most malaria cases in Asia and South America [2,3].
Since 2007, Brazil has observed a stable incidence rate of malaria cases, with P. vivax
accounting for about 80% of cases. This trend continued in 2022. The country recorded
around 129,000 malaria cases, of which around 83% were attributable to P. vivax and 16%, to
P. falciparum [4]. In the last 60 years, the combination of chloroquine (CQ) and primaquine
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(PQ) has been used in Latin America to radically cure P. vivax, i.e., eradicate the blood
forms and hepatic hypnozoites [5]. However, emerging resistance to antimalarial drugs
may threaten malaria control programs [1].

The first report of P. vivax resistance to chloroquine (CQR) in Papua New Guinea dates
from 1989 [6], 30 years after resistance reports for P. falciparum [7,8]. In Brazil, the first
cases of P. vivax resistant to CQ were described in Manaus, Amazonas, in 1999 [9]. This
timeline reflects the emergence of chloroquine resistance in P. vivax occurring later than
in P. falciparum. Since then, studies have reported a 10% prevalence of CQR [10] and a
recurrence or reemergence of P. vivax in 5.2% of cases in the same region [11], threatening
current international efforts to control and eliminate malaria [1]. Given the emerging risk
of drug resistance, drug efficacy monitoring studies using molecular markers represent
an important tool for refining CQR surveillance and validating potential molecular mark-
ers associated with the P. vivax resistance phenotype through mutated single nucleotide
polymorphisms (SNPs) in related genes [12].

Currently, the mechanisms of resistance of P. vivax to antimalarial drugs are still unclear
due to the lack of continuous in vitro culture systems and the possible involvement of
multigenic loci [13]. The P. vivax multidrug resistance 1 gene (pvmdr1) and the chloroquine
resistance transporter gene (pvcrt-o) are orthologous to two genes described in P. falciparum,
the multidrug resistance 1 gene (pfmdr1) and the chloroquine resistance transporter gene
(pfcrt), which have been identified as potential markers for CQR in P. vivax [14].

The pvcrt-o gene, described about 20 years ago [15], emerged as a candidate marker
of drug resistance and in contrast to pfcrt, only a few SNPs (~10) have been described in
pvcrt-o, and most of them were related but occurring at low frequencies [16]. Although the
sequence polymorphism in the pvcrt-o locus is relatively limited, a lysine (AAG) insertion
in the first exon (amino acid 10), originally discovered in Southeast Asian strains, has been
found to be associated with a significant reduction in chloroquine (CQ)’s half-maximal
inhibitory concentration (IC50) [13,17,18]. Thenceforth, studies have demonstrated the
presence of the K10 insertion in parasites from Southeast Asia and South America [16,19,20].

In the context of pvmdr1, this gene was identified in 2005 and, due to its strong se-
quence similarity to pfmdr1, became one of the most important candidate genes investigated
in drug susceptibility studies of P. vivax [16]. Since then, several SNPs have been identified
as potential molecular markers for CQ resistance in P. vivax, including T958M, Y976F and
F1076L, which are non-synonymous amino acid mutations associated with resistance to
CQ [13,14,20,21]. Judging by their protein sequence, the 3 pvmdr1 mutations are located in
9 to 11 domains of the hydrophobic transmembrane [22]. The presence of these polymor-
phisms at codons Y976F and F1076L was registered in malaria-endemic areas where CQ
was being used as the first-line antimalarial drug [17,23–25]. However, the possibility has
been raised that the presence of these two mutations together would be required for the
re-emergence of P. vivax resistance to CQ [26]. While the Y976F and F1076L polymorphisms
are widely distributed in Latin America [27], in Brazil, the increased expression of pvcrt-o
and pvmdr1 has been associated with P. vivax resistance to CQ [20].

Considering that knowledge of CQ-chemoresistant P. vivax circulating parasites in
Brazilian endemic areas is crucial for predicting the spread of resistant phenotypes and the
need for the introduction of alternative therapies, the aim of this study was to investigate
the polymorphisms in the pvcrt-o and pvmdr1 genes to identify their potential predictive
role of the CQR phenotype in P. vivax samples from Brazilian endemic areas.

2. Materials and Methods
2.1. Location of the Study and Samples Collected

Samples were collected from January 2018 to August 2022, from P. vivax-infected
patients in six Amazonian states (Acre, Amazonas, Amapá, Pará, Rondônia and Ro-
raima). Patients were treated and followed clinically and with laboratory testing to ver-
ify if they were cured after chemotherapy treatment at the Outpatient Clinic for Acute
Febrile Syndromes/Instituto Nacional de Infectologia (INI), which is part of the Refer-
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ence Center for Malaria Research, Diagnosis and Training—CPD-Mal/Fundação Oswaldo
Cruz (FIOCRUZ)/Rio de Janeiro of Extra-Amazonian (22◦54′ S 43◦12′ W). The treatment
adopted for the patients was recommended by the National Program of Malaria Control
(PNCM), which comprised the administration of a combination of CQ for 3 days (10 mil-
ligrams (mg)/kilogram (kg) on day 1 and 7.5 mg/kg on days 2 and 3) and PQ for 7 days
(0.5 mg/kg/day). If patients returned, they were evaluated on days 0, 1, 2, 3, 7, 14, 28 and
42 and in case of symptoms, at any time during the follow-up period.

Besides at CPD-Mal, blood samples were also collected in Manaus (3.1190◦ S, 60.0217◦

W), the capital of the Amazon state, at the Fundação de Medicina Tropical Doutor Heitor
Vieira Dourado (FMT-HVD) and in field conditions in the municipality of Guajará (border-
ing the Amazonas and Acre states; 02◦58’18′′ S and 57◦40′38′ W), in two municipalities of
the Acre state, Cruzeiro do Sul (07◦37’50′′ S and 72◦40’13′′ W) and Mâncio Lima (07◦36′49′′ S
and 72◦53′47′′ W), as well as in the Boa vista municipality (02◦49′12′′ S and 60◦40′23′′ W),
Roraima state (Table 1 and Figure 1).

Table 1. Localities of P. vivax parasite blood collection by Brazilian states.

State of
Infection

Sample Collection

CPD-Mal 1 Amazonas Acre Roraima
(FMT-HVD 2 and GJ 3) (CZS 4 and ML 5) (BV 6)

Acre 15 – 52 –
Amazonas 18 12 – –

Amapá 3 – – –
Pará 2 – – –

Roraima 6 – – 20
Rondônia 2 – – –

1 CPD-Mal: Reference Center for Malaria Treatment and Diagnosis of Brazilian Ministry of Health; 2 FMT-HVD:
Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Amazonas state; 3 GJ: Guajará municipality,
Amazonas state; 4 CZS: Cruzeiro do Sul municipality, Acre state; 5 MLˆ: Mâncio Lima municipality, Acre state;
6 BV: Boa Vista municipality, Roraima state.
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2.2. Malaria Diagnosis

The malaria diagnoses were made by light microscopy (Giemsa-stained thick blood
droplets) in situ. To ensure the presence of a mono-P. vivax infection, together with micro-
scopic diagnosis, all samples were subjected to molecular diagnosis by polymerase chain
reaction (PCR). Firstly, conventional and real-time PCRs were performed using Plasmodium
primers [28]. Then, the positive samples were submitted to species-specific single or nested
PCRs to detect P. vivax [29], P. falciparum [30] and/or P. malariae [31]. The samples were
stored at the Malaria Research Laboratory (LPM) at Instituto Oswaldo Cruz (IOC), head-
quarters of the Reference Center for Malaria Treatment and Diagnosis (CPD-Mal/Fiocruz).
Only patients with P. vivax mono-infections were included in the study.

2.3. DNA Extraction, Amplification and Sequencing

The DNA from 1 mL blood samples was extracted using the QIAamp™ DNA Blood
Midi Kit (QIAGEN, Hilden, Germany), according to the manufacturer’s instructions. For
this study, approximately 1186 base pair (bp) fragments of the pvcrt-o gene of P. vivax
were amplified according to the protocol described by Cheong et al. (2020) [14] and a
fragment of 800 bp was amplified for the analysis of the SNPs T958M, Y976F and F1076L
in the pvmdr1 gene according to the protocol described by Brega et al. (2005) [32]. PCR
products were analyzed by electrophoresis on 2% agarose gel, visualized under a UV
transilluminator (DigiDoc-It; UVP, Unpland, CA, USA) and purified using Wizard™ SV Gel
and the PCR Clean-Up System (Promega, Madison, WI, USA), following the manufacturer’s
procedure. The purified DNA sequencing was carried out through Big Dye™ Terminator
Cycle Sequencing Ready Reaction version 3.1 (Applied Biosystems, Carlsbad, CA, USA),
with 3.2 µM of forward and reverse PCR primers. DNA sequences to investigate the SNPs
in pvcrt-o and pvmdr1 genes were determined using the ABI Prism DNA Analyzer™ 3730
(Applied Biosystems, Carlsbad, CA, USA), at the Fiocruz Genomic Platform PDTIS/Fiocruz
RPT01A. Nucleotide sequences were aligned using a ClustalW multiple sequence aligner
in BioEdit version 7.7.1 software (North Carolina State University, Raleigh, USA), and the
electropherograms were analyzed using NovoSNP® version 3.0.1 software (University of
Antwerp, Antwerpen, Belgium), using the quality cutoff set to 10, in order to avoid the
lack of real variation, and using the Salvador 1 strain as a reference sequence (GenBank
Accession No. AF314649.1 for pvcrt-o and GenBank Accession No. AY571984.1 for pvmdr1).
DNA sequences were deposited in GenBank (the NIH’s genetic sequence database; www.
ncbi/nlm/nih.gov/GenBank accessed on 21 August 2023) with the accession numbers
OR461289–OR461401.

3. Results
3.1. Prevalence of Polymorphisms in the pvcrt-o Gene

A total of 104 (80%) of the 130 samples were successfully sequenced for the pvcrt-o
gene. The insertion of lysine (AAG codon) at position 10, named the K10 insertion and
considered a candidate molecular marker of CQR, was detected in 15 (14%) samples: seven
from Acre (n = 50; 14%), five from Amazonas (n = 30; 16%), one from Pará (n = 1; 100%)
and two from Roraima (n = 19; 11%). Meanwhile, it was not detected in the Rondônia
(n = 2) and Amapá (n = 2) (Table 2) samples. In the vast majority of pvcrt-o sequenced
samples (n = 89; 86%), no mutations were detected and, therefore, these DNA sequences
were identical to the Sal-1 strain used as the wild-type reference of CQ-sensitive parasites.

All patients who attended the Malaria Reference Center located in Rio de Janeiro (CPD-
Mal) had uncomplicated malaria and were followed up clinically and through laboratory
testing; clinical and parasitological cures were confirmed within the expected time frame
(Supplementary Materials Table S1). Using the Malaria Epidemiological Surveillance
Information System (SIVEP-Malaria data) and Malaria Control Nacional Program (PMCN)
definitions, there was no recrudescence in the six patients from the endemic area who
had parasites with the K10 insertion until 60 days after initiating treatment of the primary
vivax infection. The three patients I, J and L, were considered cases of reinfections and

www.ncbi/nlm/nih.gov/GenBank
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not recrudescence by CQ-resistant parasites due to P. vivax notifications >60 days after
initiating treatment of the primary vivax infection (Supplementary Materials Table S1).

Table 2. Distribution of the K10 insertion (AAG codon) in the pvcrt-o gene in 104 samples of P. vivax
from the Legal Amazon.

Gene SNP

Locality

NT 1 (%)Acre
n = 50

Amazonas
n = 30

Amapá
n = 2

Pará
n = 1

Roraima
n = 19

Rondônia
n = 2

pvcrt-o Wild-type 43 (86%) 25 (83%) 2 (100%) 0 17 (89%) 2 (100%) 89 (86%)
K10 insertion 7 (14%) 5 (16%) 0 1 (100%) 2 (11%) 0 15 (14%)

1 NT: total number of samples investigated.

3.2. Prevalence of Polymorphisms in the pvmdr1 Gene

The pvmdr1 gene was satisfactorily amplified and sequenced in 113 (86%) of the
130 samples investigated. Three-point mutations (T958M, Y976F and F1076L) considered
as potentially associated with the P. vivax resistance phenotype were examined. The SNP
T958M was the most prevalent (93%) and was found in parasites from all states. The SNP
F1076L was present in only three samples from Amazonas (n = 25; 12%), while the Y976F
mutation was absent in all samples examined (Table 3).

Table 3. Frequency of alleles in the pvmdr1 gene in 113 samples of P. vivax, according to the malaria
diagnosis localities.

Gene SNP 1

Locality

NT 2 (%)Acre
n = 62

Amazonas
n = 25

Amapá
n = 2

Pará
n = 1

Roraima
n = 21

Rondônia
n = 2

pvmdr1 Wild-type 4 (5%) 0 0 0 2 (10%) 0 6 (5%)
958M 58 (93%) 25 (100%) 2 (100%) 1 (100%) 19 (90%) 2 (100%) 107 (95%)

958M + 1076L – 3 (12%) 0 0 0 0 3 (3%)
1 The bold character represents a non-synonymous mutation detected. 2 NT: total number of samples investigated.

Haplotype analysis of the pvmdr1 gene showed that almost all samples (n = 104; 92%)
had the MYF single mutant profile at codon T958M, predominating in the states of Acre
(58/62; 93%), Amazonas (22/25; 88%) and Roraima (19/21; 90%). In the other states studied,
the proportion was less than 2%. The MYL double mutant profile (T958M + F1076L) was
detected exclusively in 12% (3/25) of the samples from Amazonas, while the wild-type
TYF was detected in the minority of samples: four from Acre (n = 62; 5%) and two from
Roraima (n = 21; 10%) (Table 4). In this way, the polymorphism in codon F1076L was
always associated with polymorphism in codon T958M.

Table 4. Distribution of haplotypes in the pvmdr1 gene in 113 samples of P. vivax from the Legal Amazon.

Gene Haplotype 1 Mutated Codon NT 2 (%)

pvmdr1 MYF 1 104 (92%)
MYL 2 3 (3%)
TYF 0 6 (5%)

1 The bold character represents a non-synonymous mutation detected. 2 NT: total number of samples investigated.

The three P. vivax patients harboring double mutant MYL parasites in pvmdr1, whose
samples were followed up clinically at the CPD-Mal laboratory, were cured within the
expected time (Table 5).
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3.3. Comparative Alignment between Here Presented pvcrt-o and pvmdr1 Sequences of
CQ-Sensitive Parasites with Those Reported by Melo et al. (2014) [20]

When we analyzed our CQ-sensitive sequences with those that were CQ-resistant of
Melo et al. [20], we found that 14% of the sensitive pvcrt-o gene sequences had the K10
insertion against only two resistant isolates presenting the K10 insertion (Figure 2). In
relation to the pvmdr1 gene, 92% of CQ-sensitive isolates presented the single mutant MYF
haplotype whereas 100% of CQ-resistant or -sensitive sequences [20] contained the MYF
haplotype (Figure 3).
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Table 5. Patients followed up at CPD-Mal, carrying P. vivax parasites containing the MYL double
pvmdr1 mutant haplotype infected in the Amazonas state and the dates of diagnosis and of cure
(parasitological and molecular negative assays).

Patient Date of Diagnosis Date of Cure 1

A 31 December 2021 5 January 2022
B 4 March 2022 11 March 2022
C 14 August 2021 23 August 2021

1 Cure: based on parasitological and molecular negative assays.

4. Discussion

P. vivax is the most geographically widespread pathogen of human malaria and is
responsible for most cases outside the African continent [1]. Vivax malaria is considered a
public health problem in many parts of the world, particularly with regard to the morbidity
of children and pregnant women [33], the rare but real possibility of fatal infections [16] and
the presence of CQ-resistant P. vivax parasites [5]. Due to the biological characteristics of P.
vivax that prevent a continuous in vitro culture system, molecular monitoring has become
the tool of choice for the surveillance of resistance to antimalarials due to its practical and
economic advantages over in vivo fieldwork and in vitro assays, recommended by the
WHO [1,13]. Previous work has shown a significant association between the allele pfcrt
and pfmdr1 variants and P. falciparum drug resistance [25]. However, putative mutations
in these genes, considered as candidate markers of antimalarial drug resistance, are not
clear with respect to P. vivax [34,35]. In fact, regardless of the chemoresistance phenotype,
the genetic polymorphism of P. vivax is notable [36] and this parasite is known to be more
diverse than P. falciparum [37]. As, so far, little is known about the genotype of P. vivax
parasites circulating in Brazilian endemic areas, thus, it is quite pertinent to investigate the
polymorphisms of pvmdr1 and pvcrt-o.

The main gene related to P. vivax CQ resistance is pvcrt-o. Indeed, the presence of the
“AAG” lysine insert in exon I of pvcrt-o (referred as the “K10 insert”) has been associated
with a significant reduction in the IC50 of CQ [18]. In our analysis, it was possible to
identify the K10 insertion in 15 samples (14%) distributed among the states of Acre (7),
Amazonas (5), Pará (1) and Roraima (2). This SNP was also reported in studies from French
Guiana (57%) [38], China (32%) [39] and, to a lesser extent, India (5.6%) [40], Pakistan
(16%) [41] and Thailand (18%) [42]. Due to the scarcity of previous studies, we do not have
knowledge about the expansion or retraction of this mutation in Brazil. One possibility
would be that this mutation has been introduced to Brazil through the events of illegal
mining in French Guiana, where this insertion is frequent, although not directly associated
with CQR [38]. In fact, when we analyzed the results of samples from patients who carried
P. vivax with the K10 insertion, a good response to the CQ treatment occurred within the
28-day expected period, with no observed case of recrudescence. Thus, excluding the small
possibility of primaquine acting against minority populations of CQR parasite clones, our
data reinforce that the K10 insertion is not a predictor of the P. vivax resistance phenotype
to treatment with CQ, as previously suggested [13,43,44].

Regarding the pvmdr1 gene, several studies describe that the substitution in the Y976F
codon, which changes the amino acid tyrosine to phenylalanine, would be associated with a
reduced susceptibility to CQ [39,45–48]. This SNP has even been identified in endemic areas
of China, Cambodia and Ethiopia [19,24,47], where treatment failure has been reported
in patients with vivax malaria treated with CQ. Although this SNP was not detected in
the present study nor in 2018 in the triple border region involving Colombia, Peru and
Brazil/Amazonas [49], previous studies by our group reported the Y976F polymorphism at
a high frequency (85.7%) in 2009 [26] and at a low frequency (15%) from 2010 to 2014 [50]
in the endemic areas of the Legal Amazon. These facts seem to indicate two possibilities of
events: either the SNP Y976F was present in only a few locations in the endemic region
of the Legal Amazon or this mutation was not becoming fixed in the Brazilian endemic
region. On the other hand, since we did neither detect the Y976F polymorphism in any of
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the samples here examined, nor any therapeutic failure to CQ in this casuistic, we cannot
draw a conclusion about the role of this polymorphism as a marker of P. vivax CQR.

In addition to Y976F, we also investigated SNPs at the T958M and F1076L codons
in the pvmdr1 gene, both of which have also been proposed to be potentially associated
with CQ resistance [20,34]. The SNP at codon T958M was present in almost all analyzed
samples (92%), including those of the 34 patients whose parasite genes could be sequenced
and responded to CQ treatment within the expected period. This high frequency has been
verified by previous studies carried out by our group in Brazilian endemic areas [26,50],
as well as by other authors analyzing samples from Africa [51], South America [50] and
Southeast Asia [19], indicating the fixation of T958M in parasitic populations of P. vivax cir-
culating in Brazil and in the world. This fact indicates a low potential of this polymorphism
as a CQR marker.

It has been mentioned that the T958M and F1076L polymorphisms alone may not
be associated with CQR, unless if acting together, they could modify the protein’s con-
formation and enable drug evasion [32,51]. When analyzing these double mutants, we
verified that the F1076L polymorphism was always present with T958M, originating the
MYL double mutant haplotype. This dependency relationship between these alleles was
already noted by our group in isolated parasites from Acre, Amazonas, Rondônia and in
autochthonous cases from the Atlantic Forest of Rio de Janeiro [50], as well as by other
authors in Southeast Asia [52–54], where there are cases of P. vivax resistant to CQ treatment.
However, once again, the good therapeutic response in patients carrying MYL parasites
in the present study, disregarding the small possibility of primaquine acting in minority
clones of CQR parasites, indicates that the association of double mutants with P. vivax CQR
is unlikely.

As the Y976F mutant allele was not detected in our series, it was not possible to
establish a relationship between chemoresistance and CQ for the TYL double mutant
haplotype (T958M + Y976F + F1076L), as previously suggested in the literature [39,55,56].

Finally, the tendency toward tolerance or resistance to the drugs recommended for the
treatment of vivax malaria may be more complex, including other genes in addition to P.
falciparum, where pvmdr1 SNPs located in the transmembrane domain are associated with
CQ vacuole efflux. It is noteworthy that striking differences in the topologies and numbers
of SNPs in these transporter genes between P. vivax and P. falciparum reinforce the idea that
mechanisms other than mutations may explain this CQ-resistant phenotype in P. vivax. In
fact, the P. vivax CQ resistance process may also differ by its combined CQ/PQ treatment
regimen, so it could be only a matter of time before more CQ-resistant P. vivax cases appear.

5. Conclusions

The results presented in this study reinforce that the mutations here investigated
on pvcrt-o and pvmdr1 may not be good markers of P. vivax chemoresistance to CQ. New
approaches for the identification of robust genetic markers for monitoring chloroquine
resistance in P. vivax populations are needed.
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