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Background
Schistosoma mansoni, S. haematobium, and 5. japoni-
cesn (Platyhelminthes: Trematoda) are the main causa-
tive agents of human schistosomiasis, a neglected
tropical disease that is endemic in 77 countries where
more than 237 million people require preventive chemo-
therapy and other 779 million live in areas of risk of in-
fection [1-4]. The genomes of these parasites have been
recently published providing insights into parasite’s
development, infection, and host-parasite interactions
[5-7]. However, even with the progress made over the
last years, schistosomiasis control depends primarily on
the treatment of infected patients with Praziquantel®™,
the only drug available for mass treatment (e.g. [5,8,9]).
Drawbacks of this drug are that it does not prevent
against reinfection and its effectiveness varies depending
on several factors such as the parasite’s gender, develop-
mental stage, and the time of infection. Furthermore,
Praziquantel®-resistant parasites have been found both
in the laboratory and in the field, thus increasing the ur-
gent need for new effective drugs and vaccines [10-13].
Schistosorma mansoni infects 7.1 million people in
America, 95% of which in Brazil, and 54 million people
in Sub-Saharan Africa causing intestinal and hepatosple-
nic schistosomiasis [14,15]. The S. mansoni genome se-
quencing data was published in 2009 and a new version
was recently released [5,16]. The improved genome has
3645 megabases (Mb) assembled in 885 scaffolds,
half of which are represented in scaffolds greater than
2 kilobases [16]. A total of 10,852 genes were identified,
encoding over 11,000 proteins, 45% of which remain
without known or predicted function [5,16,17]. 81% of
the genome was assembled onto the parasite’s chromo-
somes, providing a partial genetic map [16,18]. The
availability of genomic data offers new opportunities
for innovation in the control of schistosomiasis, by pro-
viding information that allows for the identification of
novel drug targets and vaccine candidates through a
system-wide perspective [5,19,20].

Making accurate functional predictions for genes or
proteins is a key step in every genome sequencing pro-
ject. However, on average, 30 to 50% of the predicted
proteome remains uncharacterized while for the
remaining set only general predictions are made. To deal
with the gap between the rapid progress in genome se-
quencing and experimental characterization of genes
and gene products, computational methods have been
developed [21-23]. Two main approaches are generally
used for functional prediction of genes and their pro-
ducts: one based on sequence similarity searches and an-
other on phylogenetic analysis.

Owing to the computational cost and complexity of
large scale phylogenetic analysis, the accurate identifica-
tion of orthology relationships remains a challenge
in comparative genomics and most of the orthology pre-
diction methods rely on similarity-based search (e.g.
BLAST [24], OrthoMCL [25], InParanoid [26]). In these
cases, functional prediction is obtained based on the
transfer of information from the most similar sequences
in the database to the gene or protein of interest (e.g.
[24]). However, several limitations are associated with
this method, mainly the lack of a straightforward rela-
tionship between sequence similarity and protein func-
tion [21,27-29]. Since this approach is fast, simple, and
can be automated to analyze thousands of genes, it has
been used frequently to predict functional products
encoded by newly sequenced genomes. Over the last
years this practice has generated systematic errors, the
extent of which is not completely known [22,27-32].

In an attempt to improve the accuracy of functional
prediction at a large scale, phylogenetic methods may be
applied [33,34]. The advantage of such methods is that
they focus on the evolutionary history of genes rather
than merely on their sequence similarity [30,35,36].
Ideally, functional transfer in the genomic context or for
specific genes/proteins should be performed only when
there is any experimental evidence for those used as
source of information. However, in databases as UniProt,
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only 3% of proteins have experimental support for their
annotations [28]. To deal with the absence of experi-
mental support for most part of the available proteomes,
transfer of functional annotation aiming to provide hints
regarding the gene/protein function needs to follow
strict requirements to avoid, as much as possible, mis-
classifications. In the last decade, the publication of a
large number of genomic and proteomic data and the
development of faster and powerful computers, new
software, and automated pipelines have allowed for the
reconstruction of phylogenetic trees of the complete set
of proteins encoded in a genome — the so called phy-
lome [37].

The phylome data may give a broad view of the evolu-
tion of an organism, since it comprises the phylogenies
of all proteins encoded in its genome [37]. Most notably,
a phylome can be used to detect specific evolutionary
scenarios, to quantify the fraction of individual phyloge-
nies whose topologies are consistent with a given hy-
pothesis, and to improve functional annotation of
proteins and biological systems [38,39]. Furthermore,
comparing genomes or proteomes through an evolution-
ary perspective may provide insights to the understand-
ing of the metabolism, physiology, pathogenicity, and
the adaptation to a particular life style of organisms. In
this context, the availability of S. mansoni genomic data
provides the opportunity to study this parasite from a
genome-wide perspective rather than from individual
gene or protein analyses.

Taking advantage of the benefits provided by a
genome-wide approach combined with an evolutionary
perspective, we reconstructed the S. mansoni phylome
with the goals of i) gaining insight into lineage-specific
evolutionary events potentially related to the parasitic
lifestyle, and ii) improving the functional annotation of
the genome/proteome.

Phylogenetic techniques used in the present work
included multiple sequence alignment [40-43] alignment
trimming [44], neighbor-joining tree building [45], evolu-
tionary model testing, and maximum likelihood analysis
[46]. The resulting phylome data contains 7,964 pro-
tein phylogenetic trees, covering the analysis of 11,763
S. mansoni proteins and their homologs in 12 other
organisms, out of which we identified evolutionary events
and homology relationships. The results provided useful
information about the parasite’s genome evolution such as
the identification of gene duplication events and expanded
protein families such as proteases, tetraspanins, fucosyl-
transferases, venom allergen-like proteins (also called as
SmVAL or SCP-like), tegumental-allergen-like proteins
(SmTAL), among others. Altogether; the results obtained
are likely to pave the way for a better understanding of the
parasite’s biology including host-parasite interactions.
This, in turn will accelerate the search for new drugs and
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vaccine directed toward the control and eradication of
schistosomiasis.

Results and discussion

Reconstruction of the S. mansoni phylome

The S. mansoni phylome reconstructed in this work was
derived from the comparative analysis of all proteins
encoded in the parasite genome (predicted proteome)
and their homologs in 12 other eukaryotic proteomes
whose genomes were completely sequenced (Table 1).
The set of selected species is particularly rich in metazo-
ans (11 species), including ten invertebrates, one tuni-
cate, and one vertebrate. One choanoflagellate, Monosiga
brevicollis, was included as outgroup of the phylogenetic
reconstruction. The metazoan species selected represent
important evolutionary innovations, e.g. the origin of the
third germ layer, the development of organs, systems,
complex patterns of communication, and the emergence
of the adaptive immune system, making this dataset set
especially suitable for addressing the evolutionary inno-
vations in S mansoni in the context of metazoan
evolution.

To perform the phylogenetic analyses, we applied an
automated pipeline similar to the one used for the
human phylome project [39]. This pipeline is illustrated
here (Figure 1). The resulting alignments, phylogenies,
and orthology predictions can be accessed at PhylomeDB
[47] (http://phylomedb.org).

Using this phylogenomic approach, we analyzed 11,763
S. mansoni proteins and obtained 7,964 phylogenetic trees
covering 70% of the parasite’s proteome. This coverage is
remarkably similar to that of other phylome data of newly
sequenced genomes such as that of the pea aphid Acyrtho-
siphon piswm (67%) [38].

The absence of trees for the remaining 3,490 proteins
is either due to a possible high degree of divergence be-
tween the S mansoni proteins and their homologs in the
other selected species, an indication of the uniqueness of
the parasite’s proteome, or it reflects the presence of
errors in gene models. Out of the 7,964 phylogenetic
trees, 3.038 (38%) correspond to trees with “seed” pro-
teins with a completely unknown function and without
any GO [48] assignment in SchistoDB [17].

Phylogeny-based orthology prediction

In order to create a complete list of orthology and
paralogy relationships among S mansoni proteins and
those encoded in the other eukaryotic proteomes
included in this work, we analyzed the parasite’s phy-
lome using a species-overlap algorithm as previously
described [39]. The comprehensive catalogue of
phylogeny-based orthology and paralogy relationships
among S. mansoni and other species was made publicly
available at PhylomeDB [47].
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Table 1 Proteomes selected for the 5. mansoni phylome reconstruction

Scientific Name UniProt Species Code' TaxID? Proteins® Source® Download
Mongsiga brevicallls MOMNEE B1824 8,170 Jal 2017-06-07
Ciona Inrestinalis CIOIN 7719 14,048 UniProt Reference Proteomeas 2011-07-09
Mematostella vectensis MEMYVE 453851 24424 UniProt Reference Proteomes 20711-07-09
Schistosoma haemarcbium SCHHA 6185 12,767 SchistoDB 2012-03-09
Schistosama mansoni SCHMA 6183 11,103 SchistolB 2012-03-09
Schistosoma japonicum SCHJA 6182 12,636 SchistoDB 2012-03-09
Caenomabditls elegans CAEEL (239 18,758 UniProt Reference Proteomes 20771-07-06
Ascaris suum ASCSU 6253 18,430 WormBase 20 2-03-09
Brugia malayi BRUMA 6279 19916 WormBase 2012-03-09
Trichinella spiralis TRISP 5334 15,878 WormBase 2012-03-09
Drosphila melanogaster LROME 7227 11,794 FlyBase 2011-09-13
Tribolium castancum TRICA 7070 16,533 BeetleBASE - HGSC 2011-12-16
Homao sapiens HUMAN 9606 20,965 UniProt Reference Proteomes 2011-07-09

1 - Code assigned to each species in the S. mansoni phylome. 2 - Taxonomic identifier at NCEI (TaxID). 3 - Number of proteins analyzed per species, 4 - Database

from which the protein data were retrieved.

Owing to the increasing rate at which new fully
sequenced genomes are released, the accumulation of gen-
omic and proteomic data has been much higher than the
rates at which genes or proteins are experimentally char-
acterized. Aiming at producing a high confidence set of
functional predictions for S mansoni proteins, we used
the evolutionary relationships as inferred from phylogen-
etic trees to obtain subsets of one-to-one (single homolog
in 8. mansoni and in other species) homology relation-
ships among S. mansoni proteins and the homologs from
other species included in the present study (Figure 2).

By using such phylogeny-based approach, we trans-
ferred 10,175 functional annotations (GO terms [48]) to
3451 S mawnsoni proteins, from which 790 (7% of the
parasite’s proteome) were previously annotated as “hypo-
thetical protein”, corresponding to proteins whose func-
tion had not been predicted or experimentally tested
before (Additional file 1 Table S1). The transfer was per-
formed from each ortholog with known function in the
selected taxa to the S mansoni “seed” protein. For the
other proteins that already had any functional predic-
tion, the annotation was confirmed or improved. Conse-
quently, a “seed” protein could receive more than one
functional description. In these cases, all functional
annotations were maintained allowing the user to choose
the closest related transferred functional annotation,
those that came from model organisms, or even to cre-
ate a consensus based on all of them.

To validate the applied methodology, we retrieved
reviewed S. mansoni proteins from UniProt [49], including
experimentally confirmed ones, to evaluate the annotation
transferred by the phylogenomic approach. The functional
annotations performed by PhylomeDB correspond to
known functions in the aforementioned database (Add-
itional file 1 Table 52). Even though the BLAST search

may detect distant homologs with additional domains, our
subsequent phylogenetic reconstruction and our selection
of orthologs will select those orthologs that are likely to
have similar domain architecture, This is an additional
reason why an orthology-based annotation is preferred
over sequence similarity searches, since orthologs as com-
pared to paralogs have a higher tendency to share a simi-
lar domain architecture [50].

Although less reliable than those based on one-to-one
orthology relationships, annotation transfer based on
more complex subsets (one-to-many, many-to-one, or
many-to-many) may provide important hints to predict
the biological function of S. mansoni proteins. However,
in these cases, one or more genes are co-orthologous to
a set of genes in another genome due to lineage-specific
duplication(s) that can be associated with functional
shifts, affecting the reliability of the functional transter
[38,51]. An example of a one-to-one transfer from a
Drosophila melanogaster protein to a 8. mansoni protein
comes from the phylogenetic reconstruction of the
Phy000V14T_SCHMA (Smp_170950) protein, poten-
tially related to the glycine cleavage system, and its
homologs in the selected species (Figure 3). The analysis
of this tree resulted in six transfers of functional annota-
tion from homologous proteins to the S. mansoni “seed”
protein. The GO terms in all six functional annotations
are related to aminomethyltransferase activity and gly-
cine catabolic process providing further support for the
annotation transfer. In this example, to illustrate a case
of a one-to-one transfer, we chose the functional annota-
tion transferred from Drosophila wmelanogaster once,
according to the information available in UniProt [49],
it is one of the orthologs with known function and ex-
perimental validation. Tags for homologous sequences
with experimental validation are not available in
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PhylomeDB [47]. However, links to UniProt [49] and
other databases are provided.

To explore the benefits offered by comparative genom-
ics in order to improve functional annotation of genes
and gene products, it is also necessary to consider the
limitations involved in this approach. Although it is gen-
erally accepted that functional annotation through
orthology, rather than just homology relationship, con-
stitutes one of the most promising annotation
approaches, these surveys are designed to provide pre-
dictions regarding the likely protein function, but it does
not substitute experimental confirmation [36,52]. Func-
tional diversity is often associated with significant diver-
gence at the sequence level, but high levels of identity
do not ensure that two or more proteins perform the
same function, since subtle changes in active sites are
able to completely change the protein function [53].

As we previously mentioned, evolutionary analysis in-
volving fully sequenced genomes/proteomes remains a
challenge. Although the tools here applied were not ori-
ginally designed for large scale phylogenetic analysis, we
adapted them to work on a large scale, since we strongly
believe that a system-wide perspective on evolutionary
processes can greatly improve the understanding on how
genomes came to be and what evolutionary process took
them there. Functional prediction as described in the
present work could be used as a starting point for future
projects, prioritizing the selection of certain genes or
proteins for new experimental studies.

Detection of gene duplications in S. manseni

An additional advantage of the phylogeny-based ap-
proach is that it readily provides a collection of gene
evolutionary histories that can be mined for particular
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muscles, calcium propagation in the gut, gap junction-
mediated oocyte, and sensory neuron identity [89].

In summary, we identified that approximately 45%
of the S mansoni predicted proteins that were cov-
ered by this phylogenomic analysis have, at least, one
paralog encoded in the parasite genome that might
have arisen by gene duplication events that occuwrred
after its divergence from other selected taxa (Add-
itional file 1 Table 53). In other eukaryotic genomes
this value ranges from 30 and 65% [90|, whereas in
C. elegans this value is equal to 49% [91].

Altogether, the present results indicate that besides the
exploitation of host endocrine and immune signals, the
parasite genome exhibit multiple events of gene duplica-
tion which may be, at least partially, an adaptive response
related to the parasitic lifestyle. These expansions prob-
ably reflect the intriguing complexity of evolutionary
events that happened over time, resulting in important
characteristics in schistosome’s biology with conse-
quences to the disease it causes. Taking into account the
host environment and the selective forces that it imposes
to a parasite, the phylogeny of host(s) and parasite(s) are
probably closely related, once this coevolution will be re-
sponsible for the continuity or elimination of such an
interaction. Nonetheless, previous empirical experiments
involving schistosomes and the intermediate host provide
further support to suggest the potential for host-
schistosome coevolution [92].

In this context, it is important to analyze the evolu-
tionary history of protein families during screening for
potential targets for drug and vaccine development. In-
corporating the evolutionary perspective in drug develop-
ment studies can improve our understanding regarding
drug resistance and effectiveness, as well as to guide new
strategies of drug discovery. Gene duplication events as
well as adaptive evolution should be considered during
this process, since an anti-parasitic drug could bind a sin-
gle protein or in all proteins encoded by a multi-gene fam-
ily [93]. As a consequence, therapies which target a subset
of genes that arose by duplication may not be effective at
low doses. To solve this problem, the drug’s effectiveness
can be increased when a single-copy gene is targeted and
its function is inactivated causing complete perturbation
of a vital pathway [93,94].

Conclusions

Through a systemic approach, we may accelerate the ad-
vance towards the understanding of schistosomiasis, its
etiologic agents, and host-parasite interactions, optimiz-
ing the discovery of therapeutic targets to the develop-
ment of new drugs and vaccines. Besides promoting a
significant improvement in the functional annotation of
the S mansoni predicted proteome, our approach pro-
vided relevant information about the parasite’s genome
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evolution such as the identification of gene duplication
events and expanded protein families, supplying import-
ant information regarding the mechanisms involved in
Schistosoma's genome evolution. Among the parasite
paralog groups, we identified proteases, tetraspanins,
fucosyltransferases, venom allergen-like proteins (also
called as SmVAL or SCP-like), and tegumental-allergen-
like proteins (SmTAL) that may be related to morpho-
logical or physiological specificities of this parasite. In
addition, we strongly believe that the 5 mansoni phy-
lome data will pave the way for other, more detailed ana-
lysis, such as those that have been already performed on
expanded peptidases families [65].

One of the remaining challenges is to understand
which evasion strategies enable this parasite to survive
for years in a potentially hostile environment, protected
from the host immune system action and/or actively
making the host response ineffective. Different mechan-
isms may be involved in these processes, including the
generation of variant proteins by expression of micro-
exon genes (MEG), which have been pointed as a poten-
tial strategy [94], and small non-coding RNAs which
perform many essential regulatory functions [95].

Insights obtained through this phylogenomic approach
will help us to guide forward genetic approaches to bet-
ter understand the host-pathogen relationships toward
to the elucidation of novel drug targets and vaccine can-
didates urgently needed to reduce the morbidity and
mortality caused by schistosomiasis worldwide. Continu-
ing this work, a comparative analysis involving genomic,
transcriptomic, and proteomic data from other helminth
species as Taenia soliwm, Echinococcus multiloculares,
Echinococcits granudosis, Fasciola hepatica, other para-
sites, and vectors will provide valuable information from
a system-wide perspective of a broad range of organisms,
improving our understanding regarding the parasitic
lifestyle.

Methods

Organisms and sequence data

Predicted proteomes from 13 fully sequenced eukaryotic
genomes were downloaded from JGI Genome Projects,
SchistoDB, Quest For Orthologs, WormBase, Beetle-
BASE, and FlyBase (Table 1). The taxon sampling was
selected according to the availability of the predicted
proteomes and based on the phylogenetic position of
each species. The comprehensive taxa selected cover im-
portant evolutionary innovations making this dataset set
especially suitable for addressing the evolutionary inno-
vations in schistosomes in the context of metazoan evo-
lution. Model organisms were also included to provide
functional annotations that could be potentially trans-
ferred to S. mansoni homologous proteins.
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