Induction and modulation of the immune response to *Leishmania* by Montenegro’s skin test

Maria D. S. B. Nascimento¹, Neuzia M. Alcantara-Neves²,³, Maria Edna B. Muniz¹, Samia F. Nunes¹, Moacir Parmahos²,⁴ and Lain C. Pontes de Carvalho⁵ ¹Programa de Pesquisa e Pós-Graduação em Imunologia, Departamento de Patologia, Universidade Federal do Maranhão, 65000 São Luís, Brazil; ²Departamento de Bioagressao, ICS, Universidade Federal da Bahia, 40000 Salvador, Brazil; ³Laboratório Central do Estado da Bahia, 41945 Salvador, Brazil; ⁴Laboratório Avanço de Saúde Pública, Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, 41945 Salvador, Brazil

Abstract

The intradermal inoculation in naive or in previously sensitized individuals of small amounts of *Leishmania* extract (Montenegro’s skin test) induced or modulated, respectively, the immune response to *Leishmania*, as assessed by subsequent Montenegro’s skin tests. These phenomena could hinder the interpretation of Montenegro’s skin tests in a population already subjected to the test in the past and, in addition, could affect in an unknown way the development of mucosal lesions in people infected with *L. brasilensis* or *L. amazonensis*, since those lesions have been associated with hypersensitivity to *Leishmania* antigens. Anti- *Leishmania* antibody responses, assessed by enzyme-linked immunosorbent assay, were not induced in naive individuals by Montenegro’s skin tests, but tended to become more intense following these tests in previously sensitized individuals.

Introduction

Mucocutaneous leishmaniasis, caused in the ’New World’ by *Leishmania (Vannia) braziliensis* or *L. (Leishmania) amazonensis* (reviewed by Marsden, 1986; Barral et al., 1991), is a serious form of leishmaniasis, due to its relative refractoriness to antimonial therapy (Marsden, 1986; Franke et al., 1990) and its progressively mutilating character (reviewed by Marsden, 1986). Since mucosal lesions have been associated with hyper sensitivity to *Leishmania* antigens, either in terms of skin reactivity (Shaw & Lainson, 1975; Castes et al., 1983), or in vitro lymphoproliferative responses (Castes et al., 1984; Carvalho et al., 1985), or frequency of specific T lymphocytes in the lesion (Conceição-Silva et al., 1990), procedures that may influence the immune response to *Leishmania* in people from endemic areas should be the object of specific studies.

The elicitation of delayed type hypersensitivity by the intradermal inoculation of small amounts of *Leishmania* extracts, Montenegro’s skin test (MST), is routinely used as an aid in the diagnosis of leishmaniasis (Montenegro, 1926; Melo et al., 1977). In the present paper the possible effect of this test on the *Leishmania*-specific immune response of non-sensitized and previously sensitized individuals has been investigated.

Material and Methods

Individuals studied

These were (i) 20 individuals cured of cutaneous leishmaniasis, (ii) 5 individuals without past history of leishmaniasis, with negative MST results and with no exposure to sandfly vectors during the duration of the study, and (iii) 6 individuals without past history of leishmaniasis but with positive MSTs.

Montenegro’s skin test

Induration diameters were measured 48 h after the intradermal inoculation of 0.1 ml of leishmanin (40 µg protein nitrogen/ml) in the ventral face of the forearm. The leishmanin preparation, kindly supplied by Dr W. Mayrink (Universidade Federal de Minas Gerais, Belo Horizonte, Brazil), was prepared from a mixture of equal numbers of *L. braziliensis*, *L. amazonensis* and *L. guyanensis* promastigotes (Melo et al., 1977) and kept at 4°C before use. Skin induration borders were defined by their interference with the movement of a ball-point pen.

Three tests were performed in each individual at intervals of 2 weeks.

Enzyme-linked immunosorbent assay

This assay (ELISA) was carried out as described by Vollner et al. (1976), using microtiter plate wells sensitized with *L. chagasi* extract, sera obtained immediately before the first, and 15 d after the third, MST (diluted 1:100), and polyspecific rabbit antibodies against human immunoglobulins conjugated to peroxidase (Sigma Chemical Co., St Louis, Missouri, USA).

Statistical analysis

Variations in induration diameters < 2 mm were not taken into consideration to allow for possible measurement imprecisions. The statistical significance of the variation within groups, and of frequencies of patterns of variation among groups, was determined by the signed-rank sum test for paired observations or by Fisher’s exact probability test, as indicated in the text.

Results

Skin indurations were induced by the second and third MST in 4 of the 5 individuals in whom no skin reaction was observed after the first test (Fig. 1a). In one of them...

Address for correspondence and offprint requests: L. C. Pontes de Carvalho, Department of Pathology, New York University Medical Center, 550 First Avenue, New York, New York 10016, USA
the diameter of the induration in the third MST was smaller than that in the second.

Induration diameters in the third test were significantly smaller than in the second test \((P<0.01, \text{signed-rank sum test for paired observations})\) in the group of 20 individuals with past history of leishmaniasis (Fig. 2a and b). This was observed in 15 individuals of this group (75%), whereas in no case was the induration in the third test larger than in the second. In 2 cases there was no measurable induration after the third test, in another case the second test would usually be considered as negative (induration diameter < 5 mm; MELO et al., 1977). Two main patterns of variation in induration diameters were seen in this group, both involving reduction of the diameters and accounting for 80% of the cases: (i) reduction in induration diameters in the second and/or third tests (10 cases; Fig. 2a); (ii) increase in induration diameters in the second test and reduction in the third (6 cases; Fig. 2b). Only 2 additional patterns were observed in the group: (i) increase in induration diameters in the second and no change in the third (2 cases; Fig. 2c) and (ii) no change in any subsequent test (2 cases, Fig. 2c).

In 3 of the 6 previously sensitized individuals without past history of leishmaniasis, a pattern not seen in the group of individuals with past history of leishmaniasis was seen: a decrease in induration diameter in the second test and an increase in the third (Fig. 1b).

Anti-Leishmania antibodies

None of the 5 previously non-sensitized individuals had detectable amounts of anti-Leishmania antibodies in the serum as assessed by ELISA, either before or after the MST (data not shown). In 9 of the 19 tested individuals with past history of leishmaniasis, none of the antibody levels were significantly different after the third MST (Fig. 3b). Reductions in antibody levels were seen in only one individual. A similar increase was observed in 2 of the 6 previously sensitized individuals without past history of leishmaniasis (Fig. 3a).

Discussion

The present results demonstrate that the amount of antigen utilized in the MST, aiming at eliciting an immune reaction for diagnostic purposes, is in fact capable of inducing a new, or modifying a pre-existing, immune response to Leishmania. This would hinder the interpretation of MST results in people previously subjected to the test, not only when it is carried out for diagnostic purposes but also when used as a criterion for inclusion into vaccination or immunological studies. As a consequence, information on possible past MST should be sought from the people being tested.

There was a tendency for a reduction in skin induration diameters in the last MST. For instance, skin indurations in the third MST were smaller than in the first test in 20 of 26 previously sensitized individuals (Figs 1b, 2a and 2b), whereas they were larger in only 2 of 26 (Fig. 2c). The probability of this being due to chance is less than 0.01 (signed-rank sum test for paired observations). This finding would be compatible with a stimulation by the MST of mechanism(s) modulating a Leishmania-specific cellular reaction in previously sensitized individuals.

The possibility that the changes in induration diameters were due to a possible decrease in the antigenicity of the leishmanin preparation in the 30 d period during which it was used can be discounted because of (i) the observation of a pattern of increasing skin induration sizes, mainly at the second test in relation to the first (in 14 of the total number of 31 individuals studied) and (ii) the careful maintenance of the leishmanin preparation at 4°C, at which temperature it is stable for months.

The reduction in the cellular immune response elicited by the MST, however, was not paralleled by a similar reduction in the humoral immune response to Leishmania. If anything, this response, as assessed by ELISA, was exacerbated after the third MST in the group of individuals with past history of leishmaniasis. There was no correlation between changes in antibody levels and variations in skin reaction intensities (data not shown).

It is also of note that in 3 pre-sensitized individuals without history of leishmaniasis there was a pattern of reduction followed by increase in skin induration diameters with subsequent tests. The frequency of this pattern in this group of individuals (50%) was significantly higher than its frequency (0%) in the group of 20 individuals with cured leishmaniasis \((P=0.0077, \text{Fisher's exact probability test})\). This finding would be consistent with the data from the other groups if the 3 individuals were primarily sensitized to a cross-reactive antigen, such as those from Trypanosoma cruzi, for instance, rather than to Leishmania: a first MST would tend to suppress the cross-reactive response (as happened for the total Leishmania-specific response in individuals with cured leishmaniasis), while additional tests would stimulate a non-cross-reactive response (as occurred for
the total anti-*Leishmania* response in non-sensitized individuals.

In conclusion, the present results show that the MST is not only able to induce a localized immune reaction but also to initiate or interfere with the *Leishmania*-specific immune response. Whether this would influence the development of mucosal lesions in people living in areas endemic for *L. (V.) braziliensis* or *L. (L.) amazonensis* is open to investigation.

Acknowledgements

This investigation was supported by UNDP/World Bank/WHO-TDR

References

Conceição-Silva, F., Dória, R. C. C., Pirmez, C., Schubach, A. & Coutinho, S. G. (1990). Quantitative study of *Leishmania braziliensis braziliensis* reactive T cells in peripheral blood and in the lesions of patients with American cutaneous leishmaniasis. *Clinical and Experimental Immunology*, 79, 221-226.

Received 10 March 1992; revised 19 May 1992; accepted for publication 21 May 1992.

Announcement

London School of Hygiene and Tropical Medicine

Parasitic Diseases: Advanced Laboratory Diagnosis

6–17 September 1993

Designed for medical, technical and scientific staff, this is an intensive, laboratory-based course, interspersed with lectures and seminars, covering:

- Microscopical diagnosis of all the significant protozoan and helminth infections
- Present status of non-microscopical diagnostic methods for parasites
- Currently available immunodiagnostic tests for parasites
- New techniques for parasite immunodiagnosis
- DNA probes: selection, construction and use in parasite diagnosis
- Use of isoenzymes in parasite identification

The course fee is £975 which includes all course materials, lunches, coffee and tea as well as the course dinner. Accommodation is not included but we will be happy to arrange this in a local hotel. The cost will be approximately £280 for 13 nights (5–17 September).

Further details and application forms may be obtained from the Short Courses Officer, the Registry, London School of Hygiene and Tropical Medicine, Keppel Street, London, WCIE 7HT, UK.

Telephone: (0)1-928-20/4.

Telex: 605474.

Fax: (0)71-523 0638.