Violacein Extracted from Chromobacterium violaceum Inhibits Plasmodium Growth In Vitro and In Vivo

Stefanie C. P. Lopes,1,2 Yara C. Blanco,1,2 Giselle Z. Justo,3 Paulo A. Nogueira,4† Francisco L. S. Rodrigues,4 Uta Goelnitz,5 Gerhard Wunderlich,5 Gustavo Facchini,6 Marcelo Brocchi,1 Nelson Duran,7 and Fabio T. M. Costa1,2,*

Department de Microbiologia e Imunologia, Instituto de Biologia, IB, Universidade Estadual de Campinas, UNICAMP, P.O. Box 6109, 13083-970 Campinas, SP, Brazil; Departamento de Parasiologia, IB, UNIVERSITÀ, P.O. Box 6109, 13083-970 Campinas, SP, Brazil; Departamento de Bioquímica, Universidade Federal de São Paulo, UNIFESP, Rua 3 de Maio 100, 04044-020 São Paulo, SP, Brazil; IPEPATRO/CEPEM, BR 364, KM 4.5, 78090-970 Porto Velho, RO, Brazil; Departamento de Parasiologia, ICB-2, Universidade de São Paulo, USP, São Paulo, SP, Brazil; Departamento de Fisiologia e Biofísica, IB, UNICAMP, P.O. Box 6109, 13083-970 Campinas, SP, Brazil; and Instituto de Química, Laboratório de Química Biológica, IQ, UNICAMP, C.P. 6154, 13083-970 Campinas, SP, Brazil

Received 27 May 2008/Returned for modification 30 August 2008/Accepted 24 February 2009

Violacein is a violet pigment extracted from the gram-negative bacterium Chromobacterium violaceum. It presents bactericidal, tumoricidal, trypanocidal, and antileishmanial activities. We show that micromolar concentrations efficiently killed chloroquine-sensitive and -resistant Plasmodium falciparum strains in vitro; inhibited parasitemia in vivo, even after parasite establishment; and protected Plasmodium chabaudi chabaudi-infected mice from a lethal challenge.

Violacein is a violet pigment isolated from Chromobacterium violaceum, a gram-negative betaproteobacterium found in the Amazon River in Brazil. It has been reported to kill bacteria (4) and induces apoptosis in various types of cancer cells (1, 5, 7, 8, 10, 11). Moderate activity against Trypanosoma cruzi and Leishmania amazonensis promastigotes has also been observed (3, 9). Due to the widespread presence of drug resistance in the malaria parasite, resulting in dramatically decreased efficacy of available antimalarial drugs (15), and the fact that immunoprotection achieved by the most successful malaria vaccine is only partial and short-lived (14), we evaluated the in vitro and in vivo effects of violacein on human and murine blood stage forms of Plasmodium parasites.

Isolation and purification of violacein, 3-[1,2-dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ylideno]-1,3-dihydro-2H-indol-2-one (Fig. 1), from C. violaceum (CCT3496) were performed as previously described (12). Toxicity was measured as the concentration-dependent lysis of normal erythrocytes (NE) by counting red blood cells per milliliter with the aid of a Neubauer chamber. After 48 h of exposure to various concentrations of violacein, the percent red blood cell density (RBCD) relative to that of the control (without violacein) was monitored and calculated according to the formula (RBCD per milliliter in the presence of violacein/RBDC per milliliter without violacein) × 100. As shown in Fig. 2A, a slight reduction in the RBDC percentage at violacein concentrations of 100. As shown in Fig. 2A, a slight reduction in the RBDC percentage at violacein concentrations of 0.06 μM completely abrogated parasite viability at concentrations of >1.0 μM (Fig. 2B). The IC50 of violacein against P. falciparum strain 3D7 was calculated as 0.85 ± 0.11 μM. We then tested whether the effect of violacein was directed against young (rings, 0 to 24 h) or mature (trophozoites and schizonts, 24 to 48 h) blood forms by using synchronized parasites (± 6 h) obtained by repeated 5% sorbitol treatment as previously described (6). After a 24-h incubation, violacein inhibited parasite development even at the lowest tested concentration of 0.06 μM and completely abrogated parasite viability at concentrations of >1.0 μM (Fig. 2B).

Next, we performed dose-response assays to obtain the 50% inhibitory concentrations (IC50s) of violacein against erythrocytes infected with chloroquine-sensitive or -resistant strains of P. falciparum (3D7 [16] or S20 [2], respectively) at 1% parasitemia and a 2% final hematocrit. We used [3H]hypoxanthine (Amersham Biosciences, Amersham, United Kingdom) incorporation to assess parasite growth according to a protocol described elsewhere (13). Violacein was tested in triplicate at least three times with different batches and cells, and parasite growth was compared to that in nontreated infected erythrocytes (IE), which represented 100% parasite growth. Percent parasite growth inhibition was calculated according to the formula [1 − (cpm of treated IE − cpm of NE/cpm of nontreated IE − cpm of NE)] × 100. After a 48-h incubation, violacein inhibited parasite development even at the lowest tested concentration of 0.06 μM.

Violacein is a violet pigment isolated from Chromobacterium violaceum, a gram-negative betaproteobacterium found in the Amazon River in Brazil. It has been reported to kill bacteria (4) and induces apoptosis in various types of cancer cells (1, 5, 7, 8, 10, 11). Moderate activity against Trypanosoma cruzi and Leishmania amazonensis promastigotes has also been observed (3, 9). Due to the widespread presence of drug resistance in the malaria parasite, resulting in dramatically decreased efficacy of available antimalarial drugs (15), and the fact that immunoprotection achieved by the most successful malaria vaccine is only partial and short-lived (14), we evaluated the in vitro and in vivo effects of violacein on human and murine blood stage forms of Plasmodium parasites.

Isolation and purification of violacein, 3-[1,2-dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ylideno]-1,3-dihydro-2H-indol-2-one (Fig. 1), from C. violaceum (CCT3496) were performed as previously described (12). Toxicity was measured as the concentration-dependent lysis of normal erythrocytes (NE) by counting red blood cells per milliliter with the aid of a Neubauer chamber. After 48 h of exposure to various concentrations of violacein, the percent red blood cell density (RBDC) relative to that of the control (without violacein) was monitored and calculated according to the formula (RBDC per milliliter in the presence of violacein/RBDC per milliliter without violacein) × 100. As shown in Fig. 2A, a slight reduction in the RBDC percentage at violacein concentrations of 0.06 μM completely abrogated parasite viability at concentrations of >1.0 μM (Fig. 2B).

The IC50 of violacein against P. falciparum strain 3D7 was calculated as 0.85 ± 0.11 μM. We then tested whether the effect of violacein was directed against young (rings, 0 to 24 h) or mature (trophozoites and schizonts, 24 to 48 h) blood forms by using synchronized parasites (± 6 h) obtained by repeated 5% sorbitol treatment as previously described (6). After a 24-h incubation, violacein inhibited parasite development even at the lowest tested concentration of 0.06 μM and completely abrogated parasite viability at concentrations of >1.0 μM (Fig. 2B).
We then investigated whether violacein antimalarial activity could be sustained in a mouse model, where other characteristics such as bioavailability and pharmacokinetics have to be taken into account. For the in vivo assays, C57BL/6 mice (7 to 10 mice per group, aged 7 to 10 weeks, and with a body weight of 20 ± 3 g) were infected with a nonlethal (AS) or a lethal (AJ) strain of *Plasmodium chabaudi chabaudi* by intraperitoneal (i.p.) injection with 10⁶ IE. Parasitemia levels were determined daily by counting the IE among at least 1,000 erythrocytes in Giemsa-stained blood smears. As shown in Fig. 3A, daily administration of violacein i.p. for 11 consecutive days (0 to 10 days postinfection [p.i.]) reduced the parasitemia of *P. chabaudi chabaudi* AS-infected mice. Thirty-nine percent inhibition was observed on day 7 p.i. (parasitemia peak), in comparison to nontreated mice (control; Table 1), even at a low dose of 0.75 mg/kg/day. Moreover, the two highest doses of violacein (3.75 and 7.5 mg/kg/day) almost completely abolished parasitemia on day 7 p.i., corresponding, respectively, to 82 and 87% inhibition of parasite development (Table 1). In addition, violacein doses of 0.75 to 7.5 mg/kg/day were able to inhibit the peak parasitemia in a dose-dependent manner (Table 1).

Since violacein did not completely abrogate parasitemia early in infection and drug pressure was removed by day 10 p.i., we monitored the parasitemia levels of *P. chabaudi chabaudi* AS-infected mice treated with the highest dose of violacein daily until day 22 p.i. Notably, on day 16 p.i., which represents the sixth day after the end of violacein treatment, parasite development was still significantly (Mann-Whitney U test, *P* <
0.05) inhibited (up to 59%; Fig. 3B). To verify whether violacein had an effect on parasite growth after the establishment of infection, *P. chabaudi chabaudi* AS-infected mice received violacein from day 5 (16% parasitemia) to day 10 p.i. This can reflect the time point when malaria therapy is given to patients. As shown in Fig. 3C, violacein administration during patent parasitemia was able to reduce parasite growth significantly (Mann-Whitney U test, *P* < 0.01), by up to 50.1%, in comparison to untreated infected mice. This result suggests that violacein has a protective effect during the patent phase of the infection.

TABLE 1. Inhibition of parasitemia in *P. chabaudi chabaudi* AS-infected mice under violacein treatment

<table>
<thead>
<tr>
<th>Violacein dose (mg/kg/day)</th>
<th>Mean % inhibition ± SD (P value)</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>56.48 ± 12.84 (0.005)</td>
<td>75.40 ± 5.17 (<0.005)</td>
<td>86.90 ± 3.53 (<0.005)</td>
<td>84.67 ± 5.43 (<0.005)</td>
<td></td>
</tr>
<tr>
<td>3.75</td>
<td>33.23 ± 14.72 (NS)</td>
<td>64.89 ± 8.00 (<0.005)</td>
<td>82.12 ± 4.33 (<0.005)</td>
<td>75.73 ± 13.93 (<0.005)</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>3.58 ± 33.80 (NS)</td>
<td>20.42 ± 36.30 (NS)</td>
<td>39.25 ± 14.15 (<0.05)</td>
<td>48.85 ± 15.08 (NS)</td>
<td></td>
</tr>
<tr>
<td>0.075</td>
<td>NI (ND)</td>
<td>NI (ND)</td>
<td>NI (ND)</td>
<td>12.04 ± 6.11 (NS)</td>
<td></td>
</tr>
</tbody>
</table>

a The data shown are percentages of the parasitemia of nontreated mice, which was defined as 100%. Values for groups of 7 to 10 mice are shown.

b NS, not statistically significant.

c NI, no inhibition.

d ND, not determined.
ison to nontreated animals on the seventh day of infection. Next, to determine the protective effect of violacein, mice were infected with the lethal AJ strain of *P. chabaudi chabaudi* and their survival rate was evaluated. As shown in Fig. 3D, 100% of the nontreated mice died by day 10 p.i., with 50% of the deaths occurring early on day 7 p.i. In contrast, animals treated with violacein at 7.5 mg/kg/day did not succumb to infection until days 9 (10%) and 14 (10%) p.i., reaching 80% survival on day 16; clearly demonstrating the significant (log rank test, *P* < 0.0001) protective effect of violacein.

This study demonstrates for the first time the antimalarial activity of violacein by showing inhibition of the growth of human- and mouse-derived *Plasmodium* parasites. Also, violacein was effective against young and mature forms of the human parasite and its activity extended to chloroquine-sensitive and -resistant strains of *P. falciparum*. Our data call for new formulations based on violacein nanoparticles to improve solubility, bioavailability, and activity and to decrease drug toxicity.

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grant 2004/00638-6) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grant 470587/2006-7). S.C.P.L. and Y.C.B. were supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and U.G. and G.F. were sponsored by FAPESP and CNPq fellowships, respectively. F.T.M.C., M.B., and G.W. are CNPq fellows.

We thank Hernando Del Portillo (Department of Parasitology, ICB, USP, São Paulo, SP, Brazil) for kindly providing *P. chabaudi chabaudi* strains AS and AJ, respectively, and Lindsay Ann Pirrit for revising the English. Many thanks to Carmen L. Lopes and Zeci S. Costa (in memoriam).

REFERENCES

