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Abstract:

Background: Viral mutations are the primary cause of mismatches in primer-target hybridisation, affecting the
sensibility of molecular techniques, and potentially leading to detection dropouts. Despite its importance, little is
known about the quantitative effect of mismatches in primer-target hybridisation. We have used up-to-date and highly
detailed thermodynamic model parameters of DNA mismatches to evaluate the sensibility to variants of SARS-CoV-2
RT-LAMP primers.

Methods: We aligned 18 RT-LAMP primer sets, which underwent clinical validation, to the genomes of the wild-type
strain (ws), 7 variants and 4 subvariants, and calculated hybridisation temperatures allowing up to three consecutive
mismatches. We calculated the coverage when the mismatched melting temperature fell by more than 5°C in
comparison to the matched alignments. If no mismatches were considered, the average coverage found was 94% for
ws, falling to the lowest value for Omicron, i.e., 84%.

Results: However, considering mismatches, the coverage was much higher, i.e., 97% (ws) to 88% (Omicron).
Stabilizing mismatches (higher melting temperatures) accounted for roughly 1/3 of this increase. The number of
primer dropouts increased for each new variant; however, the effect was much less severe if mismatches were
considered.

Conclusion: We suggest using melting temperature calculations to continuously assess the trend of primer dropouts.

Keywords: DNA mismatches, Diagnosis, LAMP primer design, SARS-CoV-2, DNA thermodynamic models, Melting
temperature calculations.
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1. INTRODUCTION

There are eight possible mismatched (MM) base pairs
in DNA: AA, AC, AG, CC, CT, GG, GT, and TT. They may
arise from DNA replication [1], genetic recombination [2],
and primer-template hybridisation in PCR reactions [3],

which may lead to false-negative results [4]. Their
presence may influence the stability and structural
properties of DNA duplex, changing hydrogen bonds
conformation and stacking interactions. However, some
mismatches show a similar overall shape to a canonical
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pair and a relatively stable configuration, e.g., a GT-
mismatched pair [5, 6]. MM pairs may be found in anti-syn
or syn-anti conformations differently from DNA pairs,
which are naturally in an anti-anti conformation. Mismatch
impact varies from weakly bound (CC pair) to strongly
bound (GG pair) in a local conformation, while molecular
dynamics and NMR experiments have shown no impact on
a global conformation, such as for AA and TT pairs [1, 7].
Internal and terminal mismatches influence primer-target
hybridisation in different ways [8]. Mismatches located far
from the 3’ end have a moderate effect without influencing
PCR performance [3]. On the other hand, those near the 3’
terminal are critical and may lead to non-amplification of
the target [8, 9]. Nevertheless, mismatches either near or
at the 3’ terminal may avoid false priming unlike the 5’
terminal and internal mismatches [10]. Although it is
known that mismatches typically destabilise the primer-
target duplex, some types of mismatches are more stable
than others, and some even more than AT base pairs,
which may contribute towards the stability of the duplex
[1, 11, 12]. A few mismatches in PCR primers may
contribute to the design of antisense oligonucleotides [13],
SNP [14], and allele-specific identification [12].

The isothermal PCR known as RT-LAMP (reverse
transcription loop-mediated isothermal amplification) is a
robust, fast, and inexpensive molecular technique, and can
be carried out in less than an hour [15, 16]. It has been
used as a molecular diagnostic test for several diseases,
such as ebola [17], zika [18], HIV [19], SARS [20], MERS-
CoV [21], and SARS-CoV-2 [22], the causative agent of
COVID-19. To detect these diseases, it is necessary to
design specific primers to identify the target agent. Unlike
PCR, which usually uses a single pair of primers, RT-LAMP
uses 2 or 3 pairs: F3 and B3 (outer primers), FIP and BIP
(inner primers), and LF and LB (loop primers). The outer
and inner primers act at the beginning of the reaction, but
just the inner ones act in later cycles. FIP and BIP primers
are long primers that contain two parts: F1c and F2 for
FIP and B1c and B2 for BIP, which correspond to sense
and antisense sequences of the target [23]. Finally, the
loop primers are included to accelerate the reaction [24].

For LAMP, in the same way as for PCR [25],
mismatches may appear between target and primers due
to mutations potentially causing false-negative results [26,
27]. Yet, mismatches may enhance the technique's
performance. In fact, SARS-CoV-2 PCR primers designed
by Corman et al. [27] during the earlier stages of the
pandemic had mismatches that did not hinder the
detection of the coronavirus [28]. A few Cas12 enzymes in
CRISPR assays have shown mismatch tolerance [29], and
resistant mutants may be detected after an antibiotic
administration when a mismatch is incorporated at the 3’
terminal [30]. Recent PCR-based methods have used
mismatches either at or near the 3’ terminal to detect
Delta variant [31] and Omicron subvariants [32].

In a previous study [33], we evaluated the impact of
mismatches on RT-PCR primers and probes, where we
showed that the mismatches do not always have a
negative impact on thermodynamic stability. The reason

for this is that there are a number of mismatch
configurations that may actually increase the melting
temperatures. This was confirmed recently by Scapaticci
et al. [34], who found that mutations may have higher
melting temperatures and suggested that the melting
temperature analysis could be used to detect specific
variants. As for PCR, it is expected that mismatches in
primer-target hybridisation may appear for LAMP primers,
especially for both FIP and BIP primers in which
mismatched base pairs in either 5' or 3' ends may prevent
the elongation by Bst DNA polymerase, leading to a low
amplification efficiency [35]. Although one or two
mismatches have been shown to be tolerable for LAMP
[30, 36], studies with three or more consecutive
mismatches are, to our knowledge, not available.

Here, we have shown the evaluation of DNA
mismatches in 18 RT-LAMP primer sets [37-54], which
were designed for wild-type SARS-CoV-2 genomes. One of
those sets [38] was previously successfully evaluated by us
for a few variants and now for amplified genome sets. We
applied a previous workflow [33] to analyse those primers
for the detection of SARS-CoV-2 variants as Alpha
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2),
Lambda (C.37), Mu (B.1.621), and Omicron (B.1.1.529)
variants, and BA.2 to BA.5 subvariants. The outcomes
show if those primers may still be effective in detecting
the variants and how the presence of mismatches may
contribute to covering more genomes, consequently
detecting the coronavirus. Furthermore, we reinforce the
fact that a continuous evaluation of RT-LAMP primer sets
is needed to cover variants that may arise, as already
suggested [48].

2. MATERIALS AND METHODS

2.1. Genome Sets

We randomly collected 21665 genomes of original
SARS-CoV-2 (wild type strain) on 8th October, 2020, at
NCBI [55]; 7247 genomes of the Alpha variant, 7497 of the
Beta variant, and 2308 of the Gamma variant on 7th April,
2021; 7943 of Delta variant on 5th June, 2021; 7029 of
Omicron variant on 16th December, 2021; 6610 of Mu
variant, 9340 of Lambda variant, and 7393 and 348 of
Omicron subvariants BA.2 and BA.3 on 11th February
2022; and 629 and 1231 of Omicron subvariants BA.4 and
BA.5 on 19th September 2022, at GISAID [56].

2.2. Primer Sets

We collected 18 different RT-LAMP primer sets
designed for SARS-CoV-2 original genomes that
underwent clinical validation [37-54], resulting in a total of
436 primers. Their details are shown in Table S1. FIP and
BIP primers were divided in F1c/F2 and B1c/B2 primers,
respectively, except those from three sets [38, 40, 51], for
which the division of primers was already given. We found
all possible combinations of primer pairs and selected
those according to the temperatures of the same type of
pair from the three sets just mentioned.
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2.3. Evaluation Workflow

All primers were aligned to each genome set using a
Smith-Waterman algorithm, as described earlier [33].
Fully matched alignments were called strictly matched
and those with single, double, and triple consecutive
mismatches were termed partially matched. Alignments
with four or more consecutive mismatches were
considered as not aligned. The limit of the maximal
number of consecutive mismatches is be due to the fact
that the available parameter only covers up to three
contiguous mismatches [11]. In addition, it is very likely
that four or more mismatches will destabilize the primers
far beyond the limits considered here. Also, deletions in
the viral genome, as in the Omicron variant [57, 58], may
lead to no alignment of the primers.

Hybridisation temperatures for matched (Tref.) and
mismatched (TMM) alignments were calculated from a
mesoscopic model with the parameters obtained from a
previous work [11].

(1)

The reference hybridisation temperature Tref. for each
primer is shown in Supplementary Table S1. It should be
noted that the parameters [11] are for a sodium buffer,
which is different from those typically used in PCR

reactions that contain Mg+. Therefore, the absolute
temperatures Tref. may be different from the actual melting
temperatures of the primers. However, since our analysis
deals with temperature differences, which are not strongly
buffer-dependent, we expect them to be sufficiently
accurate for our purposes.

We define a strictly matched (AT and CG only)
alignment coverage for each primer as

follows:

(2)

Where, NG is the total number of genomes, Nn.a. is the
number of genomes for which no alignment was found,
and NMM is the number of genomes for which a partial
alignment containing mismatches was found.

The difference between reference hybridisation
temperature Tref. and mismatched alignments TMM is
defined as follows:

(3)

Where, TMM is usually lower than Tref. [11]. The partial
coverage for alignments with up to three contiguous
mismatches is defined below:

(4)

Where, Nlow is the number of alignments where the
mismatched melting temperature TMM is lower by ∆Tlim.

than the reference Tref. It should be noted that as there are
many mismatch configurations that have an increased TMM,
that is, there are situations where Cpart. > Cstrict even for
∆Tlim. = 0. A previous work has provided additional details
of this workflow [33].

All 18 primer sets were aligned against the genomes of
SARS-CoV-2 variants. We calculated the hybridisation
temperatures and coverages for both matched and
mismatched alignments considering single, double, and
triple consecutive mismatches. The complete evaluation
was carried out in approximately 120 h computing time.

2.4. Availability

The software packages used to carry out this work are
freely available and can be found at https://bioinf.fisica.uf
mg.br/software/, in the analyse primer lamp.tar.gz package.

3. RESULTS AND DISCUSSION

We assessed 18 clinical validated RT-LAMP primer sets
[37-54]. They showed high strict and partial coverages for
wild-type SARS-CoV-2 and its variants. Even for variants
and subvariants, a few primers achieved more than 90%
coverage. A considerable number of primers showed high
coverages only when mismatches were taken into account.
Also, primers utilized by Alves et al. [38] achieved high
coverages for wild-type SARS-CoV-2 and Gamma variant, in
agreement with the experimental results. Furthermore,
Almeida et al. [59] showed E1 and N2 primer subsets to be
able to identify the Omicron variant target despite the
presence of only a single mismatch. All strict and partial
coverages are shown in Tables S2-S55.

Given the continuous mutation of the SARS-CoV-2
genomes, it is expected that over time, mismatches should
increasingly occur within the primer regions. Fig. (1),
where we show the Cstrict averaged over all 436 primers,
illustrates this decreasing coverage as variants appear. In
comparison to the wild-type strain (ws) coverage, all
variants decreased their coverage. When we considered
partial coverages in the presence of mismatches with ∆Tlim

= 0°C, that is, primers with TMM ≥ Tref., the curve uniformly
shifted upwards. For ∆Tlim = 5°C, Beta, Gamma, Delta, and
Mu partial coverage became slightly higher than the ws
strict coverage. However, the rate of decrease was not
uniform, and some variants had higher coverage than their
presumed predecessor variants. For the Omicron variant,
which had a larger number of mutations [60], we have
observed a sharp drop in the coverage. However, for the
subsequent subvariant, the picture has been mixed; the
BA.3 subvariant shared the low coverage, but BA.2, BA.4,
and BA.5 have shown a higher coverage. The reason for
this oscillation was not clear.

Tm = a0 + a1τ,

Cstrict = NG − Nn.a. − NMM 
NG 

∆TMM = Tref. − TMM 

Cpart.(∆Tlim.) = NG − Nn.a. − Nlow(TMM < Tref. − ∆Tlim.) 
NG 
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Fig. (1). Coverage averaged over all primers as for wild-type SARS-CoV-2 genomes (ws), Alpha (α), Beta (β), Gamma (γ), Delta (δ),
Lambda (λ), Mu (µ), and Omicron (o) variants, and BA.2 (b2), BA.3 (b3), BA.4 (b4) and BA.5 (b5) subvariants. Black bullets are for Cstrict

and red (blue) boxes are for ∆Tlim = 0°C (5°C). The dashed line connecting the data point is only intended as a guide to the eye.

Table 1. Examples of primer coverages with stabilizing mismatches, Tlim. = 0°C, which have Cpart.(0°C) > 90%
while having Cstrict = 0. Only those primers having stabilizing mismatches for the given variant are shown.

Cpart.(0°C) (%)

Primer ws Alpha Beta Gamma Delta Lambda Mu Omicron BA.2 BA.3 BA.4 BA.5

As1e F1c [28] 99.2 99.4 98.7 99.7 99.2 99.0 99.7 98.5 100 98.6 99.5 99.7

iLACO-F1c [28] 99.2 - 99.1 99.5 99.3 99.8 99.8 99.5 99.8 99.7 100 99.9

N15-B1c [33] 97.7 98.8 96.5 98.4 99.9 99.4 99.6 99.2 99.9 99.7 98.9 98.9

N1-B1c [35] 98.4 99.5 97.1 99.6 99.6 99.7 99.3 93.8 99.8 94.3 99.0 98.7

N1-F1c [35] - - - - - - - 92.7 97.5 94.0 - -

N2-F1c [35] 99.1 99.1 96.6 99.1 99.9 98.7 99.7 99.3 99.9 99.7 99.0 99.0

NEB orf1a-A-F1c [37] 98.9 99.5 99.2 99.5 99.8 99.6 99.1 99.4 99.7 99.1 99.2 96.9

F1c [38] - - - - - 98.9 99.2 93.9 99.5 93.1 - -

Similar to what we have seen for RT-PCR [61], many
alignments that would result in a null strict coverage
achieve partial coverage beyond 99% if mismatches are
considered. In some cases, a large partial coverage is
already obtained for ∆Tlim = 0°C, that is, if we consider
only mismatches that do not destabilize the duplex.

In Table 1 we show a few examples of primers that
have zero strict coverage but go beyond 90% if stabilizing

mismatches are considered. It is somewhat surprising that
some primers achieved high coverages for Omicron only
and not for the other variants, despite the fact that all
were designed for the wild-type strain. While this seems to
be an opposite trend to the overall decline for Omicron,
one should note that a higher coverage for Omicron was
rather exceptional and only occurred for very few primers.
On the other hand, this quite clearly highlights that the
assessment of mismatch influence is far from trivial.
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Table 2. Sets having at least one potential drop-out primer for any of the variants. Only the reference number is
shown for each set. Drop-out primers are considered as those with a partial coverage (∆Tlim. = 5°C) below 5%,
Ndrop, for at least one variant. Nprimers is the number of separate primers for each set.

Ref. Nprimers Ndrop ws Alpha Beta Gamma Delta Lambda Mu Omicron BA.2 BA.3 BA.4 BA.5

[29] 32 6 0 0 0 1 0 1 1 3 3 3 4 3

[30] 40 7 0 1 1 1 1 0 0 3 3 3 3 3

[31] 81 28 4 11 5 5 5 6 12 9 5 10 7 6

[32] 8 1 0 0 0 0 0 1 0 0 0 0 0 0

[33] 32 6 0 0 0 1 0 3 1 3 2 3 2 2

[34] 15 3 0 0 1 0 0 0 0 1 2 2 2 2

[35] 32 5 1 3 1 3 2 2 1 2 2 2 3 2

[36] 8 1 0 0 0 0 0 0 0 1 1 1 1 1

[37] 32 5 0 0 0 0 0 1 0 1 2 2 4 2

[38] 10 6 0 2 1 0 2 3 0 3 3 3 3 3

[39] 48 12 0 3 0 5 3 6 0 7 7 7 8 7

[40] 8 5 0 2 0 1 0 0 2 0 0 0 0 0

[41] 16 5 0 1 2 0 1 1 0 1 1 1 1 1

[42] 8 2 1 1 1 2 1 1 1 1 1 1 1 1

[43] 15 3 0 1 0 0 0 1 0 1 1 1 1 1

[44] 15 2 0 1 0 1 1 2 0 1 1 1 1 1

[45] 16 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 3. Primers obtained from the work of Ji et al. [44] with single, double, and triple contiguous mismatches.

Primers Mismatches Tref. (°C) TMM (°C)

N1-B1c GT 73.9 80.6

N2-B1c TT/CT 69.0 66.6

ORFlab-1-F1c GT/TT 71.0 70.1

N2-F1c GT/CT/TT 75.6 79.9

While most primers had large coverages, an important
amount of primers failed to achieve significant coverage
for at least one variant, and may represent a potential
dropout. A summary of the amount of primers that could
potentially represent dropouts is provided in Table 2.
Here, we have considered a very stringent threshold of 5%
at ∆Tlim = 5°C, that is, primers where even considering a
maximal 5°C melting temperature below the reference
temperature covered less than 5% of the available
genomes for a given variant. Only the set proposed by
Alekseenko et al. [37] had no potential dropout primers at
all. The complete list of potential dropout primers for each
variant is shown in Tables S56-S67.

Mismatched pairs in 5' or 3' terminals of FIP and BIP
primers may hamper the amplification by Bst DNA
polymerase. However, we found a few alignments with
either 5' and 3' terminal mismatches to have a
hybridisation temperature within the threshold and
contribute to the increase in the coverage when
mismatches are taken into account. Clearly, in some cases,
mismatches in both terminals reduced the temperature.
An interesting case was found for four primers from the
work of Ji et al. [44], which showed single, double, and
triple contiguous mismatches at the 3’ terminal (Table 3).
We observed that only the double mismatched pair cases

decreased the temperature. On the other hand, the single
and triple mismatched pairs increased the temperature.
Perhaps, due to the GT mismatched pair has been
reported as a strong pair [2, 11, 62, 63]. FIP and BIP
primers with terminal mismatches that had an increase in
their coverage are shown in Tables S68-S79 for each
genome set. It should be noted that FIP and BIP primers
were divided into F1c/F2 and B1c/B2, respectively, and as
such treated individually. With respect to the LAMP
technique, the F1c and B1c depend on their respective F2
and B2 complements, and the dropout may in practice be
higher.

CONCLUSION

In this work, we have evaluated the coverage of 18 RT-
LAMP primer sets considering single, double, and triple
mismatches in primer-target hybridisation to SARS-CoV-2
variants. In general, the average coverage of these primer
sets decreased for the new variants, when compared to
the wild-type strain. Overall, the coverage was lowest for
the Omicron and BA.3 variants. However, a clear
monotonic decrease in the coverage was not observed;
instead, for some variants, the coverage increased when
compared to its putative predecessor, as exemplified most
notably by the Mu variant, which showed one of the
highest coverages. Coverage uniformly increased if
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mismatches were taken into account, while not enough to
completely compensate for the loss in comparison to the
wild-type strain, as is shifted the worst case from 84% to
88%. Similarly, the number of potential dropout primers
increased with each new variant, and only one out of 18
sets showed no potential primer drop-out. We suggest the
use of the methodology described here to continuously
evaluate the effectiveness of RT-LAMP primer as new
variants emerge. Furthermore, our method can be applied
to the detection of other infectious diseases.

LIST OF ABBREVIATIONS

α = Alpha

β = Beta

γ = Gamma

δ = Delta

λ = Lambda

µ = Mu

o = Omicron

b2 = BA.2

b3 = BA.3

b4 = BA.4

b5 = BA.5
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