Instituto Nacional de Controle de Qualidade em Saúde

ELABORAÇÃO DE PLANILHA ELETRÔNICA PARA VALIDAÇÃO DE MÉTODO CROMATOGRÁFICO PARA ANÁLISE DE RESÍDUOS DE AGROTÓXICOS

Adherlene V. Gouvêa, Lucia Helena P. Bastos, Maria Helena W. M. Cardoso, Sérgio A. da Silva e Armi W.Nóbrega.

Laboratório de Resíduos – DQ – INCQS – FIOCRUZ – Rio de Janeiro – RJ. Fax: (0xx21) 22900915 – e-mail: adherlene.gouvea@incqs.fiocruz.br.

O objetivo de uma validação é garantir que o método gere informações confiáveis e interpretáveis sobre o resultado de uma amostra. Segundo a norma ISO IEC 17025, validar é: "confirmar por testes e apresentação de evidências objetivas, de que determinados requisitos são preenchidos para um dado uso intencional".

Os parâmetros analíticos avaliados na validação de métodos de separação são: seletividade, faixa de trabalho, linearidade, avaliação dos resíduos, precisão, exatidão, limite de detecção e limite de quantificação.

O uso de planilhas para cálculos em uma validação tornou-se uma necessidade na comunidade científica tendo em vista a complexidade dos cálculos empregados. O uso dessas planilhas possibilitam a execução de cálculos matemáticos e estatísticos e também, a apresentação dos resultados em tabelas e gráficos. Um dos maiores investimentos em um laboratório analítico é a otimização do trabalho, principalmente em um laboratório de resíduos de agrotóxicos onde é grande a demanda de analitos por amostra. Essas planilhas se tornam ferramentas essenciais na conquista dessa otimização de forma que o tempo de processamento de dados seja reduzido.

OBJETIVO

INTRODUÇÃO

Elaborar uma planilha eletrônica no programa Excel da Microsoft® para viabilização dos cálculos estatísticos envolvidos na validação de um método cromatográfico, neste caso, para análise de resíduos de agrotóxicos.

EXEMPLO DAS PLANILHAS DESENVOLVIDAS PARA A MISTURA 1

Planilha 1 – Curvas de Calibração 1A B C | D|E|F|G|H|I|J|K|L| M | N | O | P | Q | R | S | T | U | Curva de Calibração 1º Ponto 2º Ponto 3º Ponto 2º Ponto Substância y = bx + a Concentração µg/ml Area 1 Área 2 Área 3 Área 1 Área 2 Área 3 Área 1 Área 2 Área 3 a = coef. lin. b = coef. ang. r = coef. de cor. =INTERCEPÇÃO(M5:U5;D5:L5) =INCLINAÇÃO(M5:U5;D5: =RAIZ(CORREL(M5:U5;D5:L5)) =INTERCEPÇÃO(M6:U6;D6:L6) =INTERCEPÇÃO(M7:U7;D7:L7) =INTERCEPÇÃO(M8:U8;D8:L8) =INCLINACÃO(M6:U6;D6:L6) =RAIZ(CORREL(M6:U6;D6:L6)) Dimetoato =INCLINAÇÃO(M7:U7;D7:L7) =RAIZ(CORREL(M7:U7;D7:L7)) Malaoxon =RAIZ(CORREL(M8:U8;D8:L8)) =INCLINAÇÃO(M8:U8;D8:L8) =INTERCEPÇÃO(M9:U9;D9:L9) =INCLINAÇÃO(M9:U9;D9:L9) =INCLINAÇÃO(M10:U10;D10:L10) =INTERCEPÇÃO(M10:U10;D10:L10) =RAIZ(CORREL(M10:U10;D10:L10)) =INCLINAÇÃO(M11:U11;D11:L11) =INTERCEPÇÃO(M11:U11;D11:L11) =RAIZ(CORREL(M11:U11;D11:L11))

METODOLOGIA

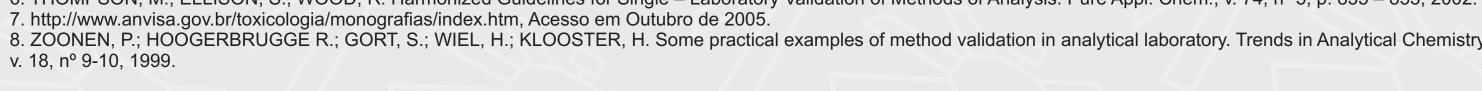
Plan	ilha 2 -	- Ava	liaçã	o do	s Resid	duos																								
1A B	С	D	E	F	G	Н		J	L	M N	0	Р	Q	R	T	U	V	W	X	Υ	Α	AA	AB	AC	AD	AE	AF	AG	AH	
2			'	•	1º	Ponto	•	•		'	7	Ponto	'	•		•	•	3º F	onto	_	•		•	•	_		•			
3 Mistura	Substância	1ª Injeção	2ª Injeção	3ª Injeção	Média	Desv. Pad.	Coef. Var.	Variância	1ª Injeção 2ª	Injeção 3ª Injeçã	áo Média	Desv. Pad.	Coef. Var.	Variância	1ª Injeção 2	2ª Injeção 3ª In	jeção	Média	Desv. Pad.	Coef. Var.	Variância	Somatório	Variância	Variância	a Variância	Maior	С	C Tabelado	Avalia	າລັດ
4		Área	Área	Área	Área	Desv. r du.	Coel. val.	Variancia	Área	Área Área	Área	Desv. i au.	Coei. vai.	Variaticia	Área	Área Á	rea	Área	Desv. I au.	Coei. vai.	variancia	Variância	1º Ponto	2º Ponto	3º Ponto	Variância	Calculado	k = 3 n = 3	Availa	,ao
5	Mevinfós				=MÉDIA(D5:F5)	=DESVPAD(D5:F5)	=(H5*100)/G5	=VAR(D5:F5)			=MÉDIA(L5:N5)	=DESVPAD(L5:N5)	=(P5*100)/O5	=VAR(L5:N5)			=MÉD	DIA(T5:V5)	=DESVPAD(T5:V5)	=(X5*100)/W5	=VAR(T5:V5)	=SOMA(AB5:AD5)	=J5	=R5	=Z5	=MAIOR(AB5:AD5;1)	=AE5/AA5	0,871	=SE(AF5 <ag5;"homocedást< td=""><td>co";"Heterocedástico")</td></ag5;"homocedást<>	co";"Heterocedástico")
6	Dimetoato				=MÉDIA(D6:F6)	=DESVPAD(D6:F6)	=(H6*100)/G6	=VAR(D6:F6)			=MÉDIA(L6:N6)	=DESVPAD(L6:N6)	=(P6*100)/O6	=VAR(L6:N6)			=MÉD	DIA(T6:V6)	=DESVPAD(T6:V6)	=(X6*100)/W6	=VAR(T6:V6)	=SOMA(AB6:AD6)	=J6	=R6	=Z6	=MAIOR(AB6:AD6;1)	=AE6/AA6	0,871	=SE(AF6 <ag6;"homocedást< td=""><td>co";"Heterocedástico")</td></ag6;"homocedást<>	co";"Heterocedástico")
7	Malaoxon				=MÉDIA(D7:F7)	=DESVPAD(D7:F7)	=(H7*100)/G7	=VAR(D7:F7)			=MÉDIA(L7:N7)	=DESVPAD(L7:N7)	=(P7*100)/O7	=VAR(L7:N7)			=MÉD	DIA(T7:V7)	=DESVPAD(T7:V7)	=(X7*100)/W7	=VAR(T7:V7)	=SOMA(AB7:AD7)	=J7	=R7	=27	=MAIOR(AB7:AD7;1)	=AE7/AA7	0,871	=SE(AF7 <ag7;"homocedást< td=""><td>co";"Heterocedástico")</td></ag7;"homocedást<>	co";"Heterocedástico")
8	Fenitrotiona				=MÉDIA(D8:F8)	=DESVPAD(D8:F8)	=(H8*100)/G8	=VAR(D8:F8)			=MÉDIA(L8:N8)	=DESVPAD(L8:N8)	=(P8*100)/O8	=VAR(L8:N8)			=MÉD	DIA(T8:V8)	=DESVPAD(T8:V8)	=(X8*100)/W8	=VAR(T8:V8)	=SOMA(AB8:AD8)	=J8	=R8	=Z8	=MAIOR(AB8:AD8;1)	=AE8/AA8	0,871	=SE(AF8 <ag8;"homocedást< td=""><td>co";"Heterocedástico")</td></ag8;"homocedást<>	co";"Heterocedástico")
9	Clorpirifós Etil				=MÉDIA(D9:F9)	=DESVPAD(D9:F9)	=(H9*100)/G9	=VAR(D9:F9)			=MÉDIA(L9:N9)	=DESVPAD(L9:N9)	=(P9*100)/O9	=VAR(L9:N9)			=MÉD	DIA(T9:V9)	=DESVPAD(T9:V9)	=(X9*100)/W9	=VAR(T9:V9)	=SOMA(AB9:AD9)	=J9	=R9	=Z9	=MAIOR(AB9:AD9;1)	=AE9/AA9	0,871	=SE(AF9 <ag9;"homocedást< td=""><td>co";"Heterocedástico")</td></ag9;"homocedást<>	co";"Heterocedástico")
10	Clorfenvinfós				=MÉDIA(D10:F10)	=DESVPAD(D10:F10) =(H10*100)/G1	0 =VAR(D10:F10	0)		=MÉDIA(L10:N10) =DESVPAD(L10:N10	0) =(P10*100)/O1	0 =VAR(L10:N10)			=MÉD	DIA(T10:V10)	=DESVPAD(T10:V10)) =(X10*100)/W10	=VAR(T10:V10) =SOMA(AB10:AD1	0) =J10	=R10	=Z10	=MAIOR(AB10:AD10;1	=AE10/AA10	0 0,871	=SE(AF10 <ag10;"homoceda< td=""><td>stico";"Heterocedástico")</td></ag10;"homoceda<>	stico";"Heterocedástico")
11 1	Azinfós Etil				=MÉDIA(D11:F11)	=DESVPAD(D11:F11)) =(H11*100)/G1	1 =VAR(D11:F11	1)		=MÉDIA(L11:N1) =DESVPAD(L11:N11	1) =(P11*100)/O1	1 =VAR(L11:N11)			=MÉD	DIA(T11:V11)	=DESVPAD(T11:V11)) =(X11*100)/W11	=VAR(T11:V11) =SOMA(AB11:AD1	1) =J11	=R11	=Z11	=MAIOR(AB11:AD11;1	=AE11/AA1	10,871	=SE(AF11 <ag11;"homoceda< td=""><td>stico";"Heterocedástico")</td></ag11;"homoceda<>	stico";"Heterocedástico")
Plan				o da	Linear	idade																								
1A B	C D	E F G H I	J K L	M	N O	P Q R S	S T U	VW	X YZA	MABIACIADIAEIAFIAG	AH	Al AJ AK	AL AM NA	AO AP	AQ AR	AS	AT	AU A	V AW AX	AY AZ	BA	BB BC	BD	-	BE	BF BG	BH	BI	BJ Bk	BL
2					Coeficiente						Coe	ficiente											Equag	ão						

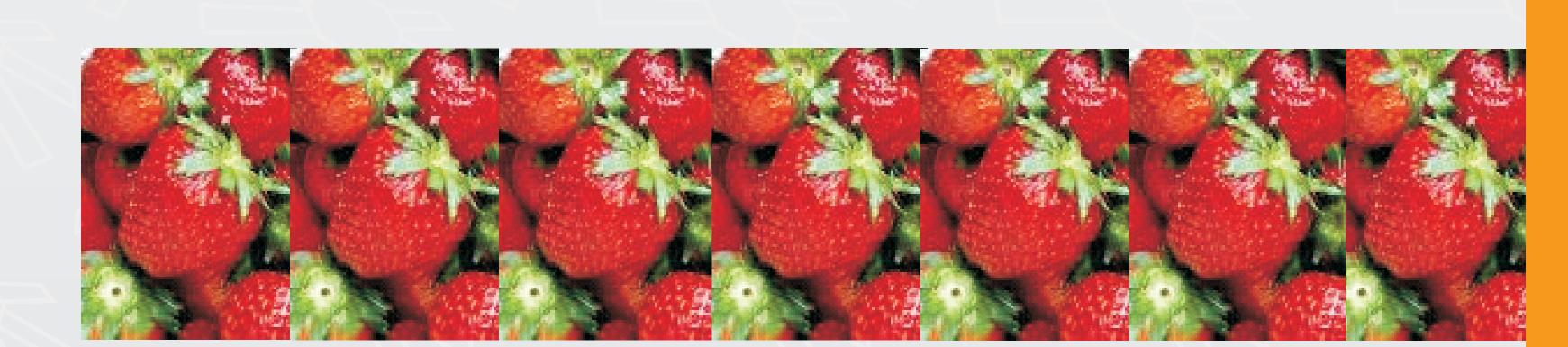
Pian	IIIIa 3	– Avallaç	ao ua Li	Heariua	ue																							
1A B	С	D E F G H I J K L	. M N	0 P	Q R S T	UVW	X YZ	AAABACADAE	AFAG AH	Al	AJ AK AL	AM NA AO	AP AQ AR	AS	AT AU	AV AW	/ AX	AY AZ E	BA BB	BC	BD	BE	BF	BG	BH	BI BJ	BK	BL
2			Coefici	iente						Coeficiente											Equação							
		Concentrações µg/ml	Somatório		Quadrado das Concetrações		Somatório	Áreas	Somatório	Linear		Quadrado das Áreas		Somatório		Produte	entre Concentraçõe	oe o Ároae		Somatório					Áreas Estimadas			
3 Mistura	Substância	Concentrações pg/mi	Angu	lar	Quadrado das Concellações	'	Somatorio	Aleas	Somatorio	Lilleal		Quadrado das Areas		Somatorio		Froduct	entre concentraçõe	ss e Aleas		Somatorio	da Regressão				Aleas Estilladas			
4										=											y _{est} = bx + a							
5		x ₁ x ₂ x ₃ x ₄ x ₅ x ₆ x ₇ x ₈ x ₉		x_1^2 x_2^2 x_3^2	$x_3^2 x_4^2 x_5^2 x_6^2$			y ₃ y ₄ y ₅ y ₆ y ₇		a	$y_1^2 y_2^2 y_3^2$	y ₄ ² y ₅ ² y ₆ ²	y ₇ ² y ₈ ² y ₉ ²	Σy²	x ₁ y ₁ x ₂ y ₂	x ₃ y ₃ x ₄ y	4 X5 y 5	x ₆ y ₆ x ₇ y ₇ x	(8 y 8 x 9 y 9	Σχγ	y 1est	y 2est	y 3est	y 4est	y 5est	/Gest y 7est	y 8est	y 9est
6	Mevinfós		=SOMA(D6:L6)		6^2 =G6^2 =H6^2 =I6^2 =		MA(06:W6)		=SOMA(Y6:AG6)	=Y	6^2 =Z6^2 =AA6^2 =A	B6^2 =AC6^2 =AD6^2 =	AE6^2 =AF6^2 =AG6^2	P =SOMA(AJ6:AR6)	=D6*Y6 =E6*Z6	=F6*AA6 =G6*AE	36 =H6*AC6 =16			OMA(AT6:BB6)	=\$N\$6*D6+\$AI\$6	******	*		6*H6+\$AI\$6 =\$N\$6*	I6+\$AI\$6 =\$N\$6*J6+\$A	\$6	-\$N\$6*L6+\$AI\$6
7	Dimetoato		=SOMA(D7:L7)	=D7^2 =E7^2 =F7	'^2 =G7^2 =H7^2 =I7^2 =	07 2 107 2 17 2 001	1111 (01.111)		=SOMA(Y7:AG7)		7^2 =Z7^2 =AA7^2 =A	B7^2 =AC7^2 =AD7^2 =	AE7^2 =AF7^2 =AG7^2	P =SOMA(AJ7:AR7)	=D7*Y7 =E7*Z7	=F7*AA7 =G7*AE	37 =H7*AC7 =I7	*AD7 =J7*AE7 =K7*	/11 21/101 00	OMA(AT7:BB7)	=\$N\$6*D7+\$AI\$6	\$1100 E1 107 1100 \$11	90 1 1 1 97 1190 91190	01.4/140	0 111 . 0/ 1100 01100	17+\$AI\$6 =\$N\$6*J7+\$A	\$6	\$N\$6*L7+\$AI\$6
8	Malaoxon		=SOMA(D8:L8)	=D8^2 =E8^2 =F8 =D9^2 =F9^2 =F9	%2 =G8^2 =H8^2 =I8^2 =				=SOMA(Y8:AG8)		8^2 =Z8^2 =AA8^2 =A	38^2 =AC8^2 =AD8^2 =	AE8^2 =AF8^2 =AG8^2		=D8*Y8 =E8*Z8	=F8*AA8 =G8*AE	88 =H8*AC8 =18	*AD8 =J8*AE8 =K8*.	AF8 =L8*AG8 =S0	OMA(AT8:BB8)	******	=\$N\$6*E8+\$AI\$6	*****	+			\$6	\$N\$6*L8+\$A \$6
10	Fenitrotiona		=SOMA(D9:L9)	=D9^2 =E9^2 =F9	0^2 =G9^2 =H9^2 =I9^2 =	:J9^2 =K9^2 =L9^2 =SOI	MA(O9:W9)		=SOMA(Y9:AG9) =SOMA(Y10:AG1		9^2 = 29^2 = AA9^2 = A	39^2	AE9^2 =AF9^2 =AG9^2	2 =SOMA(AJ9:AR9)	=D9"Y9 =E9"Z9	0 -E10*AA10 -C10*A	99 =H9"AC9 =19	'AD9 =J9"AE9 =K9"	AF9 =L9"AG9 =SU	OMA(AT9:BB9) OMA(AT10:BB10)	=\$N\$6*D9+\$AI\$6	-\$N\$6"E9+\$A \$6		*G9+\$AI\$6 =\$N\$6	6*H9+\$AI\$6 =\$N\$6*	9+\$A \$6	\$6	-EVIEC* 101EVIEC
11	Clorpirifós Etil Clorfenvinfós		=SOMA(D10.L10)	=D10°2 =E10°2 =F1	10°2 -G10°2 -H10°2 -H0°2 -	:111^2 =K11^2 =L10^2 =SOI	MΔ(O10.W10)		=SOMA(Y11:AG1	1) =Y	11^2 = 711^2 = AA 10^2 = A	B11^2 = ΔC10^2 = ΔD10^2 = B11^2 = ΔC11^2 = ΔD11^2 =	ΔΕ10°2 - ΑΓ10°2 - ΑΘ10° ΔΕ11^2 = ΔΕ11^2 = ΔΘ11/	2 =SOMA(ΔJ10.AR10)	=D10 110 -E10 Z1	1 =F11*ΔΔ11 =G11*Δ	B11 =H11*ΔC11 =I1	1*ΔD10 = 310 AE10 = K10 1*ΔD11 = 111*ΔF11 = K11	AF10	2.11.1 (/ 1.1 10:22 10)	=\$N\$6*D10+\$AI\$6	=\$N\$6*E11+\$AI\$6 =\$N	\$6*F10+\$A \$6 =\$N\$6* \$6*F11+\$A \$6 =\$N\$6*	*G11+\$A \$6 -\$ \\$6	6*H11+\$AI\$6 =\$N\$6*		4136 -31136 K10+3A136 -3 Δ1\$6 =\$N\\$6*Κ11+\$Δ1\$6 =9	=\$N\$6*I 11+\$ΔI\$6
12 1	Azinfós Etil		=SOMA(D12:L12)	=D12^2 =E12^2 =F1	1^2	:J12^2 =K12^2 =L12^2 =S0[MA(O12:W12)		=SOMA(Y12:AG1	2) =Y	12^2 =Z12^2 =AA12^2 =A	B12^2 =AC12^2 =AD12^2 =	AE12^2 =AF12^2 =AG12	2 =SOMA(AJ12:AR12)	=D12*Y12 =E12*Z1	2 =F12*AA12 =G12*A	B12 =H12*AC12 =I1	2*AD12 =J12*AE12 =K12	2*AF12 =L12*AG12 =S0	OMA(AT12:BB12)	=\$N\$6*D12+\$AI\$6	=\$N\$6*E12+\$A \$6	\$6*F12+\$AI\$6 =\$N\$6*	*G12+\$AI\$6 =\$N\$6	6*H12+\$AI\$6 =\$N\$6*	12+\$A \$6	AI\$6 =\$N\$6*K12+\$AI\$6 =\$	=\$N\$6*L12+\$AI\$6
BM	BN BO	BP BQ BR	BS BT	BU BV	BW BX BY	BZ CA CE	CB CC C	CD CE	CF CF	CG	CH CI (CJ CK CL	CM CN	CO CP	CQ	CR	CS CT	CU CV	CW CX	CY CY	CZ DA	DB DC	DD C	DE DF	DG	DH DI	DJ DK	DL
					,													,										
		Destitues		M4.40-	D!f		d C		M44! 4 Á	- dd- Ct		D!f	M44! d Á d-	d- C		Compténie Médie	da. Á	D.	:	M			Produt	ıto entre a diferença d	das Concentrações e a l	lédia das Concentrações		Comotánia
		Resíduos		Média	Diferença ent	tre as Concentrações e a Média d	das Concentrações		Medias das Area	s de cada Concentraçã	10	Diferença entre as Are	as e as Médias das Áreas de	cada Concentração		Somatório Média	las Areas	UI	iferença entre as Áreas e a I	Media das Areas				e a diferenç	ça das Áreas e a Média	las Áreas		Somatório
y1-y1est y2	-y _{2est} y ₃ -y _{3est}	Y4-Y4est	y7-y7est y8-y8est y	/9-Y9est X _{med}	X ₁ -X _{med} X ₂ -X _{med} X ₃ -X _{med}	X ₄ -X _{med} X ₅ -X _{med} X ₆ -X	X _{med} X ₇ -X _{med} X ₈ -	-X _{med} X ₉ -X _{med}	Ymed (1,2,3) Y	med (4,5,6) y m	ed (7,8,9)	ed (1,2,3)	5,6) Y5-Ymed (4,5,6) Y6-Ymed (4,	5,6) Y7-Ymed (7,8,9) Y8-Ymed	(7,8,9) y 9- y med (7,8,9)	Σy-y _{med(.,,,)} y	med y 1- y med	Y2-Ymed Y3-Ymed	y4-ymed y5-ymed	y6-ymed y	7-Ymed Y8-Ymed	yg-y _{med} (x1-x.,,)(y1-y.,	.,) (xz-x)(yz-y) (xz-x)	1)(93-91) (X4-X1)(94-9) (15-7) (15-7) (16-1)(92-9) (22-2)(92-9) (2	1-X.,1)(91-9.,1) (X3-X.,1)(93-9.,1)	Σ(x-x _{n-1})(y-y _{n-1})
=Y6-BD6 =Z6-	BE6 =AA6-BF6 =	AB6-BG6 =AC6-BH6 =AD6-BI6	=AE6-BJ6 =AF6-BK6 =AG	66-BL6 =MÉDIA(D6:L6) =D	6-\$BV\$6 =E6-\$BV\$6 =F6-\$BV\$6	=G6-\$BV\$6 =H6-\$BV\$6 =I6-\$B'	3V\$6 =J6-\$BV\$6 =K6-\$	\$BV\$6 =L6-\$BV\$6	=MÉDIA(Y6:AÁ6) =MÉDIA	A(AB6:AD6) =MÉDIA(AE6:AG6) =Y6-\$CF\$6 =Z6-\$	CF\$6 =AA6-\$CF\$6 =AB6-\$CG	66 =AC6-\$CG\$6 =AD6-\$CG\$	66 =AE6-\$CH\$6 =AF6-\$C	CH\$6 =AG6-\$CH\$6 =S	OMA(CI6:CQ6) =MÉDIA(Y6:AG6) =Y6-\$CS\$6	=Z6-\$CS\$6	AB6-\$CS\$6 =AC6-\$CS\$6 =	=AD6-\$CS\$6 =AE6	6-\$CS\$6 =AF6-\$CS\$6	=AG6-\$CS\$6 =BW6*CT6	=BX6*CU6 =BY6*0	CV6 =BZ6*CW6	=CA6*CX6 =CB6	*CY6 =CC6*CZ6 =	CD6*DA6 =CE6*DB6 =S	=SOMA(DC6:DK6)
=Y7-BD7 =Z7-	BE7 =AA7-BF7 =	AB7-BG7 =AC7-BH7 =AD7-BI7	=AE7-BJ7 =AF7-BK7 =AG	67-BL7 =MÉDIA(D7:L7) =D	7-\$BV\$6 =E7-\$BV\$6 =F7-\$BV\$6	=G7-\$BV\$6 =H7-\$BV\$6 =I7-\$B	3V\$6 =J7-\$BV\$6 =K7-\$	\$BV\$6 =L7-\$BV\$6	=MÉDIA(Y7:AA7) =MÉDIA	A(AB7:AD7) =MÉDIA(AE7:AG7) =Y7-\$CF\$6 =Z7-\$	CF\$6 =AA7-\$CF\$6 =AB7-\$CG	66 =AC7-\$CG\$6 =AD7-\$CG	66 =AE7-\$CH\$6 =AF7-\$C	CH\$6 =AG7-\$CH\$6 =S	OMA(CI7:CQ7) =MÉDIA(Y7:AG7) =Y7-\$CS\$6	=Z7-\$CS\$6	AB7-\$CS\$6 =AC7-\$CS\$6 =	=AD7-\$CS\$6 =AE7	7-\$CS\$6 =AF7-\$CS\$6	=AG7-\$CS\$6 =BW7*CT7	=BX7*CU7 =BY7*0	CV7 =BZ7*CW7	=CA7*CX7 =CB7	*CY7 =CC7*CZ7 =(=SOMA(DC7:DK7)
=Y8-BD8 =Z8-	BE8 =AA8-BF8 =	AB8-BG8 =AC8-BH8 =AD8-BI8	=AE8-BJ8 =AF8-BK8 =AG	68-BL8 =MÉDIA(D8:L8) =D	8-\$BV\$6 =E8-\$BV\$6 =F8-\$BV\$6	=G8-\$BV\$6 =H8-\$BV\$6 =I8-\$B	3V\$6 =J8-\$BV\$6 =K8-\$	\$BV\$6 =L8-\$BV\$6	=MÉDIA(Y8:AA8) =MÉDIA	(AB8:AD8) =MÉDIA(AE8:AG8) =Y8-\$CF\$6 =Z8-\$	CF\$6 =AA8-\$CF\$6 =AB8-\$CG	66 =AC8-\$CG\$6 =AD8-\$CG	66 =AE8-\$CH\$6 =AF8-\$C	:H\$6	OMA(CI8:CQ8) =MEDIA(Y8:AG8) =Y8-\$CS\$6	=Z8-\$CS\$6	AB8-\$C\$\$6 =AC8-\$C\$\$6 =	=AD8-\$CS\$6 =AE8	3-\$CS\$6 =AF8-\$CS\$6	=AG8-\$CS\$6 =BW8*CT8	=BX8*CU8 =BY8*C	CV8 =BZ8*CW8	=CA8*CX8 =CB8	*CY8 =CC8*CZ8 =(CD8*DA8 =CE8*DB8 =S	=SOMA(DC8:DK8)
=Y9-BD9 =Z9-	BE9 =AA9-BF9 =	AB9-BG9 =AC9-BH9 =AD9-BI9	=AE9-BJ9	69-BL9 =MEDIA(D9:L9) =D	9-\$BV\$6 =E9-\$BV\$6 =F9-\$BV\$6	=G9-\$BV\$6 =H9-\$BV\$6 =I9-\$B	3V\$6 =J9-\$BV\$6 =K9-\$	\$BV\$6 =L9-\$BV\$6	=MEDIA(Y9:AA9) =MEDIA	A(AB9:AD9) =MEDIA(AE9:AG9) =Y9-\$CF\$6 =Z9-\$	CF\$6	66 =AC9-\$CG\$6 =AD9-\$CG	66 =AE9-\$CH\$6 =AF9-\$C	CH\$6	OMA(CI9:CQ9) =MEDIA(Y9:AG9) =Y9-\$CS\$6	=Z9-\$CS\$6 =AA9-\$CS\$6 =A	AB9-\$CS\$6	=AD9-\$CS\$6	9-\$CS\$6 =AF9-\$CS\$6	=AG9-\$CS\$6 =BW9*CT9	=BX9*CU9 =BY9*C	CV9 =BZ9*CW9	=CA9*CX9 =CB9	*CY9 =CC9*CZ9 =(CD9*DA9	-SOMA(DC9:DK9)
=Y10-BD10 =Z10		AB10-BG10	0 =AE10-BJ10 =AF10-BK10 =AG	510-BL10 =MEDIA(D10:L10) =D	10-\$BV\$6 =E10-\$BV\$6 =F10-\$BV\$6 11-\$BV\$6 =E11-\$BV\$6 =F11-\$BV\$6	=G10-\$BV\$6 =H10-\$BV\$6 =I10-\$b	5BV\$6	-\$BV\$6 =L10-\$BV\$6	IVILLEDIA (1 10:7 V (10)	(/ ID TO:/ ID TO	AE10:AG10) =Y10-\$CF\$6 =Z10-	\$CF\$6	710 10 40040 71B 10 400	\$\$6	01100 71010 001100 0	ONT (OTTO: OQTO) INILDIN	Y10:AG10) =Y10-\$CS\$6	=Z10-\$CS\$6	AB10-\$CS\$6	=AD10-\$CS\$6	10-\$CS\$6 =AF10-\$CS\$6	=AG10-\$CS\$6	=BX10°CU10 =BY10°	*CV10 =BZ10*CW10	0 =CA10^CX10 =CB	0°CY10 =CC10°CZ10 =(D10°DA10 =CE10°DB10 =	=SOMA(DC10:DK10)
=Y12-BD11 =Z1	-DETT -AATT-DETT	ABT1-BGT1	1 -AE11-DJ11 -AF11-DK11 -AG 2 -ΔΕ12-Β112 -ΔΕ12-ΒΚ12 -ΔG	311-DL11 -ΜΕΔΙΑ(D11.L11) -D 312-BL12 -MÉΔΙΔ(D12:112) -D		=G12-SBVS6 =H12-SBVS6 =I12-SB		*****		Q		*** *** **** *** *** ***	:\$6 =ΔC12-\$CG\$6 =ΔD11-\$CG	330 -AE11-30H30 -AF11-3 386 =AE12.80H86 =AF12.8		OMA(CI11:CQ11) -WEDIA(OMA(CI12:CQ12) =MÉDIA(-ZII-30330 -AAII-30330 -A	ADTI-3CS30 -ACTI-3CS30 - AR12-8CS86 =ΔC12-8CS86 =	-AD11-3C336 -AE1 -ΔD12-8C886 -ΔE1	17-90-300 -AF11-90-300	-AG11-3C330 -DW11 C111 =ΔG12-\$C\$\$6 =BW12*CT12	=BX12*CII12 =BV12*	*CV11	1 -CATI CATI -CB 2 =CΔ12*CY12 =CB	2*CV12 =CC12*C712 =	D12*DA12 =CE12*DB12 =	=SOMA(DC11.DK11)
DM	DN DO	DP DQ DR DS	DT DU DV	DW DX	DY DZ EA	01240140 111240140 1124	2140 01242140 1112			(7 12 12 17 17 17 17	EM EM EO	VO. VO / VI. L. VO. VO / ID IZ VO.	FR ES	ET EU	01.00 1.012.001.00	01111 (0112.0412) 1112011 (EY E7	FA	FB FC FD	FE	FF FG	FH I	FI FJ	FK FK	FL FN	FN	F0	0
	5.1	2. 54 5., 25	0. 00 0.																,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		s d Liberdade	SQ = Soma Qua	drática	MQ = Média Quadi	drática Teste	F p da regress	io	
							_	_							,		_		n n m							1 3	Significa	cância
Quadrado	Quadra	do da diferença entre as Áreas e a	s Areas Estimadas	Somatório	Quadrado da diferença entre as (Concentrações e a Média das Co	Concentrações	Somatório	Quadrado (da diferença entre as .	Áreas e a Média das Áreas	Somatório	Qua	lrado da Diferença entre a	as Areas e as Médias da	as Areas de cada Concent	ração	Somatório	= = =	p-1	n-p n-1 =	$\frac{\left[\sum(X-X_{med})(y-y_{med})\right]^2}{2} = \sum (y-y_{med})$	$V_2V_{2+1}V_2^2 = \frac{S}{2} \left[\frac{1}{2} \left[\frac{S}{2} \left[\frac{1}{2} \left[\frac{S}{2} \left[$	SQ (Regressão) = SQ	Q (Residuos) = MQ (Re	<u>ressão)</u> = DISF(F da regr	essão;	
																		par	râmetros replicatas níveis	is GI	GI GI	$\Sigma(x-x_{med})^2$	$(y-y_{est})^2 = \Sigma (y-y_{med})^2 = \frac{1}{2}$	GL (Regressão) GL	L (Residuos) MQ (Re	síduos) GLRegresã		ıressão
[X(x-x-,,)(y-y-,,)]'	(Va-Va-a) ² (Va-Va-a) ² (V	12-V2-12 (V4-V4-1)2 (V5-V5-1)2 (V2-V5-	st) ² (y ₇ -y _{7est}) ² (y ₈ -y _{8est}) ² (y ₉ -y _{9est})	$\sum (y_1,y_2,y_3)^2$ (y_4,y_5)	ed)2 (X2-Xmed)2 (X3-Xmed)2 (X4-Xmed)2	(xex 1)2 (xex 1)2 (xzx 1)2	2 (xo.x	$\Sigma (x-x_{mad})^2$	(v ₄ , v ₁ , v ₂) ² (v ₂ , v ₁ , v ₂) ² (v ₂ , v ₁ , v ₂)	1)2 (V. V. 1)2 (V. V. 1)	2 (V6-Vmed)2 (V7-Vmed)2 (V8-Vmed	$(y_9-y_{med})^2$ $\Sigma(y-y_{med})^2$	(Va-V	12 (V2-V	= 0) ² (V=V=-44 = 0) ² (V0-	V44 5 01 ² (V2-V4/2 0 01 ²	Vo.V	$(y-y_{med})^2$ $\Sigma(y-y_{med})^2$		(Regressão) (R	lesíduos) (Total)	SQ (Regressão) SQ (Re	esíduos) SQ (Total) MO	Q (Regressão) MQ ((Resíduos) F da reg	GL Resíduo		0.05
=DL6^2	=BM6^2 =BN6^2 =	306^2 =BP6^2 =BQ6^2 =BR6^2	2 =BS6^2 =BT6^2 =BU6^2	=SOMA(DN6:DV6) =BW6	2 =BX6^2 =BY6^2 =BZ6^2	=CA6^2 =CB6^2 =CC6^2	=CD6^2 =CE6^2 =	SOMA(DX6:EF6)	=CT6^2 =CU6^2 =CV6^	2 =CW6^2 =CX6^2	=CY6^2 =CZ6^2 =DA6^2	=DB6^2 =SOMA(EH6:EP6)	=CI6^2 =CJ6^2	=CK6^2 =CL6^2	=CM6^2 =CN	16^2 = CO6^2 =	:CP6^2 =CQ6^2	=SOMA(ER6:EZ6) 2	9 3	=FB6-1 =F0	C6-FB6 =FC6-1 =D		=EQ6 =FH	H6/FE6 =FI6/F	FF6 =FK6/FL6	=DISTF(FM6:FE6:F	1 1 -	-,
=DL7^2	=BM7^2 =BN7^2 =	BO7^2 =BP7^2 =BQ7^2 =BR7^2	2 =BS7^2 =BT7^2 =BU7^2	=SOMA(DN7:DV7) =BW7	2 =BX7^2 =BY7^2 =BZ7^2	=CA7^2 =CB7^2 =CC7^2	=CD7^2 =CE7^2 =	SOMA(DX7:EF7)	=CT7^2 =CU7^2 =CV7^2	2 =CW7^2 =CX7^2	=CY7^2 =CZ7^2 =DA7^2	=DB7^2 =SOMA(EH7:EP7)	=CI7^2 =CJ7^2	=CK7^2 =CL7^2	=CM7^2 =CN	17^2 =CO7^2 =	CP7^2 =CQ7^2	=SOMA(ER7:EZ7) 2	9 3	=FB7-1 =F0	C7-FB7 =FC7-1 =D	M7/EG7 =DW7	=EQ7 =FH	H7/FE7 =FI7/F	FF7 =FK7/FL7	=DISTF(FM7;FE7;F		
=DL8^2	=BM8^2 =BN8^2 =	308^2 =BP8^2 =BQ8^2 =BR8^2	2 =BS8^2 =BT8^2 =BU8^2	=SOMA(DN8:DV8) =BW8	2 =BX8^2 =BY8^2 =BZ8^2	=CA8^2 =CB8^2 =CC8^2	=CD8^2 =CE8^2 =	SOMA(DX8:EF8)	=CT8^2 =CU8^2 =CV8^2	2 =CW8^2 =CX8^2	=CY8^2 =CZ8^2 =DA8^2	=DB8^2 =SOMA(EH8:EP8)	=CI8^2 =CJ8^2	=CK8^2 =CL8^2	=CM8^2 =CN	18^2 =CO8^2 =	-CP8^2 =CQ8^2	=SOMA(ER8:EZ8) 2	9 3	=FB8-1 =F0	C8-FB8 =FC8-1 =D	M8/EG8 =DW8	=EQ8 =FH	H8/FE8 =FI8/F		=DISTF(FM8;FE8;F		
=DL9^2	=BM9^2 =BN9^2 =	BO9^2 =BP9^2 =BQ9^2 =BR9^2	2 =BS9^2 =BT9^2 =BU9^2	=SOMA(DN9:DV9) =BW9	2 =BX9^2 =BY9^2 =BZ9^2	=CA9^2 =CB9^2 =CC9^2	=CD9^2 =CE9^2 =	SOMA(DX9:EF9)	=CT9^2 =CU9^2 =CV9^	2 =CW9^2 =CX9^2	=CY9^2 =CZ9^2 =DA9^2	=DB9^2 =SOMA(EH9:EP9)	=CI9^2 =CJ9^2	=CK9^2 =CL9^2	=CM9^2 =CN	19^2 =CO9^2 =	-CP9^2 =CQ9^2	=SOMA(ER9:EZ9) 2	9 3	. 20 .	C9-FB9 =FC9-1 =D		240 11	H9/FE9 =FI9/F	FF9 =FK9/FL9	=DISTF(FM9;FE9;FI	, , , ,	
=DL10^2	=BM10^2 =BN10^2 =	3010^2 =BP10^2 =BQ10^2 =BR10^	^2 =BS10^2 =BT10^2 =BU10^2	2 =SOMA(DN10:DV10) =BW1		=CA10^2 =CB10^2 =CC10^2	=CD10^2 =CE10^2 =	SOMA(DX10:EF10)	=CT10^2 =CU10^2 =CV10	^2 =CW10^2 =CX10^2	01102 02102 071101	! =DB10^2 =SOMA(EH10:EP10	0110 2 0010 2	=CK10^2 =CL10^2	=CM10^2 =CN	I10^2 =CO10^2 =	-CP10^2 =CQ10^2	=SOMA(ER10:EZ10) 2	9 3		C10-FB10 =FC10-1 =D		24.0	110/1 210	0/FF10 =FK10/FL1		FF10) =SE(FN10<0,05;"Linea	
=DL11^2	=BM11^2 =BN11^2 =				1^2 =BX11^2 =BY11^2 =BZ11^2		=CD11^2 =CE11^2 =	CONTRIBUTION (BATTLET TT)	01112 00112 0111	2 011112 011112	OTTIL DETTE BYTTE	! =DB11^2 =SOMA(EH11:EP11	7 01112 00112	=CK11^2 =CL11^2	=CM11^2 =CN	111^2 =CO11^2 =	CP11^2 =CQ11^2	=SOMA(ER11:EZ11) 2			C11-FB11 =FC11-1 =D		E-0411 11	H11/FE11 =FI11/	/// // // // LIXII// E1		FF11) =SE(FN11<0,05;"Linea	
=DL12^2	=BN12^2	3012^2	^2 =BS12^2 =BT12^2 =BU12^2	?	2^2 =BX12^2 =BY12^2 =BZ12^2	=CA12^2 =CB12^2 =CC12^2	=CD12^2 =CE12^2 =	SOMA(DX12:EF12)	=C112^2 =CU12^2 =CV12	^2 =CW12^2 =CX12^2	=CY12^2 =CZ12^2 =DA12^2	! =DB12^2 =SOMA(EH12:EP12) =Cl12^2 =CJ12^2	=CK12^2 =CL12^2	=CM12^2 =CN	112^2 =CO12^2 =	-CP12^2 =CQ12^2	=SOMA(ER12:EZ12) 2	9 3	=FB12-1 =F(C12-FB12 =FC12-1 =D	M12/EG12 =DW12	=EQ12 =FH	H12/FE12 =FI12/	2/FF12 =FK12/FL1	2 =DISTF(FM12;FE12	FF12) =SE(FN12<0,05;"Linea	ar.";"Não é linear.")

Planilha 4 – Avaliação da Precisa	ão sob Condições de Repetitividade

1/	В	С	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X
2						19	Nível						20	Nível						30	Nível		
3	Mistura	Substância	1ª Replicata	2ª Replicata	3ª Replicata	4ª Replicata	Média	Desv. Pad.	Coef. Var.	1ª Replicata	2ª Replicata	3ª Replicata	4ª Replicata	Média	Desv. Pad.	Coef. Var.	1ª Replicata	2ª Replicata	3ª Replicata	4ª Replicata	Média	Dogy Dad	Coef. Var.
4			Área	Área	Área	Área	Área	Desv. Fau.	Coel. Val.	Área	Área	Área	Área	Área	Desv. Fau.	Coel. val.	Área	Área	Área	Área	Área	Desv. Pad.	Coel. Val.
5		Mevinfós					=MÉDIA(E5:G5)	=DESVPAD(E5:G5)	=(I5*100)/H5					=MÉDIA(L5:N5)	=DESVPAD(L5:N5)	=(P5*100)/O5					=MÉDIA(S5:U5)	=DESVPAD(S5:U5)	=(W5*100)/V5
6		Dimetoato					=MÉDIA(E6:G6)	=DESVPAD(E6:G6)	=(I6*100)/H6					=MÉDIA(L6:N6)	=DESVPAD(L6:N6)	=(P6*100)/O6					=MÉDIA(S6:U6)	=DESVPAD(S6:U6)	=(W6*100)/V6
7		Malaoxon					=MÉDIA(E7:G7)	=DESVPAD(E7:G7)	=(I7*100)/H7					=MÉDIA(L7:N7)	=DESVPAD(L7:N7)	=(P7*100)/O7					=MÉDIA(S7:U7)	=DESVPAD(S7:U7)	=(W7*100)/V7
8		Fenitrotiona					=MÉDIA(E8:G8)	=DESVPAD(E8:G8)	=(I8*100)/H8					=MÉDIA(L8:N8)	=DESVPAD(L8:N8)	=(P8*100)/O8					=MÉDIA(S8:U8)	=DESVPAD(S8:U8)	=(W8*100)/V8
9		Clorpirifós Etil					=MÉDIA(E9:G9)	=DESVPAD(E9:G9)	=(I9*100)/H9					=MÉDIA(L9:N9)	=DESVPAD(L9:N9)	=(P9*100)/O9					=MÉDIA(S9:U9)	=DESVPAD(S9:U9)	=(W9*100)/V9
10		Clorfenvinfós					=MÉDIA(E10:G10)	=DESVPAD(E10:G10)	=(I10*100)/H10					=MÉDIA(L10:N10)	=DESVPAD(L10:N10)	=(P10*100)/O10					=MÉDIA(S10:U10)	=DESVPAD(S10:U10)	=(W10*100)/V10
11	1 [Azinfós Etil					=MÉDIA(E11:G11)	=DESVPAD(E11:G11)	=(I11*100)/H11		-			=MÉDIA(L11:N11)	=DESVPAD(L11:N11)	=(P11*100)/O11					=MÉDIA(S11:U11)	=DESVPAD(S11:U11)	=(W11*100)/V11

Planilha 5 – Avaliação da Exatidão


1A	В	С	D	E F	G	Н	l J	K	L	M N	0	P	R	S	T	U \	/ W	Χ	Υ	Z A	A AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM	NA	AO	AP
2					C	oncent	ração	Teório	ca					Cor	ncentra	ção Ex	perime	ntal										Recuper	ação						
3 M	istura Si	ubstância					ng/kg									mg/kg												%							
4	istura 30	ubstancia	1º Nív	el Rep	icatas	2º Níve	l Repli	icatas	3º Nív	el Repli	icatas	1º Níve	l Repli	icatas	2º Nív	rel Rep	licatas	3º Nív	vel Re	plicata	s	1º Nível	Replicatas		Média		2º Níve	l Replicatas		Média		3º Nível	Replicatas		Média
5			1 ⁸	2ª 3ª	4ª	1ª 2	38	48	1ª	2ª 3ª	4ª	1ª 2	38	4ª	1 ⁸	2ª 3	⁸ 4 ⁸	1ª	2ª	3ª 4ª	18	2ª	3ª	4ª	Replicatas	1ª	2ª	38	4ª	Replicatas	1ª	2ª	3ª	4ª	Replicatas
6		Mevinfós																			=P6*100/D6	=Q6*100/E6	=R6*100/F6	=S6*100/G6	=MÉDIA(AB6:AE6)	=T6*100/H6	=U6*100/I6	=V6*100/J6	=W6*100/K6	=MÉDIA(AG6:AJ6)	=X6*100/L6	=Y6*100/M6	=Z6*100/N6	=AA6*100/O6	=MÉDIA(AL6:AO6)
7		Dimetoato																			=P7*100/D7	=Q7*100/E7	=R7*100/F7	=S7*100/G7	=MÉDIA(AB7:AE7)	=T7*100/H7	=U7*100/I7	=V7*100/J7	=W7*100/K7	=MÉDIA(AG7:AJ7)	=X7*100/L7	=Y7*100/M7	=Z7*100/N7	=AA7*100/O7	=MÉDIA(AL7:AO7)
8	N	Malaoxon																			=P8*100/D8	=Q8*100/E8	=R8*100/F8	=S8*100/G8	=MÉDIA(AB8:AE8)	=T8*100/H8	=U8*100/I8	=V8*100/J8	=W8*100/K8	=MÉDIA(AG8:AJ8)	=X8*100/L8	=Y8*100/M8	=Z8*100/N8	=AA8*100/O8	=MÉDIA(AL8:AO8)
9	F	enitrotiona																			=P9*100/D9	=Q9*100/E9	=R9*100/F9	=S9*100/G9	=MÉDIA(AB9:AE9)	=T9*100/H9	=U9*100/I9	=V9*100/J9	=W9*100/K9	=MÉDIA(AG9:AJ9)	=X9*100/L9	=Y9*100/M9	=Z9*100/N9	=AA9*100/O9	=MÉDIA(AL9:AO9)
10	Clo	orpirifós Etil																			=P10*100/D10	=Q10*100/E10	=R10*100/F10	S10*100/G10	=MÉDIA(AB10:AE10) =T10*100/H1	0 =U10*100/I10	V10*100/J10	=W10*100/K10	=MÉDIA(AG10:AJ10)	=X10*100/L10	=Y10*100/M10	=Z10*100/N10	=AA10*100/O10	=MÉDIA(AL10:AO10)
11	CI	lorfenvinfós																			=P11*100/D11	=Q11*100/E11	=R11*100/F11	1 =S11*100/G11	=MÉDIA(AB11:AE11) =T11*100/H1	1 =U11*100/l1	1 =V11*100/J11	=W11*100/K11	=MÉDIA(AG11:AJ11)	=X11*100/L11	=Y11*100/M11	=Z11*100/N11	=AA11*100/O11	=MÉDIA(AL11:AO11)
12 1	A	zinfós Etil																			=P12*100/D12	=Q12*100/E12	R12*100/F12	2 =S12*100/G12	=MÉDIA(AB12:AE12) =T12*100/H1	2 =U12*100/l12	2 =V12*100/J12	=W12*100/K12	=MÉDIA(AG12:AJ12)	=X12*100/L12	=Y12*100/M12	=Z12*100/N12	=AA12*100/O12	=MÉDIA(AL12:AO12)



	0 2 1 0 11		0 1 2 11 0 1	0 1 1 1 X	1 2 70	, , , ,				7.0	,	7 11	710	7 31 1	7 31	7.0	7 41 4	712	7 (14)	147 1	7.10	7 11	7100 7111		711 710 711	700 701 702 570 55
2	Conce	ıtração Teórica	Concentra	ação Experimental	<u> </u>			Equação (110	gredido								(v - Y)	
Mistura Substância		mg/kg		mg/kg			C	onc. Exp.= b x	Conc. Teo. + a								onc. Teo. + a								· · · · ·	
4 Mistara Substance	1º Nível Replicatas 2º Ní	el Replicatas 3º Nível Replica	itas 1º Nível Replicatas 2º Ní	ivel Replicatas 3º I	Nível Replicatas	s b			a	r		1º Ní	el Replicatas			2º Níve	l Replicatas			3º Níve	el Replicatas		1º Nível I	Replicatas	2º Nível Replicatas	3º Nível Replicatas
5	18 28 38 48 18	28 38 48 18 28 38	48 18 28 38 48 18	2ª 3ª 4ª 1ª	28 38 48	Coef.	Ang.	Coe	f. Lin.	Coef. de Cor.	1 ⁸	2ª	3ª	4ª	18	2ª	3ª	4ª	1ª	2ª	3ª	4ª	1 ⁸ 2 ⁸	3 ⁸	4ª 1ª 2ª 3ª	4ª 1ª 2ª 3ª 4ª
6 Mevinfós						=INCLINAÇÃO(P6:	:AA6;D6:O6) =	INTERCEPÇÃO(P6:AA6;D6:O6)	=CORREL(P6:AA6;D6:O	s) =(\$AB6*D6)+\$AC	6 =(\$AB6*E6)+\$AC6	=(\$AB6*F6)+\$AC6	=(\$AB6*G6)+\$AC6	=(\$AB6*H6)+\$AC6	=(\$AB6*I6)+\$AC6	=(\$AB6*J6)+\$AC6	=(\$AB6*K6)+\$AC6	=(\$AB6*L6)+\$AC6	=(\$AB6*M6)+\$AC6	=(\$AB6*N6)+\$AC6	=(\$AB6*O6)+\$AC6	=P6-AE6 =Q6-AF6	=R6-AG6 =Sf	6-AH6 =T6-AI6 =U6-AJ6 =V6-AK6	=W6-AL6 =X6-AM6 =Y6-AN6 =Z6-AO6 =AA6-AP6
7 Dimetoato						=INCLINAÇÃO(P7:	:AA7;D7:O7) =	INTERCEPÇÃO(P7:AA7;D7:07)	=CORREL(P7:AA7;D7:0	7) =(\$AB7*D7)+\$AC	7 =(\$AB7*E7)+\$AC7	=(\$AB7*F7)+\$AC7	=(\$AB7*G7)+\$AC7	=(\$AB7*H7)+\$AC7	=(\$AB7*I7)+\$AC7	=(\$AB7*J7)+\$AC7	=(\$AB7*K7)+\$AC7	=(\$AB7*L7)+\$AC7	=(\$AB7*M7)+\$AC7	=(\$AB7*N7)+\$AC7	=(\$AB7*O7)+\$AC7	=P7-AE7 =Q7-AF7	=R7-AG7 =S7	7-AH7 =T7-AI7 =U7-AJ7 =V7-AK7	=W7-AL7 =X7-AM7 =Y7-AN7 =Z7-AO7 =AA7-AP7
8 Maloxon						=INCLINAÇÃO(P8:	:AA8;D8:O8) =	INTERCEPÇÃO(P8:AA8;D8:08)	=CORREL(P8:AA8;D8:O	3) =(\$AB8*D8)+\$AC	8 =(\$AB8*E8)+\$AC8	=(\$AB8*F8)+\$AC8	=(\$AB8*G8)+\$AC8	=(\$AB8*H8)+\$AC8	=(\$AB8*18)+\$AC8	=(\$AB8*J8)+\$AC8	=(\$AB8*K8)+\$AC8	=(\$AB8*L8)+\$AC8	=(\$AB8*M8)+\$AC8	=(\$AB8*N8)+\$AC8	=(\$AB8*O8)+\$AC8	=P8-AE8 =Q8-AF8	=R8-AG8 =S8	8-AH8 =T8-AI8 =U8-AJ8 =V8-AK8	=W8-AL8 =X8-AM8 =Y8-AN8 =Z8-AO8 =AA8-AP8
9 Fenitrotion:	1					=INCLINAÇÃO(P9:	:AA9;D9:O9) =	INTERCEPÇÃO(P9:AA9;D9:O9)	=CORREL(P9:AA9;D9:O) =(\$AB9*D9)+\$AC	9 =(\$AB9*E9)+\$AC9	=(\$AB9*F9)+\$AC9	=(\$AB9*G9)+\$AC9	=(\$AB9*H9)+\$AC9	=(\$AB9*I9)+\$AC9	=(\$AB9*J9)+\$AC9	=(\$AB9*K9)+\$AC9	=(\$AB9*L9)+\$AC9	=(\$AB9*M9)+\$AC9	=(\$AB9*N9)+\$AC9	=(\$AB9*O9)+\$AC9	=P9-AE9 =Q9-AF9	=R9-AG9 =S ^c	9-AH9 =T9-AI9 =U9-AJ9 =V9-AK9	=W9-AL9 =X9-AM9 =Y9-AN9 =Z9-AO9 =AA9-AP9
10 Clorpirifós E	til					=INCLINAÇÃO(P10	0:AA10:D10:O10) =	INTERCEPCÃO	P10:AA10:D10:O	10) = CORREL(P10:AA10:D1):O10 = (\$AB10*D10)+\$/	AC10 =(\$AB10*E10)+\$A	C10 =(\$AB10*F10)+\$AC	10 =(\$AB10*G10)+\$AC	10 =(\$AB10*H10)+\$AC1	0 =(\$AB10*I10)+\$AC1	0 =(\$AB10*J10)+\$AC1	0 =(\$AB10*K10)+\$AC1	0 =(\$AB10*L10)+\$AC10	=(\$AB10*M10)+\$AC1	10 =(\$AB10*N10)+\$AC1	0 =(\$AB10*O10)+\$AC1	10 =P10-AE10 =Q10-AF10	J =R10-AG10 =S1	10-AH10 =T10-AI10 =U10-AJ10 =V10-AK10	=W10-AL10 =X10-AM10 =Y10-AN10 =Z10-AO10 =AA10-AP1
11 Clorfenvinfó	5					=INCLINAÇÃO(P11	1:AA11:D11:O11) =	INTERCEPÇÃO	P11:AA11:D11:0	11)=CORREL(P11:AA11:D1	I:O11 = (\$AB11*D11)+\$	AC11 =(\$AB11*E11)+\$A	C11 =(\$AB11*F11)+\$AC	11 =(\$AB11*G11)+\$AC	11 =(\$AB11*H11)+\$AC1	11 =(\$AB11*I11)+\$AC1	1 =(\$AB11*J11)+\$AC1	1 =(\$AB11*K11)+\$AC1	1 =(\$AB11*L11)+\$AC11	=(\$AB11*M11)+\$AC1	11 =(\$AB11*N11)+\$AC1	1 =(\$AB11*O11)+\$AC1	11 =P11-AE11 =Q11-AF11	=R11-AG11 =S1	11-AH11=T11-AI11 =U11-AJ11 =V11-AK11	=W11-AL11 =X11-AM11 =Y11-AN11 =Z11-AO11 =AA11-AP1
12 1 Azinfós Eti						=INCLINAÇÃO(P12	2:AA12:D12:O12)=	INTERCEPÇÃO	P12:AA12:D12:0	12 = CORREL(P12:AA12:D1	2:O12 =(\$AB12*D12)+\$/	AC12 =(\$AB12*E12)+\$A	C12 =(\$AB12*F12)+\$AC	12 =(\$AB12*G12)+\$AC	12 =(\$AB12*H12)+\$AC1	2 =(\$AB12*I12)+\$AC1;	2 =(\$AB12*J12)+\$AC1	2 =(\$AB12*K12)+\$AC1;	2 =(\$AB12*L12)+\$AC12	=(\$AB12*M12)+\$AC1	12 =(\$AB12*N12)+\$AC1	2 =(\$AB12*O12)+\$AC1	12 =P12-AE12 =Q12-AF12	=R12-AG12 =S1	12-AH12 =T12-AI12 =U12-AJ12 =V12-AK12	=W12-AL12 =X12-AM12 =Y12-AN12 =Z12-AO12 =AA12-AP1
BC BD BE	BF BG BH BI	BJ BK BL	BM BN BO	BP	BQ	BR I	BS 1	BT BU	BV	BW BX	BY BZ	CA CB C	C CD CE	CF CG	CH CI (CJ CK CL	CM CN CO	CP CQ	CR CS	CT CU		CV	CW	CX CY	CZ	DA
	(y - Y)²			_	LD mg/kg	LQ mg/kg	t = 2,228				x - xm					(x - x	m)²		1	m = n =					LD	LQ
1º Nível Replicatas	2º Nível Replic	as 3º Nível Rep	licatas Σ(ŋ - Υ)²	S.,,		40.0			1º Nível Re	plicatas	2º Nível Replic	atas	3º Nível Replicat	as	1º Nível Replicatas	2º Nível R	eplicatas	3º Nível Replicatas	Σ(x - xm) ²	4 3	7	ус	XC	xc-xm (xc - xn	m)²	
1 ⁸ 2 ⁸ 3 ⁸	4 ⁸ 1 ⁸ 2 ⁸ 3 ⁸	48 18 28	3 ⁸ 4 ⁸		3,3 х S ть	10 х S ть	xm	xm² 1ª	2ª	38 48	1 ⁸ 2 ⁸	3 ⁸ 4 ⁸ 1	28 38	4ª 1ª	2ª 3ª	4ª 1ª 2ª	3ª 4ª 1ª	2ª 3ª	4 ⁸	1/m = 1/n =	1				mg/kg	mg/kg
=AQ6^2 =AR6^2 =AS6^2 =	AT6^2 =AU6^2 =AV6^2 =AW6	2 =AX6^2 =AY6^2 =AZ6^2 =B	A6^2 =BB6^2 =SOMA(BC6:BN6) =RAIZ(BO6/10)	=(3,3*BP6)/\$AB6	=(10*BP6)/\$AB6	=MĖDIA(D6:O6) =	BS6^2 =D6-\$BS	6 =E6-\$BS6 =	F6-\$BS6 =G6-\$BS6 =H6-\$	BS6 =16-\$BS6 =J6-	\$BS6 =K6-\$BS6 =L6-\$E	S6 =M6-\$BS6 =N6-\$B	S6 =06-\$BS6 =BU6^2	2 =BV6^2 =BW6^2 =BX	(6^2 =BY6^2 =BZ6^2	=CA6^2 =CB6^2 =CC6^2	2 =CD6^2 =CE6^2 =CF	F6^2 =SOMA(CG6:CR6)	=1/\$CT\$4 =1/\$CU\$4	=AC6+(BP6*2,228*RAIZ(((CT6+CU6+(BT6/CS6))))	=(CV6-AC6)/AB6 =	-CW6-BS6 =CX6^2	=2*(BP6*(2,228/AB6)*RAIZ(CT6+CU6+(CY6/CS	(66))) =3*(BP6*(2,228/AB6)*RAIZ(CT6+CU6+(CY6/CS6)))
=AQ7^2 =AR7^2 =AS7^2 =	AT7^2 =AU7^2 =AV7^2 =AW7	2 =AX7^2 =AY7^2 =AZ7^2 =B	A7^2 =BB7^2 =SOMA(BC7:BN7) =RAIZ(BO7/10)	=(3,3*BP7)/\$AB7	=(10*BP7)/\$AB7	=MÉDIA(D7:07) =	BS7^2 =D7-\$BS	7 =E7-\$BS7 =	F7-\$BS7 =G7-\$BS7 =H7-\$	BS7 =17-\$BS7 =J7-	\$BS7 =K7-\$BS7 =L7-\$E	S7 =M7-\$BS7 =N7-\$B	S7 =07-\$BS7 =BU7^2	? =BV7^2 =BW7^2 =BX	(7^2 =BY7^2 =BZ7^2	=CA7^2 =CB7^2 =CC7^2	2 =CD7^2 =CE7^2 =CF	F7^2 =(SOMA(CG7:CR7))	=1/\$CT\$4 =1/\$CU\$4	=AC7+(BP7*2,228*RAIZ((CT7+CU7+(BT7/CS7))))	=(CV7-AC7)/AB7 =	-CW7-BS7 =CX7^2	2 =2*(BP7*(2,228/AB7)*RAIZ(CT7+CU7+(CY7/CS	(57))) =3*(BP7*(2,228/AB7)*RAIZ(CT7+CU7+(CY7/CS7)))
=AQ8^2 =AR8^2 =AS8^2 =	AT8^2 =AU8^2 =AV8^2 =AW8	2 =AX8^2 =AY8^2 =AZ8^2 =B	A8^2 =BB8^2 =SOMA(BC8:BN8) =RAIZ(BO8/10)	=(3,3*BP8)/\$AB8	=(10*BP8)/\$AB8	=MÉDIA(D8:08) =	BS8^2 =D8-\$BS	8 =E8-\$BS8 =	F8-\$BS8 =G8-\$BS8 =H8-\$	BS8 =18-\$BS8 =J8-	\$BS8 =K8-\$BS8 =L8-\$E	S8 =M8-\$BS8 =N8-\$B	S8 =08-\$BS8 =BU8^2	? =BV8^2 =BW8^2 =BX	(8^2 =BY8^2 =BZ8^2	=CA8^2 =CB8^2 =CC8^2	2 =CD8^2 =CE8^2 =CF	F8^2 =(SOMA(CG8:CR8))	=1/\$CT\$4 =1/\$CU\$4	=AC8+(BP8*2,228*RAIZ()	(CT8+CU8+(BT8/CS8))))	=(CV8-AC8)/AB8 =	-CW8-BS8 =CX8^2	2 =2*(BP8*(2,228/AB8)*RAIZ(CT8+CU8+(CY8/CS	(S8))) =3*(BP8*(2,228/AB8)*RAIZ(CT8+CU8+(CY8/CS8)))
=AQ9^2 =AR9^2 =AS9^2 =	AT9^2 =AU9^2 =AV9^2 =AW9	2 =AX9^2 =AY9^2 =AZ9^2 =B	A9^2 =BB9^2 =SOMA(BC9:BN9) =RAIZ(BO9/10)	=(3,3*BP9)/\$AB9	=(10*BP9)/\$AB9	=MÉDIA(D9:09) =	BS9^2 =D9-\$BS	9 =E9-\$BS9 =	F9-\$BS9 =G9-\$BS9 =H9-\$	BS9 =19-\$BS9 =J9-	\$BS9 =K9-\$BS9 =L9-\$E	S9 =M9-\$BS9 =N9-\$B	S9 =09-\$BS9 =BU9^2	? =BV9^2 =BW9^2 =BX	(9^2 =BY9^2 =BZ9^2	=CA9^2 =CB9^2 =CC9^	2 =CD9^2 =CE9^2 =CF	F9^2 =(SOMA(CG9:CR9))	=1/\$CT\$4 =1/\$CU\$4	=AC9+(BP9*2,228*RAIZ((CT9+CU9+(BT9/CS9))))	=(CV9-AC9)/AB9 =	-CW9-BS9 =CX9^2	2 =2*(BP9*(2,228/AB9)*RAIZ(CT9+CU9+(CY9/CS	(S9))) =3*(BP9*(2,228/AB9)*RAIZ(CT9+CU9+(CY9/CS9)))
=AQ10^2 =AR10^2 =AS10^2 =	AT10^2 =AU10^2 =AV10^2 =AW	^2=AX10^2 =AY10^2 =AZ10^2 =B	A10^2 =BB10^2 =SOMA(BC10:BN	10) =RAIZ(BO10/10)	=(3,3*BP10)/\$AB1	0 =(10*BP10)/\$AB10	=MEDIA(D10:O10) =	BS10^2 =D10-\$B\$	310 =E10-\$BS10 =	F10-\$BS10 =G10-\$BS10 =H10	\$BS10 =I10-\$BS10 =J10	0-\$BS10 =K10-\$BS10 =L10-\$	BS10 =M10-\$BS10 =N10-\$E	BS10 =010-\$BS10 =BU10 ^a	2 =BV10^2 =BW10^2 =BX	(10^2 =BY10^2 =BZ10^2	=CA10^2 =CB10^2 =CC10	^2 =CD10^2 =CE10^2 =CF	F10^2 =(SOMA(CG10:CR1	0)) =1/\$CT\$4 =1/\$CU\$4	=AC10+(BP10*2,228*RAI	Z((CT10+CÙ10+(BT10/CS1	10)))) =(CV10-AC10)/AB10 =	-CW10-BS10 =CX10^	2 =2*(BP10*(2,228/AB10)*RAIZ(CT10+CU10+(CY	(10/CS10))) =3*(BP10*(2,228/AB10)*RAIZ(CT10+CU10+(CY10/CS10)))
=AQ11^2 =AR11^2 =AS11^2 =	AT11^2 =AU11^2 =AV11^2 =AW	^2=AX11^2 =AY11^2 =AZ11^2 =B	A11^2 =BB11^2 =SOMA(BC11:BN	11) =RAIZ(BO11/10)	=(3,3*BP11)/\$AB1	1 =(10*BP11)/\$AB11	=MĖDIA(D11:O11) =	BS11^2 =D11-\$B	S11 =E11-\$BS11 =	F11-\$BS11 =G11-\$BS11 =H11	\$BS11 =I11-\$BS11 =J1	1-\$BS11 =K11-\$BS11 =L11-\$	BS11 =M11-\$BS11 =N11-\$E	BS11 =011-\$BS11 =BU114	2 =BV11^2 =BW11^2 =BX	(11^2 =BY11^2 =BZ11^2	=CA11^2 =CB11^2 =CC11	^2 =CD11^2 =CE11^2 =CF	F11^2 =(SOMA(CG11:CR1	1)) =1/\$CT\$4 =1/\$CU\$4	=AC11+(BP11*2,228*RAI	Z((CT11+CU11+(BT11/CS1	11)))) =(CV11-AC11)/AB11 =	-CW11-BS11=CX11^	2 =2*(BP11*(2,228/AB11)*RAIZ(CT11+CU11+(C)	(11/CS11))) =3*(BP11*(2,228/AB11)*RAIZ(CT11+CU11+(CY11/CS11)))
=AQ12^2 =AR12^2 =AS12^2 =	AT12^2 =AU12^2 =AV12^2 =AW	^2=AX12^2 =AY12^2 =AZ12^2 =B	A12^2 =BB12^2 =SOMA(BC12:BN	12) =RAIZ(BO12/10)	=(3,3*BP12)/\$AB1	2 =(10*BP12)/\$AB12	=MÈDIA(D12:O12) =	BS12^2 =D12-\$B\$	S12 =E12-\$BS12 =	F12-\$BS12 =G12-\$BS12 =H12	\$BS12 =I12-\$BS12 =J12	2-\$BS12 =K12-\$BS12 =L12-\$	BS12 =M12-\$BS12 =N12-\$E	BS12 =012-\$BS12 =BU12 ^a	2 =BV12^2 =BW12^2 =BX	(12^2 =BY12^2 =BZ12^2	=CA12^2 =CB12^2 =CC12	^2 =CD12^2 =CE12^2 =CF	F12^2 =(SOMA(CG12:CR1:	2)) =1/\$CT\$4 =1/\$CU\$4	=AC12+(BP12*2,228*RAI	Z((CT12+CU12+(BT12/CS1	12)))) =(CV12-AC12)/AB12 =	-CW12-BS12 =CX12^	2 =2*(BP12*(2,228/AB12)*RAIZ(CT12+CU12+(C)	(12/CS12))) =3*(BP12*(2,228/AB12)*RAIZ(CT12+CU12+(CY12/CS12)))

Referências Bibliográficas

- 1. BRITO, N.; JUNIOR, O.; POLESE, L.; RIBEIRO, M. Validação de Métodos Analíticos: Estratégia e Discussão. Pesticidas: R. Ecotoxicol. e Meio Ambiente, Curitiba, v.13, p. 129 2. CODEX ALIMENTARIUS. Pesticide Residues in Food. Methods of Analysis and sampling. 2th ed., v. 2A, part. 1, 2000. 3. COSTA, T. Utilização de Planilha Eletrônica para Calibração Instrumental, Análise de Variância e Testes de Significância de um Método Espectrofotométrico. Revista Analytica,
- nº 21, p. 46 51, Março 2006. 4. RIBANI, M.; BOTTOLI, C.; COLLINS C.; JARDIM, I.; MELO, L. Validação em Métodos Cromatográficos e Eletrofoéticos. Química Nova, v. 27, nº 5, p. 771 – 780, 2004. 5. SANCO/10476/2003. Quality Control Procedures for Pesticide Residues Analysis. 5/February/2004.
- 6. THOMPSON, M.; ELLISON, S.; WOOD, R. Harmonized Guidelines for Single Laboratory Validation of Methods of Analysis. Pure Appl. Chem., v. 74, nº 5, p. 835 855, 2002. 7. http://www.anvisa.gov.br/toxicologia/monografias/index.htm, Acesso em Outubro de 2005.
 8. ZOONEN, P.; HOOGERBRUGGE R.; GORT, S.; WIEL, H.; KLOOSTER, H. Some practical examples of method validation in analytical laboratory. Trends in Analytical Chemistry,

