Molecular Epidemiology of HIV-1 in Venezuela: High Prevalence of HIV-1 Subtype B and Identification of a B/F Recombinant Infection

*Department of Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil; †Non Governmental Organization, CRIATEII, Porlamar, Margarita Island, Venezuela; ‡Immunology Institute, Central University of Venezuela, Caracas, Venezuela; §STDs and AIDS Program, State Hospital “Luis Ortega,” Porlamar, Margarita Island, Venezuela; and /H20648 Department of Health Information, CICT, FIOCRUZ, Rio de Janeiro, Brazil

Summary: The authors assessed HIV-1 variability in two distinct areas of Venezuela (the capital Caracas and Margarita Island) through the analysis of blood specimens and clinical and epidemiologic data of 72 persons. Proviral DNA was evaluated through heteroduplex mobility assay (HMA) based on the envelope region. Additionally, FOK I restriction enzyme digestion assay was performed in all subtype B ED31/33 amplified products to check the presence of the typical Brazilian subtype B GWGR variant. Sequencing and phylogenetic analysis for C2-V3 region of gp120 was performed in selected cases. The vast majority of samples were found to belong to subtype B, with a North American/European RFLP profile. An F subtype HIV-1 based on the env region was identified for the first time in Venezuela. Genetic analyses of the protease and reverse transcriptase fragments of this sample depicted a recombinant B/F genetic profile. The discrimination capacity of HIV-1 subtypes using the primer set ED3/14-ED31/33 among the Caracas samples was found to be higher than for those from Margarita Island. The authors’ results point to relevant differences between the samples of continental and Caribbean regions of Venezuela, requiring further evaluation of larger samples. **Key Words:** HIV-1 diversity in Venezuela—B/F recombinant virus in Venezuela—Molecular epidemiology—Heteroduplex mobility assay—Non-B HIV-1 subtypes in Latin America.

Since the beginning of the AIDS epidemic, HIV-1 polymorphism has been an important issue for HIV/AIDS researchers worldwide. As a consequence of this effort to monitor HIV-1 diversity, 24 major genetic forms, including 9 distinct subtypes (A–D, F, G, H, J, and K) and 14 circulating recombinant forms (CRFs; CRF01_AE, CRF02_AG, CRF03_AB, CRF04_cpx, CRF05_DF, CRF06_cpx, CRF07_BC, CRF08_BC, CRF09_?, CRF10_CD, CRF11_cpx, CRF12_BF, CRF13_cpx, and CRF14_BG), have already been reported for the major group (1–3).

Data from South American countries are also included in such studies, showing predominantly the presence of...
subtype B. Briefly, subtypes B, C, D, variant B’’ from subtype B, and the recombinant B/F and B/C forms have been identified in Brazil (4–13). Reports from other countries of the region have shown the existence of subtypes B, C, F, and the recombinant B/F form in Argentina (14,15); subtypes B and E in Uruguay (16,17); subtypes B and F in Bolivia (18); and subtype B in Colombia (19), Paraguay (20), Honduras (21), and Mexico (22). In addition to subtype B in Chile, a single case of subtype A infection has been reported (23). Venezuela’s earliest research on HIV-1 polymorphism verified the presence of subtype B in a small number of samples (24,25) and, more recently, the occurrence of an F/B protease/reverse transcriptase recombinant strain in 1 person participating in an UNAIDS study (26).

We conducted a survey to analyze HIV-1 variability and epidemiologic characteristics of infected persons from Caracas and Margarita Island, the two localities with the highest morbidity rates for AIDS in Venezuela (27). This study also represents the first contribution toward the establishment of the Venezuelan National Program on HIV-1 Surveillance of Molecular Variability.

METHODS

Patients and Methods

The recruitment of patients and the collection of biologic samples were carried out from June 1998 to October 1999. Two independent convenience samples of outpatients were enrolled in the study: one from Margarita Island (STDs Department of the State Hospital), and a second from Caracas (Retrovirus Reference Center of the Institute of Immunology). Only confirmed HIV-1–infected (by Western blot or immunofluorescence) patients were included in the study.

This study included 72 HIV-1–infected patients, 22 from Margarita Island and 50 from Caracas. The Caracas sample was a pool of persons living in 12 of the 23 states of the country seeking specialized care in the reference center, located in the capital. All volunteers answered a questionnaire addressing sociodemographic and behavioral data, signed informed consent, and allowed the peripheral extraction of 5 mL of whole blood.

HIV-1 Subtype Characterization

Five milliliters of ethylenediamine tetraacetic (EDTA) anticoagulated blood were obtained from each patient. The plasma was collected, and the remaining white cell layer (2–3 mL) was resuspended in 0.5% Saponia/0.4% NaCl (vol/vol), thoroughly vortexed, centrifuged (400g for 5 minutes at room temperature), and washed twice with phosphate-buffered saline (PBS) by centrifugation in the same conditions. Resulting pellets were stored at −20°C until proviral DNA extraction at FIOCRUZ, Brazil. Proviral DNA was extracted by the proteinase K-SD5/pheno/chloroform method as previously described (4).

A nested polymerase chain reaction (PCR) protocol was used to amplify the gp120 C2-C3 (ED31-ED33 primer set) using ED3-ED14 as outer primers (28,29). DNA samples that did not give amplified products using this protocol were amplified with other primer sets like ED5-ED12, ES7-ES8, or other combinations between them, according to the algorithm shown in Figure 1. PCR-negative samples for the env region primers were further analyzed with a multiplex PCR protocol (30), with modified env primers (ED5-ED12 [outer]/ED31-ED33 [inner] primers, in substitution of those described in the original reference), to check the positivity to HIV genome.
HIV-1 subtyping was determined by env heteroduplex mobility assay (HMA) (28,29,31) using PCR amplified reference plasmids of HIV-1 subtypes B–F, or A–H in doubtful cases. The NIH AIDS Research and Reference Reagent Program provided the HMA HIV-1 env subtyping kit. In order to identify B’ and GWGR subtype B samples, 5 μL of ED31/ED33 PCR products were further digested with 6 U of Fok I restriction enzyme (11).

Sequencing of PCR Products

A sample of 5 μL of the C2-V3 ED31/ED33 PCR reaction was submitted to enzymatic treatment with 1 μL of shrimp alkaline phosphatase (10 U/μL) and 1 μL of exonuclease I (2 U/μL) hydrolytic enzymes according to the manufacturer’s protocol and directly sequenced using the dye-deoxy chain termination method kit (DNA sequencer model 377, Applied Biosystems, Foster City, CA, U.S.A.), using the Big Dye Terminator kit (Applied Biosystems, Foster City, CA, U.S.A.). The PCR products were sequenced in both senses with ED31, ED33, and ES7 oligonucleotides as sequencing primers. Alignment of multiple nucleotide and predicted amino acid sequences was performed with the Wisconsin Genetic Computer Group (GCC) package. The subtype F env sample identified in the current study was further sequenced in the protease and reverse transcriptase (RT) regions using, respectively, DP10/DP11 (outer)/DP16/DP17 (inner) protease primer sets (12) and RT9/RT12 (outer)/RT1/RT4 (inner) RT primer sets (32) to complement its analyses. Phylogenetic analysis was done using the CLUSTAL W software (33). Phylogenetic tree constructions were performed using the neighbor-joining method, and the reliability of the branching orders was determined by the 100 times bootstrap method. The final trees were visualized using the Tree View program (34). The intrasubtype distances were calculated using the Kimura two-parameter with pairwise gap deletion based on the MEGA program (35). GenBank accession numbers for HIV-1 env sequences from Margarita Island and Caracas, Venezuela are assigned from AF467716 to AF467725 (Accession numbers for 99VenC13 protease and RT sequences are, respectively, AF467727 and AF 467726.).

Statistical Analysis

The χ² or Fisher exact test was employed to evaluate possible associations, and a p level of < .05 was defined as statistically significant.

RESULTS

Caracas and Margarita Island samples were substantially different in sociodemographic information. The Caracas sample (n = 50) was composed basically of men (46 men, 4 women), while the Margarita Island sample (n = 22) had exactly the same number of men and women. Patients from Margarita Island were younger (half were aged 18–30 years), contrasting with a concentration (64%) of patients from Caracas aged 31 to 44 years. Roughly 73% of the Margarita Island patients were supposed to be infected by heterosexual transmission, while the vast majority (70%) of patients from Caracas were gay men. CD4 counts were roughly comparable in patients from these two cities (data not shown).

DNA Amplification and HIV Subtyping

With the primer sets ED3/14-ED31/33 we could amplify 60% DNA products from the Margarita Island samples and 82% of the Caracas samples, respectively. The remaining DNA products were analyzed with other primer sets according to the algorithm presented in Figure 1. There was no correlation between primer sets ED3/14-ED31/33 amplification capacity with either exposure category or CD4+ counts in the two samples. A significantly (p = .038) higher discrimination capacity of primer sets ED3/14-ED31/33 was found for the Caracas samples, if compared with the Margarita Island samples, pointing to a higher intrasubtype B variability in the samples of Margarita Island vis-à-vis the samples from the continent, possibly due to the close link of the Island with the Caribbean subepidemic.

Three cases (99VenM1, 99VenC17, and 99VenC30) failed all PCR attempts of amplification. We repeated the blood screening with new samples obtained from 2 of these patients (99VenM1 and 99VenC17), and again we failed to amplify proviral DNA. Viral load (Nuclisens NASBA Diagnostics HIV-1 RNA QT) in these patients were 700 copies/mL and 14,000 copies/mL for 99VenM1 and 99VenC17, respectively, and their CD4+ counts were >350 cells/mL. Both patients remained asymptomatic during the period they were followed (1998–1999) and did not receive any kind of antiretroviral drugs in this period. As PCR sensitivity in our study could successfully amplify from >20 copies of proviral DNA, we tried alternative sources of genomie material, obtaining cDNA from the plasmatic RNA retrotranscription. In these 2 cases, amplification was carried out with a multiplex PCR directed to viral env, gag, and pol genes, and a positive band for gag gene was observed only for the sample of patient 99VenC17 (data not shown).

We identified the subtype B HMA profile of HIV-1 in 20 (90.9%) of the Margarita Island patients and in 47 (94.0%) of the Caracas study group. One patient in the Caracas sample (99VenC13) showed the subtype F migration pattern. He was a 34-year-old gay man, with advanced immunosuppression (CD4+ counts of 122 cells/mm³). He was presumably infected between 1994 and 1996, when traveling abroad. HMA result was indeterminate for one sample (99VenM11) from the Margarita sample, which was further selected for DNA sequencing.
According to the FOK I RFLP, none of the subtype B virus described in this study exhibited the typical GWGR subtype B profile in the V3 loop.

A subset of 11 samples, including the indeterminate HIV-1 subtype from the Margarita Island group (99VenM11), the subtype F env sample (99VenC13) from the Caracas group, and 9 subtype B samples, was selected for the C2-V3 env sequencing (Fig. 2A). The phylogenetic tree confirms that sample 99VenC13 does cluster within the F clade in the C2-V3 env region with a high bootstrap value. CRF-12 B/F reference samples (36) from Argentina (ARMA 185 and ARMA 159) were included in this analysis and also clustered within the subtype F branches. However, sample V62, a B/F recombinant virus previously described from Venezuela (26), clustered with the subtype B references in the env C2-V3 region. The remaining samples from Caracas and Margarita Island clustered into the B subtype with a bootstrap value of 70%, reflecting a higher interpatient diversity in this group. Indeed, no specific clustering could be detected for the HIV-1 samples from Venezuela, which were interspersed in branches of subtype B reference samples from other South American countries and from the United States. Moreover, pairwise distance among the subtype B specimens was, on average, 18.7% at the nucleotide level.

Additional phylogenetic analysis of env subtype F sample 99VenC13 in the protease and RT regions (Fig. 2B, C) revealed a mosaic genome clustering with subtype F references in the protease region, whereas for the RT fragment, this sample clustered in a separated branch with the two CRF-12 B/F ARMA 185 and ARMA 159 references with high bootstrap value (95%), indicating a recombinant profile in this fragment.

The predicted amino acid sequences of the env gp120 C2-V3 region obtained from Venezuelan HIV-1 strains are presented in Figure 3. Nine subtype B and one subtype F amino acid sequences were aligned with B and F reference sequences previously reported from other South American countries [Argentina (14), Bolivia (18), Brazil (13), and Uruguay (17)] and with one subtype F sequence from Romania (37). A broad spectrum of tetrameric amino acid sequences was observed at the crown of the V3 loop, including sequences containing the GPGRTW (99VenM11 and 99VenC28) and GPGRAF (99VenC47) motives for subtype B. The GPGRTW motif was also verified in the subtype F sequence from Venezuela, as described for other South American subtype F samples (37), distinguishing them from the Romanian subtype F viruses.

DISCUSSION

Based on env and pol (PR and RT) HMA and nucleotide sequence analyses, respectively, this study identifies the presence of a new HIV-1 B/F recombinant virus in Venezuela (isolate 99VenC13). This sample was obtained from a gay man with advanced immunosuppression who was presumably infected between 1994 and 1996 when traveling abroad. Another B/F recombinant virus was previously described in Venezuela (26), but in that case, the env and RT regions were subtyped as B, while the PR was F, thus corresponding to an Fpro/Brt/Benv mosaic genome. In the current study, however, sample 99VenC13 clustered with subtype F reference samples in both env and PR regions and with the CRF_12 B/F references (ARMA 159 and ARMA 185) in the RT, corresponding to an Fpro/Brt/Benv recombinant genome. This particular observation could be linked to the increasing description of recombinant viruses and CRFs worldwide (3), including the recent description of CRF_12 B/F and other B/F recombinant viruses in some South American countries (5,15,36,38). The relevant differences between continental and islander’s samples suggest HIV-1 variability in Venezuela should be further explored. Recent studies carried out in Argentina (39) show a wide circulation of B/F recombinant strains among different exposure categories in Buenos Aires. The signature on the top of the V3 loop of 99VenC13 (GPGRVV), associated with its clustering with sub-subtype F1 reference samples in the phylogenetic analysis, allows us to consider this subtype F strain in the F1 subgroup (40), typically observed in South American subtype F strains (4,9).

The presence of mosaic genomes highlights the need to improve subtyping protocols with the molecular analysis of at least two distinct viral regions to identify the circulation of recombinant forms and dual infection.

FIG. 2. Phylogenetic analysis of Venezuelan HIV-1 subtypes. (A) C2-V3 env sequences were compared with reference sequences of the HIV-1 group M subtypes available in the Los Alamos database, HIV-1 B and F samples from South America countries (13,14,17,18), and CRF_12 B/F representative samples (36). (B) Protease and (C) reverse transcriptase sequences of sample 99VenC13 were respectively compared with reference sequences of the HIV-1 group M subtypes available in the Los Alamos database and CRF_12 B/F representative samples (36). Sequence CPZgab was used as outgroup. Aligned fragments of 420bp (C2-V3), 300bp (protease), and 500bp (reverse transcriptase) were analyzed as described in the text, and bootstrap values for 100 replicates are listed at the major subtype branches. Venezuelan samples sequenced in this study are italicized in bold. GenBank accession numbers are specified in the Material and Methods section.
with different subtypes (41). For this purpose, an HMA env/gag protocol has been recently developed (42). In addition, today’s effort on HIV pol genotyping as a tool to document HIV-1 strains resistant to antiretroviral drugs has lead to a valuable source of data for phylogenetic analysis and subtyping worldwide (26,43).

In the B subtype samples, we found motifs GPGGAF and GPGRTW, which were never described before among Venezuelan HIV-1 B subtypes (24,25), probably reflecting the evolving molecular epidemiology of HIV-1 in Venezuela. Nevertheless, motif GPGGAF (99VenM11 and 99VenC47) in the top of the V3 loop was previously described in subtype B strains circulating in Brazil (4). Deserving special attention is the finding of the signature GPGRTW (99VenC28), which, to the best of our knowledge, was never described before for subtype B strains circulating in Latin American countries.

The Venezuelan B subtypes cluster within different geographical HIV-1 subtype B reference samples, pointing to an important diversity, especially considering the small number of B strains analyzed in this study. Alignment of the C2-V3 region with Venezuelan reference subtype B samples previously described (24,25) was not possible because of the difference of the fragment region evaluated in such samples, which provided a very small alignment extension when tested.

The study highlights the pressing need to comprehensively monitor HIV-1 molecular epidemiology in a geographic region in which the HIV/AIDS subepidemic is still rapidly spreading and becoming more complex and interactive, combining South America continental characteristics with patterns closely related to the Caribbean subepidemics.

Acknowledgments: The authors thank Natalia Sandoval from the Anticancer Society Laboratory at Margarita Island for her important support. The authors also thank Hector Bárcenas (“AIDS for AIDS”) for his invaluable help with the volunteers from Caracas.

REFERENCES

4. Morgado MG, Sabino ES, Shpaer EG, et al. V3 region polymorphism in HIV-1 from Brazil: prevalence of subtype B strains di-