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Abstract

Background

We address some critical but unknown parameters of individuals and populations of Norway

rats (Rattus norvegicus) that influence leptospiral infection, maintenance and spirochetal

loads shed in urine, which contaminates the environment ultimately leading to human

infection.

Methodology/Principal Findings

Our study, conducted in Salvador, Brazil, established the average load of leptospires in pos-

itive kidneys to be 5.9 x 106 per mL (range 3.1-8.2 x106) genome equivalents (GEq), similar

to the 6.1 x 106 per ml (range 2.2-9.4 x106) average obtained from paired urines, with a sig-

nificant positive correlation (R2=0.78) between the two. Based on bivariate and multivariate

modeling, we found with both kidney and urine samples that leptospiral loads increased

with the age of rats (based on the index of body length to mass), MAT titer and the presence

of wounding/scars, and varied with site of capture. Some associations were modified by sex

but trends were apparent. Combining with data on the demographic properties and preva-

lence of leptospiral carriage in rat populations in Salvador, we estimated that daily leptospir-

al loads shed in the urine of a population of 82 individuals exceeded 9.1 x 1010 leptospires.

Conclusions/Significance

These factors directly influence the risk of leptospiral acquisition among humans and pro-

vide essential epidemiological information linking properties of rat populations with risk of

human infection.
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Author Summary

Leptospirosis is a human disease caused by the bacterium Leptospira. It is often acquired
through contact with water/soil contaminated with leptospires shed in the urine of rats,
the most important reservoirs in urban environment. We evaluated how location, sex, age
and other rat characteristics can influence the amount of leptospires shed into the environ-
ment. We found that rats from different locations were able to shed different concentra-
tions of leptospires. Rat populations were able to shed more than one billion leptospires
per day. The findings of this study provide information linking rat population and the risk
of human leptospirosis.

Introduction
Leptospirosis is a human disease caused by a spirochete of the genus Leptospira and is most
often acquired through contact with environments contaminated with leptospires shed in the
urine of infected reservoir mammalian hosts. Leptospirosis is a global public health problem
affecting rural and urban populations of both developed and developing nations [1–4]. The
estimated annual incidence of leptospirosis exceeds 1 million cases, with a mortality of approx-
imately 10% [5,6]. The increasing recognition of acute renal failure and pulmonary hemorrhag-
ic syndrome accompanying leptospirosis has prompted the WHO to call for increasing
surveillance to more accurately determine the global burden of leptospirosis, to increase aware-
ness of the disease in developing countries, and to improve the methods and standards of dis-
ease surveillance and control [5]. Pulmonary hemorrhagic syndrome is characterized by
massive pulmonary bleeding and acute respiratory distress, and is now reported worldwide
and associated with a case fatality of>50% [2,7,8].

In Brazil, as in other tropical developing countries, slum dwellers are at high risk for lepto-
spirosis due to limited access to health care and poor sanitary conditions within neighborhoods
[2]. Accumulations of uncollected refuse, the presence of open sewers, and the poor construc-
tion of residences create conditions conducive to supporting large populations of rats (the Nor-
way rat, Rattus norvegicus and/or the black rat, Rattus rattus), which are the primary reservoir
hosts of leptospires transmitted to humans in urban locations [9–21]. Direct contact with in-
fected rats, or contact with water and mud contaminated with Leptospira spp. shed in the urine
of rats, are the primary routes of transmission in these settings. Predictable seasonal spikes in
leptospirosis incidence in large urban centers of Brazil are associated with heavy rainfall during
the winter months [2,22,23].

Although leptospirosis is caused by many pathogenic species in the genus, the Icterohae-
morrhagiae complex causes the most severe disease and is closely associated with both Norway
rats and the black rat [20,21,24]. Herein, we restrict our comments to this leptospiral complex
and the critical role of the Norway rat in leptospiral transmission to humans, as this species is
the primary reservoir host for leptospires within Salvador, Brazil, where our work was carried
out [14,15,17].

Norway rats are frequently infected with leptospires in both tropical and temperate cities.
For example, five studies published during the period 2003–2014 report the prevalence of lep-
tospiral infection among urban rats to range between 11.1% (N = 592) in Vancouver, Canada
[18], 16% (N = 127) in Tokyo, Japan [20], 48% (N = 23) in Santa Fe, Argentina [25], 65.3%
(N = 201) in Baltimore, USA [19], and 63% to 83% (N = 226) in Salvador, Brazil [14]. However,
the methods used to determine infection varied, including combinations of PCR-based
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detection of DNA from rat kidney samples, serum antibody detection, and isolation or antigen
detection of leptospires in kidney, so direct comparison of these results is precluded.

Moreover, reports from this geographical range of leptospiral carriage among urban Nor-
way rat populations do not provide information on a critical epidemiological parameters that
directly link the load of leptospires shed in urine to the degree of environmental contamination
that ultimately determines the risk of transmission to humans. Once infected, Norway rats es-
tablish a chronic carriage state with leptospires residing within the proximal tubules of kidneys.
Norway rats are considered asymptomatic carriers, as evidence of leptospiral-induced patholo-
gy is minimal [26] and experimentally infected rats gain weight at the same rate as non-infected
controls [27]. Infected rats have the ability to shed viable leptospires in their urine throughout
their lives [26,28,29]. The few studies documenting the load of leptospires shed in the urine in-
fected Norway rats are based on experimental studies; they report loads as high as 107 genome
equivalents (GEq)/ml, as measured by quantitative PCR (qPCR) or dark field microscopy
[27,30], with peak levels of shedding being reached within 28 days.

The presence of serum antibodies does not indicate clearance of leptospires from the kidney
[21], but its potential influence on the load of leptospires shed in rat urine is unknown, Once lep-
tospires are shed into the environment, they can survive from days to months [31,32]. However,
given the inherent variability of the environment (e.g. soil type, water content, microbiome pres-
ent, pH etc.), these estimates require validation under conditions representative at field sites.

In this report we examine some of the critical, but unknown, parameters that influence the
role of individual rats (and hence rat populations) in maintaining leptospiral infection and that
contribute to the urine load of bacteria shed into the environment. Specifically, we describe how
the location, sex, age and presence of serum antibody in individual rats influence leptospiral car-
riage and urine shedding loads and how these parameter estimates, when applied to the demo-
graphic characteristics of a previously described [33] rat population in Salvador, determine the
degree of environmental contamination potentially influencing the risk of human infection.

Methods

Study sites and data collection
The study sites, data collection methods and types of samples obtained for this study have been
described previously [14,33]. Briefly, during June-August of 2010, we captured Norway rats
from five urban slum locations in Salvador, Brazil. Sites were selected based on the high annual
incidence of severe human leptospirosis reported from these communities in 2010 [14,16].
Study sites were systematically sampled by setting three to five Tomahawk live traps at each of
eight contiguous households [33]. Rats were euthanized and sex, weight and the presence of
scars (based on a five point wound score) were recorded [14]. Mass has been shown to be excel-
lent proxy for estimating rat age [33–35]. However, we also used the length to mass ratio (L/M)
as an additional proxy [36].

Blood was obtained by cardiac puncture using a 5mL syringe, and serum was recovered
after centrifugation. Urine was obtained directly from the bladder with a 1mL syringe after
which the kidneys were removed. All samples, except kidney smears on slides, were immediate-
ly stored at -80°C until tested by qPCR to determine kidney and urine loads of leptospires and
by microagglutination tests (MAT) to determine antibody titers. Sera testing positive by MAT
at screening were diluted to obtain endpoint titers.

Spiking experiments
We performed two spiking experiments, the first with water and the second using rat urine, to
assess the quality of our extraction procedures and their accuracy in quantifying leptospiral
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loads. The appropriate amount of leptospires (Leptospira interrogans serovar Copenhageni
strain Fiocruz L1-130 [37], hereafter abbreviated as strain L1-130) was spiked into 200μL of
water to achieve a final concentration of 1 x 108 leptospires/mL. The same process was per-
formed using rat urine for the second experiment. Rat urine was obtained from an uninfected
wild rat (no indication of kidney colonization by culture, and negative IFA and qPCR results
for the presence of leptospiral antigen or DNA in kidney samples). After the spiking, serial
10-fold dilutions of 1 x 107 to 1 x 100 leptospires/mL were performed, using water and urine,
for the first and second experiments respectively, as diluent. Spiking indicated a near perfect
correlation between the number of spiked leptospires and the GEq detected by qPCR assay in
urine (R2 = 0.9998) as well as water (R2 = 0.9997) (S1 Fig).

Quantitative real-time PCR of Leptospira load in kidney and urine
DNA was prepared from 25mg and 200μL of previously frozen kidney and urine, respectively,
with the automated Maxwell 16 System DNA Purification Kits (Promega Corp., Madison, WI).
Quantitative real-time PCR (qPCR) for leptospirosis was performed using 5’ nuclease (Taq-
Man) assay and primers that amplified a sequence of lipL32, a gene that is exclusively present
in pathogenic Leptospira [38]. For the calibration curve, genomic DNA obtained from strain
L1-130 [37] was quantified using an ND-1000 spectrophotometer (Nanodrop Technologies,
Wilmington, DE). Genomic equivalents were calculated based on a genome size of 4,627Mb
[37]. Eight calibrators (100 to 107 GEq/mL) were prepared upon adjustment of DNA concen-
tration to 107 GEq/reaction followed by ten-fold serial dilutions. Quantitative real-time PCR
amplifications were performed using an ABI 7500 Real-Time PCR System (Applied Biosys-
tems, Foster, CA). PCR conditions were adapted from a previously described method [38]. The
reaction mix consisted of 12.5μL of Platinum Quantitative PCR SuperMix-UDG (Invitrogen,
Carlsbad, CA), 500nM of forward and reverse primers, 100nM of probe, 5μL of DNA extract
and ultrapure water to a final volume of 25μL. The amplification protocol consisted of 2 min at
50°C and 10 min at 95°C, followed by 45 cycles of denaturation at 95°C for 15s and annealing/
extension at 60°C for 1 min. As an internal control to monitor inhibition of PCR amplification
and the efficiency of DNA extraction, we constructed primers to test the presence of a rodent
housekeeping gene glyceraldehyde-3-phophate dehydrogenase (gapdh). The primer pair and
probe were designed using Primer Express version 1.3 (Applied Biosystems). The forward
primer of GAPDH_F (5’- GGT GGA GCC AAG AGG GTC AT-3’) and GAPDH_R (5’-GGT
TCA CAC CCA TCA CAA ACA T-3’) were selected to amplify a fragment that was detected
by the probe, GAPDH_P (FAM-5’- ATC TCC GCA CCT TCT GCT GAT GCC-3’-BHQ1).
Samples were tested in duplicate, and no-template controls (5μL of ultrapure water added in-
stead of DNA) were included in each run. Samples in which replicates were detected within 40
PCR cycles were considered positives. Positive samples were Sanger sequenced to confirm the
amplification of the lipL32 gene from Leptospira species.

Microscopic agglutination test (MAT)
Using the Microscopic Agglutination Test (MAT) [39] we tested rat sera against L1-130 strain
to determine antibody titers. Positive rat sera at the screening dilutions of 1:50 and 1:100 were
titrated using two-fold dilutions to establish endpoint agglutination titers, defined as the high-
est dilution where 50% or more of the cells where agglutinated [39].

Statistical analyses
We evaluated the associations of Leptospira load in both urine and kidney with sex, sexual ma-
turity, mass, L/M ratios, MAT titer and site of capture. Leptospiral loads, as measured by GEq
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of leptospiral DNA per mg of kidney and mL of urine, were log transformed for all analyses.
We used ANOVA, applying the Bonferroni correction method [40], to evaluate the effects for
each variable on the leptospiral loads in kidney and urine. The Shapiro–Wilk test [41] con-
firmed that log GEq per ml values in both kidney and urine were log-normally distributed.
Variables associated with Leptospira load in kidney with a p<0.1 where included in multivari-
ate analysis (linear regression), and a backward elimination strategy and the Akaike informa-
tion criteria (AIC) [42] were used to select the best adjusted model: from amongst models with
and AIC of 2 of the lowest value, the simplest model was chosen on grounds of parsimony. The
same strategy was used to develop a separate model to predict Leptospira load in urine.

We estimated the contribution of a demographically stratified rat population to the
degree of environmental contamination through contaminated urine. We used demographic
characteristics of the rat population considered for this study, which comprised 82 rats (16
rats <200g, 46 rats weighting between 201–400 and 20 rats >400g). We considered the
number of rats (NR) at each weight class, their respective Leptospira prevalence as evaluated
by qPCR (PREV), volume (in ml) of urine shed per 24h (VOL), and log of GEq/ml of urine
(LOAD). So the amount of leptospire shed per day at each weight group was calculated as
(NR�PREV�VOL�LOAD). Volume of urine shed per day based on rat mass was obtained
from previous studies performed in laboratory conditions [43]. We also combined the
results from the three weight groups to obtain the total number (GEq) of leptospires ex-
creted by this population per day. Finally, we divided this estimate by the number of rats
captured per m2 at each site to estimate the number of leptospires shed per day at a given
density of rats (NR�PREV�VOL�LOAD) / m2. We repeated this procedure for each one of
the five collection sites.

Ethics statement
Institutional Animal Care and Use Committee (IACUC) from Brazil and United States ap-
proved all the protocols used in this study. At Oswaldo Cruz Foundation, Salvador, Brazil; the
Comissão de Ética no Uso de Animais (CEUA) do CPqGM-FIOCRUZ-BA approved the protocol
number 003/2012. At the United States the Yale University's Institutional Animal Care and
Use Committee (IACUC), New Haven, Connecticut, approved the protocol number 2012–
11498. Protocols adhered to PHS policy, USDA Regulations, the US National Research Council
Guide for the Care and Use of Laboratory Animals and all US federal regulations.

Results
A total of 82 R. norvegicus were captured from June to September 2010. Forty-five rats were
captured from four sites from the Pau da Lima neighborhood (PL1, PL2, PL3 and PL8) and 37
from Sete de Abril neighborhood (7A). The demographic structure and Leptospira carriage
prevalence of this population were described previously [14,33,44]. Demographic characteris-
tics between sites were not different as described in S1 Table. Kidney and urine samples were
obtained from 72 and 55 animals, respectively, of which 88% and 84%, respectively, were qPCR
positive (Table 1). Five animals were negative for both kidney and urine and were excluded
from further analyses of GEq titers, but were retained in analyses estimating the association of
leptospiral loads in kidney and urine.

The average GEq of leptospires in positive kidneys was 5.9 x 106, slightly lower than the 6.1 x
106 average obtained from positive urines, not quite attaining statistical significance (p = 0.057).
The range of GEq for positive kidneys and urines was 3.1–8.2 x106 and 2.2–9.4 x106, respectively
(Table 1), and there was a strong and significant positive correlation (R2 = 0.78) between the
GEq load of leptospires in the paired kidney and urine samples (Fig 1).
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In bivariate analyses, leptospiral loads in kidney and urine tended to increase with W/L
ratio (significant only in urine), increasing number of wounds/scars (significant only in urine),
and varied with location of capture (PL1 vs. PL 8, significant only in urine) (Table 1). Male and
female rats did not differ in the percentage of qPCR positive kidneys or urines, and their kidney

Table 1. Bivariate analyses of Leptospira load in kidney and urine of wild Norway rats.

Kidney Urine
Characteristics No. PCR positive

samples No. (%)
Mean Log10 PCR
positive samples

SD1 No. PCR positive
samples No. (%)

Mean Log10 PCR
positive samples

SD

Total 72 64 (88) 5.9 1.2 55 46 (84) 6.1 1.5

Sex

Male 35 31 (88) 6.0 1.2 30 25 (83) 6.1 1.4

Female 37 33 (89) 5.9 1.2 25 21 (84) 5.9 1.7

Weight category

Juvenile 15 11 (77) 5.6 1.1 7 5 (71) 4.9 1.9

Sub-adult 38 35 (92) 5.9 1.2 30 25 (83) 6.2 1.6

Adult 19 18 (95) 6.0 1.2 18 16 (89) 6.2 1.3

Ratio length/weight
category

I (>1.25) 13 9 (69) 5.6 1.2 6 4 (67) 4.42 1.8

II (0.85–1.25) 22 22 (100) 5.9 1.2 16 13 (81) 5.9 1.9

III (˂0.85) 37 33 (89) 6.1 1.2 33 29 (87) 6.3 1.2

Wounds/Scars

0 29 25 (86) 5.6 1.2 20 14 (70) 5.4 1.7

1 26 24 (92) 6.1 1.0 18 17 (94) 5.9 1.5

�2 17 15 (88) 6.4 1.2 17 15 (88) 6.8 1.3

Pregnant

No 19 15 (79) 5.8 1.1 8 5 (62) 6.4 0.7

Yes 18 18 (100) 5.9 1.4 17 16 (94) 5.8 1.9

Vagina

Closed 5 4 (80) 5.2 NA 2 1 (50) 5.2 NA

Open 32 29 (90) 5.2 2.6 23 20 (87) 6.0 1.7

Lactation

No 34 30 (88) 5.8 1.2 24 20 (83) 6.1 1.7

Yes 3 3 (100) 6.4 1.2 1 1 (100) 4.2 NA

MAT Titer

0 40 34 (85) 5.6 1.2 29 21 (72) 5.7 1.5

50 12 12 (100) 6.1 0.8 11 11 (100) 6.1 1.7

100 9 9 (100) 6.9 0.8 10 10 (100) 6.8 1.6

Site

PL8 6 5 (83) 5.3 1.6 6 4 (67) 4.5 2.0

7A 32 26 (81) 5.9 1.2 18 14 (78) 5.6 1.3

PL2 14 14 (100) 5.4 0.9 11 11 (100) 6.1 1.4

PL6 5 5 (100) 6.4 1.3 5 5 (100) 6.0 2.1

PL1 15 14 (93) 6.6 0.9 13 12 (92) 7.0 1.0

1Standard Deviation
2Bold items reflect significant differences (P<0.05 ANOVA adjusted by Bonferroni correction method).

Values given are log10 genome equivalents per mm3 of kidney or per ml of urine.

doi:10.1371/journal.pntd.0003819.t001
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and urine GEqs were indistinguishable. The reproductive status of females did not influence
leptospiral loads (Table 1).

Separate multivariate linear regression models of GEq in kidney and urine included all the
covariates for which at least one association had P<0.1 in bivariate comparisons (Table 1). In
addition, any covariate that was retained in either the kidney or urine model was also includ-
ed in the other model. Overall, the linear regression models from kidney and urine included
the same set of variables with highly concordant results. In the kidney model, location of cap-
ture, MAT titer and the increasing number of wound/scars per animal were independent
risk factors influencing GEq when all rats were pooled, though slight but significant differ-
ences in response were found between the sexes (although variables trended the same way;
Table 2). In males, increasing W/L ratio was associated with increasing GEq, but not in fe-
males. Overall, increasing MAT titer was associated with greater GEq, but only in females.
Similarly, increasing number of wounds/scars was associated with higher GEq, but only in
females.

In the urine model W/L ratio, location of capture, and increasing number of wound/scars
per animal were independent risk factors influencing GEq when all rats were pooled, but differ-
ences in response was found between the sexes (Table 2). Of note, including MAT titers in-
creased the fit of the urine model, although not significant in bivariate comparisons. Males
with higher W/L ratio had greater GEq in urine, but this association was not significant in fe-
males. Overall, three sites of rodent capture (PL2, 7A and PL1) produced animals with

Fig 1. Correlation between the GEq load of leptospires in the paired kidney and urine samples ofRattus norvegicus from Brazil, 2010.

doi:10.1371/journal.pntd.0003819.g001
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significantly higher urine leptospiral loads than the PL8 site (the reference and lowest value).
Increasing number of wounds/scars was associated with higher GEq, but only when males and
females were grouped.

Our estimate of the contribution of leptospires shed in the urine of a rat population of 82 in-
dividuals, stratified into three age classes, was 9.1 x 1010 per day with a mean density of 5.0 x
1010 per m2 of soil around households (Table 3). The independent estimates for rats captured
at different sites showing the contribution of demography and leptospire load are shown in S2
Table.

Table 2. Multivariate linear regression models of the relation between Leptospira load in kidneys and urine.

Kidney Urine
Population Total Female Male Total Females Males
AIC 172.6 90.6 79.81 147.32 91.63 72.74

Coefficient (p value) Coefficient (p value)

Ratio Length/Weight (continuous) -2.02 (0.06) -1.71 (0.04) -3.43 (0.01)

Site PL8 1.0 (ref)5 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

Site PL2 1.03 (0.12) 1.27 (0.22) 1.80 (0.04) 2.74 (0.07) 0.56 (0.60)

Site 7A 0.50 (0.36) 0.39 (0.64) 1.90 (0.01) 3.05 (0.01) 0.48 (0.59)

Site PL6 0.58 (0.26) 1.25 (0.06) 1.21 (0.10) 3.12 (0.01) 0.44 (0.64)

Site PL1 1.12 (0.05) 1.81 (0.05) 2.80 (0.04) 3.86 (0.00) 1.80 (0.07)

MAT 0 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

MAT 50 0.21 (0.58) 1.01 (0.04) -0.58 (0.32) 0.07 (0.87) 1.55 (0.11) -0.31 (0.64)

MAT �100 0.86 (0.02) 1.61 (0.00) 0.11 (0.88) 0.59 (0.26) 0.33 (0.65) 1.05 (0.19)

Scars 0 1.0 (ref) 1.0 (ref) 1.0 (ref)

Scars 1 0.61 (0.06) 0.91 (0.02) 0.71 (0.15)

Scars �2 1.05 (0.01) 1.51 (0.01) 1.42 (0.01)

1AIC excluding MAT = 93.5
2AIC excluding MAT = 150.7
3AIC excluding MAT = 92.4
4AIC excluding MAT = 86.4
5Bold items reflect significant differences (P<0.05).

doi:10.1371/journal.pntd.0003819.t002

Table 3. Estimates of Leptospira shedding loads in urine from 82 Norway rats based on properties of the demographic structure of the rat popula-
tion from Salvador, Brazil.

No. of
rats1

Prevalence in
urine2

ml/
day3

Log10 GEq/
ml4

Log10 Leptospires shed per
day5

Log10 Leptospires per m2 of soil
/day

Total 82 9.1 5.0

Juvenile 16 0.77 15 5.6

Sub-
adult

46 0.92 20 5.9

Adult 20 0.95 20 6

1 Number of rats in each mass/age class (NR.)
2 Leptospira prevalence in kidney (PREV: Table 1).
3 Volume (ml) of urine shed per 24 hours (VOL) as described by Donaldson [43].
4 Genomic equivalents of Leptospira per ml (LOAD: Table 1).
5 Based on density of rats (DENS) captured around households.

doi:10.1371/journal.pntd.0003819.t003
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Discussion
We describe for the first time results that simultaneously investigated how differences between
location of capture, sex, age (mass andW/L ratio indices), MAT markers of immune response
and the prevalence of wounds/scars influence leptospiral loads of kidney carriage and associat-
ed loads shed in urine. Additionally, by extrapolating the values obtained in our analyses, we
estimate the daily burden of leptospires shed into the environment by a rat population from an
urban slum setting in Brazil [14].

The near perfect correlation between leptospiral loads in urine and kidney indicate that
data obtained by measuring GEq in kidney samples alone can serve as a proxy for estimating
leptospiral loads shed in urine, and that shedding rates in urine are consistent over time.
As obtaining urine is somewhat cumbersome, and some bladders are empty, our findings
suggest that qPCR of kidney samples may be sufficient for inferring environmental loads,
although these results should be confirmed for other reservoir hosts such as R. rattus [45].
The shedding of other species of bacteria, such as Escherichia coli [46] and Coxiella burnetii
[43], has been shown to be highly variable over time in infected hosts in contrast to our
results.

The information on urine shedding loads is critical for the construction of mathematical
models predicting environmental contamination and consequently human disease risk [47,48].
The average loads in these paired samples ranged between 5.9 and 6.1 x 106 GEq, but linear re-
gression indicated that GEq in urine tended to be greater than that in kidney by a factor slightly
less than 10. Our results are concordant with those obtained by experimentally infected rats
where urine loads as high as 107 genome equivalents (GEq) were found, as measured by qPCR
and/or dark field microscopy [27,30]. The only other study reporting GEq in wild rats (R. rat-
tus) found average loads in the kidney to be higher than what is reported here: 8.27x106 (stan-
dard deviation of 4.72x106). Corresponding urine loads were not evaluated in that study.

Multivariate analysis retained site of capture, L/W ratio (as a continuous variable), MAT
titer and severity of wounds/scars as independent variables associated with leptospiral loads in
both kidney and urine (Table 2). However, the significance of these variables differed between
the sexes as discussed in greater detail below.

Our extrapolation indicates that the heterogeneity in leptospire shedding may be one of the
major factors affecting environmental contamination by leptospires. Heterogeneity in the prev-
alence of leptospiral infection in rats has rarely been reported, almost certainly a reflection of
small sample sizes, but was documented in Vancouver, Canada [18]. Geographical differences
in leptospiral loads have not been previously reported by any study. The causes of these varia-
tions are unknown but could result from differences in the pathogen, environmental load, host
genetics [44], or demographic characteristics. Most importantly, the consequences are also not
known, but differences in leptospiral shedding and consequently in environmental contamina-
tion could be related to the spatial variation in human leptospirosis risk as evidenced in previ-
ous studies [49,50].

Leptospiral load in kidneys and urine was identical among male and female rats. When data
were pooled, older animals, as determined by L/W ratio, tended to have higher kidney and
urine loads. This association was stronger in males than in females indicating that heavier (and
older) males had augmented leptospiral shedding (see also [45]). Reproductive status of fe-
males based on sexual maturity had no effect on bacterial loads, though limited sample size
may be precluded this association.

When male and female data were pooled, increasing MAT titer was positively associated
with kidney load. High MAT titers could reflect a high dose inoculum during infection and/or
a short period after infection [51] either of which could lead to higher leptospiral kidney
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colonization and shedding. Of interest, while females had a similar positive association between
MAT titer and kidney load to pooled rats, in males this association was negative for MAT = 50,
albeit not significant. A similar pattern for urine load was observed for pooled, male and female
rats, but again associations were not significant in males. Further studies are needed to eluci-
date the reasons why higher agglutination antibodies are related to higher leptospiral coloniza-
tion in Norway rats.

The association between levels of wounding/scars with pathogen infection is well docu-
mented for Seoul virus infection among rats from Baltimore, and the presence of virus in rat sa-
liva supports the potential for transmission via this route [52], but the observation here that
increasing levels of wounds/scars were associated with increasing loads of leptospires (urine
and kidney) was unexpected. Leptospires have been shown to be transmitted to guinea pigs via
rat bite [53]. The load of leptospires in the saliva of wild rats has never been investigated, but as
rats are constantly grooming (males spend up to 40% of the time in this activity [54]), it is high-
ly plausible that saliva becomes contaminated with leptospires during oral grooming of the
urogenital region-especially given the high bacterial loads in urine. Of note, there are docu-
mented instances of leptospiral transmission by rat bite to humans [53,55–57], suggesting that
transmission through contaminated saliva occurs. This potential route for horizontal transmis-
sion among rats requires further investigation.

Based on our results, it is apparent that the routes of leptospiral transmission among Nor-
way rats, or the inoculum doses required to achieve infection are still unknown, but whatever
the route, high prevalence of infection were found among all age classes indicating efficient
transmission. In experimental studies, the 50% colonization dose in Wistar rats was deter-
mined to be 104 leptospires introduced intraperitoneally. However, in Golden Syrian ham-
sters, the LD50 is lower (<50 leptospires)[58]. Additionally, the development of leptospiral
loads in the kidneys of another highly susceptible animal varied with the route of exposure
[59].

This study was limited to two months in the dry season in a single year, precluding estimates
of inter-year and inter-seasonal variations in leptospiral shedding. The demographic character-
istics of rat populations are also likely to vary across seasons and years, such that of our exam-
ple of a model Norway rat population and their contribution to leptospiral loads in the
environment should be considered indicative rather than necessarily typical. Insufficient data
are available on where rats are most abundant and whether the proximity of rats with higher
loads of leptospiral shedding are most likely to lead to human exposure. However, in this study
rats were captured close to human residences and our findings are relevant because there is a
clear pattern of household clustering of persons infected by leptospires [60], implicating peri-
domestic acquisition of infection. Sample sizes were low when stratified among the various co-
variates (eg sex, reproductive status, L/W ratio, site of capture), and therefore some associations
may vary when reexamined with additional data. Of major importance, we were not able to dis-
tinguish between the differential contribution of live versus dead leptospires as identified by
qPCR, possibly causing overestimation of the actual infectious leptospiral load present in kid-
neys and shed in the urine. We plan to conduct follow-up experiments to elucidate the fraction
of live infectious leptospires using dark field microscopy or qPCR techniques that distinguish
between living and dead leptospires.

Nonetheless, this study is unique as it is the first to address some of the critical, but un-
known, parameters which can influence leptospiral infection, maintenance and shedding lead-
ing to environmental contamination. These factors directly influence the risk of leptospiral
acquisition among humans and provide essential information on the epidemiological linkage
between rats and humans.
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