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Introduction
Asthma is one of the main chronic diseases of contemporary 

man, affecting people in countries at all stages of economic and social 
development and is a major public health burden worldwide. The global 
prevalence of asthma has markedly increased over the last 50 years. 
Around 300 million people have asthma worldwide, and each year 
250 thousand people die due to this disease [1,2]. Asthma is a chronic 
inflammatory disease of the lungs characterized by variable airway 
obstruction in association with airway hyperresponsiveness (AHR) 
that leads to symptoms including recurrent episodes of wheezing, chest 
tightness and coughing [3,4].

The inflammatory response observed in airways of asthmatic 
patients is characterized by accumulation of mast cells, eosinophils 
and type 2 CD4+ T cells (Th2 cells). Th2 cells are central to the 
pathogenesis of asthma, since Th2-type cytokines orchestrate the 
allergic inflammatory response in asthma, including IgE synthesis, 
Th2 cells, eosinophils and mast cells survival, eosinophil and mast cell 
maturation and basophil recruitment [3,5]. Moreover, the infiltration of 
type 17 CD4+ T cells (Th17 cells) in the airway walls of some asthmatic 
patients and the severity of AHR is correlated with the presence of these 
cells. This evidence suggests the role of Th17 cells in driving airway 
inflammation and pathological changes in some cases of asthma. In 
fact, activation of Th17 cells is closely associated with asthma severity, 
neutrophil recruitment and development of steroid-resistance in 
asthmatic subjects [6,7]. Moreover, asthmatics show structural changes 
in the airway wall called airway remodeling. These changes including 
epithelial shedding increased airway smooth muscle mass and mucus-
producing goblet cells in the epithelium or submucosal glands and sub-
epithelial fibrosis [4].

In type 1 diabetes, glucagon and insulin secretion from pancreatic 
α- and β-cells, respectively, become dysregulated with hypersecretion 
of glucagon and hyposecretion of insulin resulting in hyperglycemia 
[8]. Uncontrolled type 1 diabetic patients present a lower prevalence 
of allergic diseases, including asthma [9,10]. One hypothesis to explain 
this negative correlation between type 1 diabetes and asthma is that 
autoimmune diseases, including diabetes, involve a Th1 response while 
allergic diseases are associated with the Th2 phenotype [11,12]. We 
showed that alloxan-diabetic rats presented decrease in the allergen-
induced acute protein leakage and eosinophil infiltration in skin, 
intestine and pleural space. This suppression of allergic responses in 

diabetic rats was correlated with reduction in IgE synthesis and number 
of local mast cells [13-16].

Hypoglycemic Hormones and Asthma
The maintenance of glucose homeostasis requires a tight regulation 

of glucose utilization by liver, muscle and fat, besides the glucose 
production and release in the blood by liver. This homeostatic process 
is controlled by two classes of hormones: i) hypoglycemics that 
induce uptake of glucose to peripheral tissues; ii) hyperglycemics that 
stimulate hepatic glycogenolysis and gluconeogenesis [17]. Among the 
hypoglycemic hormones, stands insulin that is produced by pancreatic β 
cells and acts by inhibiting hepatic gluconeogenesis and glycogenolysys 
and stimulating glucose storage by liver, muscle and fat as promoting 
glucose uptake and utilization by muscle and adipose tissues [18].

In diabetic patients, treatment with inhaled insulin induces 
decrease in forced expiratory volume in 1 second (FEV-1) [19]. 
Moreover, uncontrolled insulin-dependent diabetic patients present a 
less incidence of asthma [9,10]. In inflammatory and structural cells 
involved in asthma pathogenesis, insulin is able to modulate T cell 
differentiation promoting a shift towards a Th2-type response, which is 
central to the pathogenesis of asthma, with an increase in the number of 
Th2 cells and Th2-cytokine profile [20]. Furthermore, insulin promotes 
mast cell survival and a more robust antigen-triggered mast cell 
degranulation [21,22], and enhances contractility and proliferation of 
airway smooth muscle [23], through a mechanism dependent on PI3K 
pathway activation [21,24]. In keeping with this, hyporesponsiveness 
to antigen observed in the airways and pleural space of diabetic rats 
was reversed by treatment of the animals with insulin [25,26]. In 
association, these evidences indicate that insulin seems to aggravate 
asthma symptoms.
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Asthma is a chronic inflammatory disease whose prevalence has increased in the last 50 years. Several hormones 

can determine the course of asthma pathogenesis. Furthermore, some endocrine disorders, including diabetes and 
obesity, have been identified as important factors that influence the prevalence of asthma. These endocrine disorders 
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that while hypoglycemic hormones, including insulin and leptin aggravate asthma, the hyperglycemic hormones, as 
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Although insulin is the major hypoglycemic hormone, it is known 
that other hormones can reduce the circulating levels of glucose. These 
hormones are produced by adipose tissue, including adiponectin and 
leptin, and gastrointestinal tract, as glucose-dependent insulinotropic 
peptide (GIP) and glucagon-like peptide-1 (GLP-1) [27,28]. Animal 
models of untreated type 1 and type 2 diabetes present leptin deficiency 
accompanied by insulin resistance [29,30], and central or peripheral 
leptin administration was able to restore normoglycemia in animal 
models of type 1 and type 2 diabetes [31-35]. This hypoglycemic effect 
of leptin in diabetes is associated with lowers circulating glucagon 
levels, decreases gluconeogenic gene expression and improves insulin 
sensitivity and release [35]. Furthermore, leptin is able to suppress 
glucose production in non-diabetic animals by a mechanism associated 
with decrease of hepatic glycogenolysis without affecting glucose 
uptake [36].

Receptors for both leptin and adiponectin are expressed in lungs 
[37], however only some experimental evidences supported that leptin 
and adiponectin could have a role in the pathogenesis of asthma. Leptin 
has a pro-inflammatory profile in cells that have an important role in 
asthma, including mast cell activation, CD4+ T cells proliferation and 
induction of cytokine release and migration of eosinophils [38-41]. 
Furthermore, leptin increases inflammatory cells mobilization to 
bronchoalveolar fluid and airway hyperreactivity following allergen 
challenge [42].

In addition to leptin, another important hormone produced by 
adipose tissue that influences glucose homeostasis is adiponectin. 
Adiponectin induces decrease of systemic glucose levels by increasing 
glucose uptake, reducing hepatic glucose production and improving 
insulin sensitivity [43-45]. Unlike leptin, adiponectin seems to 
present an anti-asthmatic profile since adiponectin knockout mice 
presented an increase of allergic airway inflammation [46], and 
adiponectin administration was able to reduce allergen-induced airway 
hyperreactivity and inflammation in mice [47]. However, adiponectin 
may have an important pro-inflammatory action in severe asthma 
and, especially, in steroid-resistance in asthmatic subjects since this 
hormone is highly expressed in synovium of patients with rheumatoid 
arthritis [48,49], activates synovial fibroblast inducing cytokine release 
and matrix degrading effects [50,51], and induces maturation and 
activation of dendritic cells polarizing naïve CD4+ T cells into Th17 
phenotype [52].

GIP and GLP-1 modulate glucose homeostasis through of an 
“incretin” effect, which is a potentiation of glucose stimulated insulin 
secretion in an additive manner [53,54]. However, until now there is 
no information about the role of these incretins on allergic diseases, 
including asthma, and on inflammatory cells which are central in 
development of asthma.

Hyperglycemic Hormones and Asthma
The hyperglycemic hormones are secreted during fasting to 

maintaining blood glucose levels and preventing hypoglycaemia. 
Glucagon is secreted by pancreatic α-cells, and considered as the body’s 
primary defence against low blood glucose levels [55]. Glucagon induces 
hyperglycemia through stimulation of synthesis and mobilization of 
hepatic glucose, by activating glycogenolysis and gluconeogenesis and 
inhibition of glycolysis and glycogenesis [56,57]. Here, we showed 
that mice treated i.p. with glucagon for 7 consecutive days presented a 
reduction in the plasma insulin levels (Figure 1), which could be partly 
explained by the hyperglycemic effect of this hormone too. Moreover, 
although fasting plasma glucagon levels are not elevated in patients 

with type 1 and type 2 diabetes [58,59], significant elevations were 
shown with serial sampling in both type of diabetes [60,61]. 

In asthmatic patients, glucagon presents a relaxant action on the 
airway smooth muscle inducing an improvement in the lung function 
[62,63], however this effect of glucagon needs to be further elucidated 
since some studies did not show any significant bronchodilator effect of 
glucagon on these patients [64,65]. Despite this controversy about the 
bronchodilator effect of glucagon in asthmatics, the lungs of rats express 
glucagon receptor (GcgR), and glucagon relaxes guinea pig bronchiolar 
smooth muscle in vitro independently of β-adrenergic receptor 
stimulation [66,67]. We showed that glucagon inhibited the allergen-
evoked histamine release from rat subcutaneous tissue fragments in 
vitro (Figure 1), indicating a putative mast cell-stabilizing properties by 
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Figure 1: Glucagon reduces plasma insulin levels, peritoneal and mesenteric 
mast cell numbers, and mast cell reactivity in vitro.
Glucagon (10 or 100µg/Kg, i.p.) was administered once a day for 7 days 
in male Swiss-Webster mice. Then, plasma insulin levels, peritoneal and 
mesenteric mast cell numbers were evaluated (A, B and C, respectively). 
Data are expressed as mean ± S.E.M. of 6 animals. * P< 0.05 as compared to 
untreated mice. (D) Hypodermic tissue was removed from actively sensitized 
rats and challenged with OVA (300 µg/ml) in vitro during 1h, and supernatant 
was recovered to histamine evaluation by fluorescence. Treatment with 
glucagon (0.1 or 1 µM) was realized in vitro 1h before challenge. Data are 
expressed as mean ± S.E.M. of 4 replicates. +P< 0.05 as compared to non-
challenged tissue; #P< 0.05 as compared to ovalbumin-challenged tissue.
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this hormone. Moreover, i.p. daily treatment with glucagon for 7 days 
induced a decrease in peritoneal and mesenteric mast cell numbers in 
a clear association with reduction of plasma insulin levels (Figure 1). 
Other important inflammatory cells for development of asthma that 
may have its activity negatively modulated by glucagon are lymphocytes, 
since these cells express GcgR. However, although lymphocytes express 
GcgR, this hormone was not able to change the proliferation of these 
cells induced by anti-CD3 or LPS [68]. Nevertheless, glucagon can act 
reducing Th2 cytokine production by lymphocytes since the activation 
of GcgR induces an increase in the intracellular cAMP levels [67], and 
forskolin, an adenylate cyclase activator that elevates cAMP, induces 
apoptosis of T cells in vitro [69].

Beyond glucagon, others hormones including epinephrine 
and glucocorticoids increasing blood glucose levels in response 
to hypoglycemia and stress situation [17]. Epinephrine is mainly 
produced in the adrenal medulla by a methylation reaction from 
norepinephrine catalyzed by the enzyme phenylethanolamine 
N-methyltransferase. Epinephrine induces hyperglycemia through 
activation of glycogenolysis and hepatic gluconeogenisis, stimulation 
of glucagon and inhibition of insulin release, and induction of insulin 
resistance. As glucagon, epinephrine induces glycogenolysis and 
gluconeogenisis by increasing the intracellular levels of cAMP through 
the activation of β-adrenergic receptors [70,71]. Although, epinephrine 
is less potent in inducing hyperglycemia than glucagon, epinephrine 
becomes essential in the control of glucose homeostasis when glucagon 
actions are impaired, [72].

Airway smooth muscle expresses all subtypes of epinephrine 
receptors, with predominance of the β2 receptors. The activation of 
these receptors in airway smooth muscle promotes opposite effects; 
while α receptors induces contraction, the β receptors relax the muscle. 
An imbalance in the expression of these receptors on airway smooth 
muscle could be involved in the etiology of bronchial asthma [73]. 
Moreover, it was observed that asthmatic patients present a decrease in 
levels of endogenous epinephrine and this fact could explain the high 
effectiveness associated to the administration of exogenous epinephrine 
on asthma [74]. Furthermore, epinephrine was used as a standard 
treatment for severe asthma before the development of β2 receptors 
selective agonists. Nowadays, epinephrine is used when asthmatic 
patients do not respond to the conventional treatment [75,76] and the 
inhaled β2 agonists associated with inhaled corticosteroids became the 
standard therapy for asthma [77]. In addition, activation of β2 receptors 
inhibits the function of various inflammatory cells involved in asthma 
pathogenesis, including IgE-evoked release of histamine, PGD2 e 
cysteynil-leukotrienes by mast cells [78]; ovalbumin-induced airway 
eosinophil infiltration and adhesion of eosinophils to lung fibroblast 
[79,80]; IL-4 and IL-13 production by human T cells [81,82]; pro-
inflammatory and pro-fibrotic mediators release and matrix production 
by lung fibroblasts [83,84].

Glucocorticoids are produced in the adrenal cortex under the 
control of hypothalamic-pituitary-adrenal (HPA) axis [85]. Moreover, 
the 11β-hydroxysteroid dehydrogenase (11β-HSD) enzymes can 
modulate the biological effects of glucocorticoids in target tissues since 
11β-HSD type 1 amplifies local glucocorticoids action by conversion 
of cortisone to cortisol [86]. Glucocorticoids increase blood glucose by 
increasing hepatic glucose production, decreasing insulin-dependent 
glucose uptake into peripheral tissues, and inhibiting insulin release 
from pancreatic β-cells [87]. Furthermore, disruption of glucocorticoid 
receptor (GR) in hepatocytes leads to hypoglycemia during prolonged 
starvation, and inactivation of GR in hepatocytes reduces blood glucose 

levels in streptozotocin-induced diabetes [88].

Currently, glucocorticoids are recommended as first-line therapy 
for all patients with persistent asthma [89]. Glucocorticoids have 
its anti-inflammatory effect on several structural and inflammatory 
cells involved in asthma pathogenesis [90]. In inflammatory cells, 
glucocorticoids inhibit activation and proliferation of T cells and 
induce apoptosis of T cells, B cells, eosinophils and mast cells [91]. 
Moreover, glucocorticoids suppress the activity of the transcription 
factor GATA-3, that regulates the expression of genes encoding 
cytokines involved in asthma pathophysiology including IL-4, IL-5 
and IL-13, in Th2 cells which results in decreased production of these 
cytokines by these cells [92]. However, the action of glucocorticoids 
in Th17 cells is not well established yet. Although glucocorticoids are 
able to reduce the production of IL-17 in asthmatics [93], this hormone 
does not inhibit cytokine production by Th17 cells in vitro, and the 
treatment with dexamethasone in vivo did not minimize inflammation 
and hyperreactivity of the airways of mice that received Th17 cells and 
were challenged with ovalbumin [94]. Furthermore, glucocorticoids 
inhibit the release of Th2-cytokines, including IL-4 and IL-5, and 
lipid mediators by eosinophils and mast cells [91]. We previously 
described that alloxan-induced diabetic rats presented an increase in 
the circulating corticosterone levels [14,95]. Besides, the decrease in the 
mast cell numbers and reactivity and antigen-induced IgE production 
as well as reduction of local and systemic antigenic response noted in 
alloxan-induced diabetes were reversed by surgical removal of adrenal 
glands and by treatment with the glucocorticoid receptor blocker 
RU486 [13,96]. 

In structural cells, glucocorticoids inhibit airway smooth muscle 
proliferation in vitro [97]. It also has been demonstrated that treatment 
with budesonide, an inhaled glucocorticosteroid, prevents airway 
smooth muscle thickening, contractile protein expression and tracheal 
hypercontractility in guinea pigs sensitized and challenged with 
ovalbumin [98]. Glucocorticoids are also able to inhibit airway smooth 
muscle contraction promoted by histamine, bradykinin or acetylcholine 
in vitro in a mechanism that involves increase in the intracellular 
levels of cAMP in airway smooth muscle cells [99]. Moreover, it 
was demonstrated that glucocorticoids increase the expression of β2 
receptor in human lungs in vitro and in nasal mucosa in vivo, which 
could prevent the down-regulation of these receptors after prolonged 
administration with β2 agonists and thus enhance the effects of these 
agonists [77]. Besides, glucocorticoids inhibit cytokine generation by 
airway smooth muscle cells and epithelial cells [100,101]; however it 
is not defined if this hormone has a damaging or protective effect on 
epithelial cells, because some studies demonstrated that glucocorticoids 
increase apoptosis and epithelial shedding while others observed that 
the therapy with inhaled glucocorticoids restored epithelium integrity 
[101]. The anti-asthmatic action of glucocorticoids on pulmonary 
fibroblasts remains undefined. This is because, although glucocorticoids 
inhibit the production of fibronectin by stimulated lung fibroblast, it 
partially reduced the airway wall thickening and matrix deposition in 
a rat model of airway remodeling induced by allergen [102], decreased 
proliferation and liberation of inflammatory mediators by pulmonary 
fibroblasts, and reduced basement membrane thickness in airway 
biopsies from asthmatic patients [103], this hormone presents an 
anti-apoptotic effect on fibroblasts [103] and does not alter the ECM 
deposition in the reticular basement membrane in the airways [104].

Finally, an adrenal suppression has been reported in untreated 
allergic and asthmatic patients [104]. This phenomenon could be 
associated with the modulation of HPA axis activity by inflammatory 
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response noted in these patients, since corticotropin-releasing factor 
(CRF) knockout mice showed a decrease in endogenous glucocorticoid 
production in close-relationship with increase in airway inflammation 
with mechanical dysfunction of the lungs and increased levels of IL-
4, IL-5 and IL-13 [105]. Together, these evidences demonstrated that 
patients with severe asthma exhibit a relative adrenal insufficiency that 
may be associated with worsening of disease.

As described previously, adipose tissue produces hormones 
that regulate blood glucose levels called adipokines. Even as adipose 
tissue releases adipokines that reducing blood glucose levels, as leptin 
and adiponectin, adipocytes produce hyperglycemic hormones too, 
including resistin [106]. The production of resistin is increased in 
feeding and obesity [107], and its hormone plays a significant role in 
obesity-induced insulin resistance [108]. The hyperglycemic effect of 
resistin is associated with decrease of glucose uptake in skeletal muscle 
cells [109] and severe hepatic insulin resistance [110]. Moreover, 
reduction in resistin levels by deleting the resistin gene, infusing 
resistin antibodies or resistin antisense oligodeoxynucleotides protect 
against obesity-induced hyperglycemia by restoring hepatic insulin 
responsiveness [108,111,112].

Steppan et al. [113] showed that asthmatic patients present elevated 
plasma resistin levels and they propose that resistin is associated with 
increase of asthma severity. However, atopic asthmatics had lower 
resistin levels compared to non-atopic asthmatic patients and control 
group, and resistin was negatively associated with eosinophil numbers 

and serum IgE levels [114]. Hence, the effect of resistin on asthma is 
unclear yet and need further studies.

PI3K x cAMP on Airway Responsiveness and 
Inflammation in Asthma

Hormones that control glucose homeostasis act by distinct 
signaling pathways. While some hypoglycemic hormones, including 
insulin and leptin, activate PI3K, the major hyperglycemic hormones, 
as glucagon and epinephrine, induce increase in the intracellular 
levels of cAMP [70,71,115]. The activation of PI3K plays an important 
role in the pathogenesis of asthma by stimulating recruitment of 
mast cells, neutrophils and eosinophils; increasing survival of mast 
cells and neutrophils; activating mast cells, neutrophils and T cells; 
inducing proliferation of T cells and airway smooth muscle cells and 
differentiation of Th0 cells in Th2 and Th17 cells; promoting airway 
smooth muscle cell contraction [21,24,116-120] (Figure 2). Moreover, 
PI3K-knockout mice showed reduction in allergen-induced AHR, 
airway inflammation and remodeling [121,122], and aerolization of 
PI3K inhibitor decreased pulmonary eosinophil accumulation and 
AHR in murine asthma model [123]. 

Modulation of cAMP levels is a key therapeutic target in asthma, 
since the increase in cAMP induces relaxation of airway smooth muscle 
cells. Furthermore, cAMP stimulates apoptosis of mast cells and T 
cells; inhibits proliferation and activation of T cells and recruitment 
and activation of eosinophils [69,124-126] (Figure 2). This difference 

Hypoglycemic
hormones

(e.g. insulin, leptin)

Asthma Severity

Asthma Protection

Hyperglycemic
hormones

(e.g. glucagon, 
epinephrine)

cAMP

Smooth muscle 
cell

Relaxation

Apoptosis

T cell Mast cell

T cell

Activation

Eosinophil

Recruitment

Eosinophil

Proliferation

T cell

PI3K
activation

Smooth muscle 
cell

Contraction and 
Proliferation

Recruitment, Activation 
and Survival

Neutrophil

Recruitment

Eosinophil

Degranulation, Survival, 
Chemotaxis and Adhesion 

Mast cell

T cell

Differentiation, Proliferation 
and Cytokine production
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in signaling pathways between hypoglycemic and hyperglycemic 
hormones could be associated with the opposite effect of these 
hormones in asthma [127-131]. 

Conclusion 
The focus of this review has been on hormones that control glucose 

homeostasis on asthma pathogenesis and development. The fact that 
some diseases which are characterized by hyperglycemia have an 
imbalance between hypoglycemic and hyperglycemic hormones and 
the dichotomy between the effect of these hormones on asthma could 
explain, at least partly, why diseases like type 1 and type 2 diabetes 
present opposite incidence of asthma. In addition, a greater knowledge 
about the role of these hormones in asthma physiopathology may be 
important for the development of new therapeutic strategies for asthma. 
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