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Abstract
Strategies to minimize dengue transmission commonly rely on vector control, which aims to

maintain Ae. aegypti density below a theoretical threshold. Mosquito abundance is tradition-

ally estimated from mark-release-recapture (MRR) experiments, which lack proper analysis

regarding accurate vector spatial distribution and population density. Recently proposed

strategies to control vector-borne diseases involve replacing the susceptible wild population

by genetically modified individuals’ refractory to the infection by the pathogen. Accurate

measurements of mosquito abundance in time and space are required to optimize the suc-

cess of such interventions. In this paper, we present a hierarchical probabilistic model for

the estimation of population abundance and spatial distribution from typical mosquito MRR

experiments, with direct application to the planning of these new control strategies. We per-

form a Bayesian analysis using the model and data from two MRR experiments performed

in a neighborhood of Rio de Janeiro, Brazil, during both low- and high-dengue transmission

seasons. The hierarchical model indicates that mosquito spatial distribution is clustered dur-

ing the winter (0.99 mosquitoes/premise 95% CI: 0.80–1.23) and more homogeneous dur-

ing the high abundance period (5.2 mosquitoes/premise 95% CI: 4.3–5.9). The hierarchical

model also performed better than the commonly used Fisher-Ford’s method, when using

simulated data. The proposed model provides a formal treatment of the sources of uncer-

tainty associated with the estimation of mosquito abundance imposed by the sampling de-

sign. Our approach is useful in strategies such as population suppression or the

displacement of wild vector populations by refractoryWolbachia-infected mosquitoes, since

the invasion dynamics have been shown to follow threshold conditions dictated by mosquito

abundance. The presence of spatially distributed abundance hotspots is also formally ad-

dressed under this modeling framework and its knowledge deemed crucial to predict the

fate of transmission control strategies based on the replacement of vector populations.
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Introduction
Dengue fever is the most prevalent arbovirus infection in the world with 2.5 billion people liv-
ing in areas under the risk of transmission [1]. The temporal and spatial pattern of dengue dis-
tribution is influenced by mosquito, human, viral and environmental factors. The abundance,
survival and dispersal of its vector, the Aedes aegyptimosquito, are important factors to
describe the ecology involving the mosquito. In particular, spatial distributions of mosquito
populations at fine scales [2, 3] can help understand the impact on dengue transmission. Esti-
mation of parameters that describe these components is still a complex challenge for field ento-
mologists and modelers [4–7].

Knowledge about these key components is crucial [8] in guiding vector control strategies
based on population suppression in areas at transmission risk. Several dengue endemic coun-
tries, including Brazil, plan their vector control strategies based on the assessment of infestation
indices through larval surveys, most commonly House and Breteau Indices (HI and BI, respec-
tively) [9, 10]. These traditional infestation indices show low correlation with adult mosquito
abundance, as HI and BI do not consider container productivity and larval mortality [10, 11].
Alternatively, trapping of adults with a variety of devices has been proposed as a more efficient
approach to monitor Aedes aegypti populations and many initiatives are already in place world-
wide. Traps allow the development of more standardized protocols, provide indices faster and
require less effort than the traditional searching approach. One drawback of a trap based infes-
tation index, however, is that it is a relative measure of population density, with unit mosquito/
trap. For comparative purposes, this may suffice. But there are situations when absolute mea-
sures of population abundance (unit: mosquitoes/area or mosquitoes/person) are of interest.
For example, vector thresholds for transmission are defined in terms of mosquito/person [8];
population thresholds for Aedes aegypti +Wolbachia invasion is defined in mosquito/area
[12, 13].

Traditionally, the estimation of animal population size is performed via experiments of
mark, release and recapture (MRR). In MRR experiments, subjects are typically captured from
the environment, marked either uniquely or as a cohort using a piece of identification (tags,
colors etc.), released back into the environment and later recaptured, possibly multiple times.
For this kind of experiment, mosquitoes are challenging subjects due to their small size and
short life span, making recapturing difficult, which led to important modifications of the stan-
dard protocols, mainly, that marked mosquitoes are released and subsequently recaptured only
once [7]. Models for estimating adult population size from MRR datasets, either deterministic
or stochastic ones, include Lincoln, Jolly-Seber, and Fisher and Ford [6, 7, 14–16]. The Lincoln
Index, due to its simplicity, is often the method of choice. However this simplicity comes at a
price, since the strong assumptions required for the proper utilization of this index are difficult
to meet in most field conditions, for example, that the population is closed and that there is no
heterogeneity in capture rates. The Fisher—Ford method relaxes some of these assumptions al-
lowing the loss of individuals by mortality. These models are not probabilistic and do not treat
sampling uncertainty properly. The Jolly-Seber family of models is very popular due to their
probabilistic framework, however they are tailored for data with multiple recaptures and fitting
with typical mosquito data does not show convergence (results not shown). In this work we in-
vestigate the potential advantages to analyze MRR mosquito trials of a class of stochastic mod-
els containing an ecological component introduced by Royle et al. [17]. Stochastic models
involve more complex mathematical calculations, but generate estimates of population size
along with measures of uncertainty [7]. The model presented here was developed upon the
basic structure of the model of Royle et al. [17] to accommodate particular aspects of the mos-
quito ecology and its observation. We perform Bayesian analysis using this model to estimate
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abundance and spatial distribution of the population of female Aedes aegypti in a dengue en-
demic area in the city of Rio de Janeiro, Brazil. The proposed model is also tested with artificial
data from a simulator of typical mosquitoes’MRR experiments.

In the next section we describe the MRR experiments carried out in the study area in Rio de
Janeiro, Brazil. The description of the experiments is helpful here as it illustrates the particular
aspects of a typical MRR dataset for mosquitoes. We then describe the structure of the hierar-
chical model, its layered components and the simulation environment. We present estimates of
abundance, spatial density and survival probability of Aedes aegypti in the study area compar-
ing the estimates from the proposed hierarchical model with those from the Fisher—Ford
method. Subsequently, we show some statistical properties of the proposed model obtained
from its application to simulated data.

Methods

Mark—Release—Recapture Experiments
Study area.We conducted mark-release-recapture studies in a 7.2 ha neighborhood called Z—
10, located in the Governador Island, city of Rio de Janeiro, Brazil. Z—10 (22°52030@S; 43°
14053@W) is an isolated suburban community, surrounded by shores and mangroves, which
discourage mosquito migration through its limits. This residential area has paved streets, regu-
lar sidewalks and low-moderate vegetation coverage, with around 2,350 people living in 787
houses. Most houses have 2–3 bedrooms, regular water supply and garbage collection, lacking
peridomestic areas with pools or yards.

Climate and MRR periodicity. The climate in Rio de Janeiro is characterized by a moder-
ately dry winter (May-August) and a wet summer season (November—March), with mean
temperatures of 25.1°C and 28.8°C and mean total rainfall of 46.4 mm and 132 mm, respective-
ly. MRR experiments were conducted during nine consecutive days in September 2012 and
during another period of nine days in March 2013. In Sep/2012, temperatures ranged between
22.3°C and 30.6°C (average of 28.6°C) with no rainfall. In Mar/2013, temperatures ranged
from 23.1°C to 32.5°C, with an average of 29.7°C and rainfall of 0.4 mm. Air temperature and
precipitation data were obtained from a meteorological station located at approximately 5 km
away from the study area.

Mosquitoes. Aedes aegypti adults used in MRR experiments were derived from the F1 gen-
eration of eggs collected at Z—10 using 60 ovitraps filled with hay infusion. Larvae were fed
with fish food (Tetramin, Tetra Sales, Blacksburg, VA) and reared according to Consoli and
Lourenço-de-Oliveira [18]. After emergence, females were kept together at 25±3°C and 65±5%
relative humidity (RH) and fed with sucrose solution until the time to release.

Marking and releasing. Before releasing in Sept/2012, Ae. aegypti adults were split into four
cohorts, each one composed of 500 females marked with different colors of fluorescent dust
(Day-Glo Color Corp., Cleveland, OH) and placed in small cylindrical cups (12 cm x 10 cm).
Each cohort was released from a different outdoor location in Z—10. In Mar/2013, only one
cohort composed of 2000 females was released in a central outdoor location of Z—10. In both
occasions, mated, unfed females (4—day old) were released in the morning hours (between
8:00 AM and 9:00 AM), at approximately 1 hour after dust marking. Wind direction and speed
was 139.7° and 4.7 m/s in the moment of release in Sep/2012. Meanwhile, in Mar/2013, wind
direction and speed was 25.1° and 2.6 m/s.

Capturing. Dust-marked females were captured using 66 uniformly distributed BG-Senti-
nels traps (BioGents, Regensburg, Germany), designed to attract mosquitoes seeking a host to
blood feed [19, 20]. Captures started at the following day after mosquitoes’ release and was per-
formed daily by inspection of the 66 BGs-Traps. Daily capturing stopped when no dust-
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marked females were collected for 3 consecutive days. Captured mosquitoes were examined
under UV light to check for the presence of fluorescent dust.

Ethics Statement. Fiocruz conducts regular research activities in the city of Rio de Janeiro,
in partnership and also with permission of the Rio de Janeiro Department of Health (Secretaria
de Saúde da cidade do Rio de Janeiro) that assist in the control of transmission of infectious dis-
eases. Mark-release-recapture experiments were approved by Fiocruz Ethical Committee (CEP
253/04) and carried out as part of this research effort, not requiring a specific permission. Since
mosquitoes are released in public open spaces such as squares, there was no need to obtain in-
dividual consent for releases. In order to recapture marked mosquitoes, inside people’s dwell-
ings, we have to obtain consent from residents to install BG-Traps and also to carry daily
collections after the release of marked individuals. The use of mosquito traps for sampling
Aedes aegypti belongs to the routine of vector surveillance in Rio de Janeiro. Due to this surveil-
lance routine, many residents in the study area are used to have mosquito traps installed in
their houses and, indeed, there were just few refusals by residents to have traps installed. Writ-
ten consent was not required under the ethical committee requirements. As the effort to collect
mosquitoes goes along with city surveillance, these tasks are typically done with verbal consent
only and our collection effort also had verbal consent, as approved by the ethics committee,
and individual consents were registered by the entomology field team in regular work files.

The release of mosquitoes does not involve directly endangered or protected species and,
from our experience, it does not have any significant impact on endangered or protected spe-
cies. One of our main concerns during MRR experiments is related to dengue transmission by
the mosquitoes released in the field. In order to address this issue, we follow two guidelines.
The first one is to not release a number of mosquitoes greater than the number of mosquitoes
removed by trapping in pilot experiments and monitoring activities. Second, the procedure is
to interrupt or to suspend, depending on circumstances, mosquito releases if dengue cases are
notified in that neighborhood. Since both trap inspection and mosquito collection are done
with the assistance of the health department in the city government, i.e., the same agency that
is responsible for dengue notification, dengue cases are rapidly identified.

Hierarchical Model
The proposed model has three components. The first component is a probabilistic model de-
scribing the spatial distribution of mosquitoes in the study area, while the second component is
also a probabilistic model describing the daily survival of marked and native mosquitoes. Final-
ly, the observation model describes the sampling process.

Ecological process—center of activities. There is some evidence that mosquitoes tend to
remain close to their birth location if conditions for blood feeding and ovipositing are ade-
quate. Specialists typically agree that Ae. aegypti females rarely visit more than 2–3 houses dur-
ing their lifetime leading to a strong spatial correlation between the distribution of immature
and adults [21]. Harrington et al. [4] reviewed several MRR experiments carried out in differ-
ent locations, different release sites (both indoors and outdoors) and experimental protocols.
Overall, these studies agree on the limited dispersal behavior of Aedes aegypti. When release is
done indoors, most of the collections occur in the same house [22, 23]. This tendency to remain
in the same location (at least during the length of the experiment) can be formalized by the
concept of center of activity. An individual center of activity is a central point (centroid) of
the space occupied by the individual during a time interval [24]. This concept is borrowed
from the works of Royle et al. [17, 25], in which they model the movement of tigers [17] and
birds [25].
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Here, there are two important claims. First, we assume that for the duration of the MRR ex-
periments spatial density of mosquitoes can be described by the density of activity centers, as
mosquitoes tend to stay within a constrained space. This is reasonable for both marked and un-
marked individuals given the empirical observations as described above. Second, the marked
mosquitoes are released and go through a dispersal phase. Here, we have evidence that the dis-
persal is fast and subsequent captures of individuals will find them already in the whereabouts
of their center of activities. In the MRR experiment studied here, marked cohorts were released
outdoors, in locations that stimulate dispersal towards more suitable habitats. Under stress
mosquitoes can fly more than 600 m for three days to find suitable conditions [26]. Evidence
for the ability to reach the whole area comes from the observation that in the first day of cap-
turing, marked mosquitoes were already found in the most distant traps. Therefore, we distin-
guish between the short distance movements close to centers of activity and the long range
movements realized when dispersal happens.

In the model the center of activity is given by a pair s = (sx, sy) of coordinates that describe
the center of an individual area. The prior distribution for these pairs of coordinates is general-
ly a uniform distribution. After a procedure of inference, given the observations in the MRR ex-
periments, the distribution of center of activities is effectively evaluated as a spatial density
distribution within the study area.

Ecological process—survival. Aedes aegypti life span ranges from 5 to 30 days [4, 27–31],
making survival an important process to be considered in an experiment that lasts for 9 days.
In the capture data (shown in the Results section), there is clearly a loss of marked individuals
as days go by. This loss can be attributed to mortality by natural causes. In the hierarchical
model, there is a component that describes daily survival probability ϕ, assumed equal across
all marked individuals. For the unmarked individuals, however, under an assumption that
abundance stays at a stable level for the relatively short length of an MRR study, we consider
that recruitment cancels out mortality, i.e., in terms of the model, ϕ = 1 for
unmarked individuals.

Observation process. In the model each trap has associated with it a probability of captur-
ing mosquitoes as a function of the distance between the trap location, recorded in the experi-
ment, and any point in the study area. Hence, each trap has a probability of capturing the
mosquito as function of the distance between the trap location and its center of activity. Fol-
lowing the approach in [17], the probability to be attracted to a trap is described by a function
that has parameters to be estimated as a Generalized Linear Model (GLM). We choose the com-
plementary log—log function as a link function, thus we have for the probability πi,j of individ-
ual i be attracted to trap j, cloglog(πi,j)jsi * β0 + β1 di,j, where di,j is the distance from individual
i’s center of activity and trap j’s location, and β0 and β1 are parameters to be estimated.

The observation model takes into account that each individual can only be trapped once.
This limitation impacts the model formulation in two main aspects. First, at each observation
time point (intervals given in days and total time T) the probability of an individual being cap-
tured at a particular trap is a product of two factors: the probability πi,j of individual i to be cap-
tured at trap j, given by a function of the distance from its center of activity to the trap, and the
probability to be captured at trap j, given by a categorical random variable with parameter vec-
tor given by the ratio piPJ

j¼1
pi;j
. Once a marked individual is captured, it is removed from the

study. Therefore, it cannot be observed again. In the model, removal is introduced in the sur-
vival component as a variable that indicates presence in the study. For each individual, this
presence depends on its survival and also on the individual not being captured. Captures of
mosquitoes at traps are described by the observation variables yi,j,t, indicating whether a mos-
quito i is observed (yi,j,t = 1) or not (yi,j,t = 0) at trap j, j� J, at time t, t� T.
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We want to estimate the number N2 of unmarked mosquitoes in the study area using the hi-
erarchical model in which each individual is indexed, whereas the number N1 of marked mos-
quitoes released in the study is known. Without any loss of generality, the first N1 individuals
are the marked ones. We use the data augmentation technique [32] as used by Royle and Dora-
zio in [33] to estimate the number of unmarked mosquitoes N2. The technique involves taking
a numberM> N1 + N2 by adding non-existing individuals, since we do not know N2. The
non-existing individuals will not be present in the study and will not be captured (zero values
in observation). This requires another layer in the model to treat the zero–inflated component,
that distinguishes zeroes from zero–inflation to zeroes due to non-observations. This compo-
nent uses a set of variables wi, 1� i�M,M> N1 + N2, each of which describes whether a par-
ticular individual i is effectively in the study population (either marked or unmarked
population). Finally, this technique permits us to have abundance as an indirect measure ob-
tained from an inference procedure.

The model is described in detail in S1 Text, including a table that describes the model and
each of the components.

Estimation and Bayesian Inference
Inference is performed via analysis of Monte–Carlo Markov Chain (MCMC) simulations. The
abundance, i.e., the number N2 of unmarked individuals is estimated as a latent variable:

N2 ¼
XM

i¼N1þ1

wi: ð1Þ

Since the estimation of variables is performed using multiple runs of MCMC simulations,
results are generally given by statistical measures that include mean, median, standard devia-
tion and credibility intervals.

The spatial density of mosquitoes is found using the posterior samples fromMCMC simula-
tion and constructing a grid over the study area. The count of individuals in each of the grid
cells is found by the sum of center of activities inside each of them, similar to counts performed
by Royle et al. in [17].

In order to find estimates, we use JAGS [34], a Bayesian analysis tool that implements
MCMC through Gibbs sampling and uses a model specification very similar to another popular
tool, WinBUGS. The JAGS model is included in S1 Text. The prior distribution for survival
probability ϕ, defined in the [0, 1] interval, places higher weight on values closer to one, while
also weakening extreme values in the [0, 1]—interval. This distribution is in accordance with
empirical estimates of the survival rates of Aedes aegypti [35].

Fisher—Ford method.We also find estimates of abundance using Fisher—Ford method
[36], which has been used in MRR analyses and is closely related to the Lincoln index (MRR on
estimating abundance of Aedes albopictus by Cianci et al. [6] and Anopheles gambiae by Baber
et al. [37]). The abundance estimator derives from the same argument of the Lincoln index, in-
cluding an adjustment that takes into account the survival probability ϕ for marked individu-
als:

N̂ 2 ¼
ntot�

tN1

mtot

� �tN1;

where ntot andmtot are, respectively, the numbers of unmarked and marked individuals, cap-
tured at time t.
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Bailey in [38] propose a bias correction in the case of small number of captures (typically

below 20): N̂ 2 ¼ ðntotþ1Þ�t ðN1þ1Þ
mtotþ1

� �tðN1 þ 1Þ:We take a bootstrap approach in order to find a

confidence interval for the Fisher—Ford index, using a number Rs of re–sampling.
Simulation. To assess the efficiency of the MRR experiment in various scenarios, an Indi-

vidual-based model (IBM) was developed to simulate the dispersal and capture of marked mos-
quito cohorts, as a computational tool, written in the Perl programming language, that mimics
the field experiments. Using this type of simulation environment it is possible to observe actual
emergent phenomena from simple rules and it has been gaining attention in theoretical ecology
since the last two decades [39–41].

The simulator is implemented by constructing classes that define objects for each agent, in-
cluding agents for mosquitoes and traps, and it also defines a square area for the environment.
For each mosquito, dispersal can be considered either random or towards a randomly chosen
center of activity (sampled from a uniform distribution). Traps can be positioned at random lo-
cations, or at points comprising a centralized grid. In simulations we have the possibility of
varying the area around which the trap attracts mosquitoes and also possibility to define the
probability that describes a Bernoulli random variable to indicate mosquito capture at traps.

The output of the simulator is given by tables discriminating trap and mosquito data as well
as a capture history file typical for MRR analysis programs, such as the programMARK [42].
Full descriptions for the objects, data structures and validation are provided in S2 Text. The
code (open-source license—GNU PGL v3) is available from https://launchpad.net/mmrrsim.

Results

Field data from MRR experiments
Table 1 shows the number of daily captures observed in each of the mark–release–recapture ex-
periments, conducted in Sept 2012 (ST1) and March 2013 (ST2). Data are shown separated by
each of the cohorts (marking color) and the number of captures of unmarked mosquitoes is
also shown. The counts of marked individuals generally decrease over time. For marked indi-
viduals the capture ratio is visibly higher in the days immediately subsequent to releasing in the
field and has a decreasing trend along with time. The number of captures of unmarked individ-
uals, however, tends to remain at a constant level. For the experiment in Sept. 2012, the ratio
between total number of captures per number of released individuals varied from 6% (green
cohort) to 13.4% (blue cohort), and including all cohorts the return capture ratio is 9.2%. For

Table 1. Numbers on captures obtained from the two MRR experiments conducted in the Z—10 region in Rio de Janeiro, Brazil. ST1 refers to the
study realized in Sept. 2012 and ST2 to the study realized in March 2013. For ST1, we present data on each of the four cohorts as indicated by the marked
colors. For each of the studies, unmarked refers to the number of unmarked individuals captured.

Cohort Num. Released Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Total Ratio

ST1–b 500 19 14 7 9 9 4 3 2 67 0.134

ST1–p 500 27 11 4 2 1 2 5 0 52 0.104

ST1–y 500 10 10 3 4 3 1 1 3 35 0.07

ST1–g 500 9 7 3 5 4 0 0 2 30 0.06

ST1–unmarked – 15 22 12 17 36 14 25 21 162 –

ST2–b 2000 52 26 20 23 4 5 13 8 151 0.076

ST2–unmarked – 119 92 95 64 93 114 110 99 786 –

doi:10.1371/journal.pone.0123794.t001
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the experiment in March 2013, the capture ratio is 7.6%. Datasets are available as supporting
information (S1 Dataset and S2 Dataset).

In September 2012, we also measured size of the female wings from both populations (lab–
reared and wild ones). Lab-reared Ae. aegypti females had 2.92 mm ± 0.085 mm (mean ± SD),
meanwhile wild mosquitoes in this period had 2.74 mm ± 0.12 mm.

Analysis of field data
To study the impact of increasing sample size on the abundance estimation, data from ST1 was
pooled by using a separate cohort, defined by the marking color, or a combination of cohorts:
cohort b (N1 = 500), cohorts b+p (N1 = 1000), cohorts b+p+y (N1 = 1500) and cohorts b+ p+ y
+g (N1 = 2000).

Table 2 summarizes the pooled data and provides the abundance estimates found using the
hierarchical model and the Fisher—Ford method. Fig 1 and Table 2 show the Aedes aegypti
abundance estimates, according to both models.

Analysis using the hierarchical model provides an abundance estimate of approximately
700 female mosquitoes in Z—10 in September 2012, during the low transmission season, with
point estimates ranging from 660 to 782, depending on the pooled data. The 95% credible in-
terval varied from 548 to 966 and was the narrowest when the unpooled data (ST1-b) was used,
and the widest of all when all cohorts were analyzed together. This might be due to the lowest
overall capture ratio when pooling all four cohorts (about 9%) and also due to variation be-
tween cohorts. In March 2013 (ST2), during the high transmission season, the estimated abun-
dance of Aedes aegypti was four times higher than in the low transmission period, with
approximately 4100 female mosquitoes in Z—10. The credible interval (3423 – 4666) is wider
than in the low abundance period, but the coefficient of variation is smaller (0.30 for ST2; 0.35
for ST1-b and 0.42 for ST1-b+p+y+g.).

The Fisher—Ford model tended to agree with the hierarchical model (Table 2 and Fig 1).
The exception is for the ST1-b data, where the Fisher—Ford point estimate of mosquito abun-
dance is considerably underestimated compared to the other method. Overall, the hierarchical
model produced more precise estimates than the ones produced using Fisher—Ford method.
This is evident observing the high abundance data (ST2) where the Fisher—Ford confidence
interval is 5 times greater than the hierarchical model.

Analysis using the hierarchical model provides an estimate of the spatial distribution of
mosquitoes that is not possible using the Fisher—Ford method. Figs 2 and 3 show the

Table 2. Estimates of abundance for the populations of female Aedes aegypti in Z—10, Rio de Janeiro, in Sept 2012 (ST1) and March 2013 (ST2), ac-
cording to the hierarchical model and the Fisher-Ford model. Estimation realized using samples from 16000 iterations using data from both studies. The
hierarchical model results are obtained using JAGS after running 10000 iterations per chain (first 2000 were discarded) in two Markov chain simulations. Fish-
er—Ford estimates are obtained using a bootstrap approach (re-sampling Rs = 1000). For the Fisher—Ford estimation the survival rate is assumed to be ϕ =
0.8.

Hierarchical Model Fisher—Ford

Cohort Mean Std. dev. Median 95% CI Mean 95% CI

ST1—b 667 63 669 548–783 467 392–592

ST1—b+p 660 83 652 520–851 670 480–920

ST1—b+p+y 743 83 738 593–914 730 607–977

ST1—b+p+y+g 782 84 778 633–966 822 666–996

ST2 4118 319 4142 3423–4666 4768 3185–9198

doi:10.1371/journal.pone.0123794.t002
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estimated spatial distribution of Aedes aegypti in Z—10 in Sept. 2012 (ST1) and March 2013
(ST2), respectively. To facilitate interpretation Figs 2 and 3 have on the left–hand side images
of the study area superimposed with a bubble representation of the capture counts per trap and
on the right–hand side the posterior spatial density according to the hierarchical model. First,
the difference between scales should be noted. In September, local mosquito density peaks at
1.42 mosquitoes per 100m2 while in March, the ceiling is at 5.4 mosquitoes per 100m2. During
the high abundance period, mosquito abundance is concentrated in the center—south region.

The survival probabilities for the marked individuals, as estimated by analysis from the hier-
archical model, are shown in Table 3. Estimates (mean values) of survival probabilities are
expectedly higher for cohort combinations whose capture ratios are also higher.

The posterior distributions of abundance and survival probability after analysis of data from
both experiments are found in S1 Text.

Analysis of simulation data
To further compare and understand the behavior of the hierarchical and Fisher—Ford esti-
mates, artificial data from simulated scenarios were analyzed. Table 4 and Fig 4 shows the re-
sults obtained from simulations done by varying the population size of marked and unmarked
individuals i.e., (N1, N2): (200, 300), (300, 500), (400, 700), (500, 900), (2000, 3000). Besides the
population size, we also compared scenarios with two attraction areas, defined as the radial
spatial coverage of each trap. The larger the attraction area, the more attractive the trap is and
the higher the chance of capturing mosquitoes. This is a parameter that is very difficult to mea-
sure in the field as it depends on the microenvironment and on the trap features. All simula-
tions were done using the concept of center of activity (AC mode in simulator). Table 4 shows
the number of captures and the mean and other statistics of the estimated abundance for each
simulated scenario. Fig 4 shows the results graphically. In all scenarios, the credible intervals

Fig 1. Results from estimation using data from field studies. Intervals colored in solid red indicate Fisher
—Ford estimates. Intervals colored in solid blue indicate estimates from the hierarchical model. Labels ST1
and ST2 indicate studies conducted in September 2012 and March 2013, respectively. The September 2012
study had 4 cohorts given by 4 different colors: blue (b), pink (p), yellow (y) and green (g). Labels ST1 also
include which cohorts were used in the analysis by grouping cohorts ({b}, {b+p}, {b+p+y}, { b+p+y+g}).
Estimates of population abundance are shown along with both y–axes (different scales), the one on the left
side for study ST1 and on the right side for study ST2.

doi:10.1371/journal.pone.0123794.g001
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Fig 2. Spatial distribution of individuals in the Z—10 area in Rio de Janeiro, Brazil, in September 2012.Results for ST1 (Sept 2012) obtained with
16,000 iterations (8,000 iterations in each of two chains after a 2,000 burn-in period). Results from analysis using all cohort of marked individuals. Circles
indicate trap locations. Bubbles as shown in the maps on the left–hand side indicate the counts of mosquitoes trapped in the MRR experiments. The release
points of marked mosquitoes are depicted by crosses, each of which appear in the color of its respective cohort. The spatial density unit is number of
mosquitoes per 100m2.

doi:10.1371/journal.pone.0123794.g002

Fig 3. Spatial distribution of individuals in the Z—10 area in Rio de Janeiro, Brazil, in March 2013.Results obtained with 20,000 iterations (10,000
iterations in each of two chains after a 10,000 burn-in period). Results from analysis using the cohort of individuals marked in blue. Circles indicate trap
locations. Bubbles as shown in the maps on the left–hand side indicate the counts of mosquitoes trapped in the MRR experiments. A cross indicates the point
of releases of marked mosquitoes. The spatial density unit is number of mosquitoes per 100m2.

doi:10.1371/journal.pone.0123794.g003
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produced from the hierarchical model included the true value. The same was not true for the
Fisher—Ford method, which tended to underestimate the true abundance. For the case of a
larger basin attraction area the actual numbers N2 of unmarked mosquitoes are within the in-
tervals given by the hierarchical model, even though the capture ratio of marked individuals is
small, approximately 10%. The estimated values found for survival probability and posterior
distributions of abundance are found in S1 Text.

Discussion
Recently proposed strategies [43] to control vector-borne diseases could either reduce the
number of individual vector mosquitoes (population suppression) or reduce the competence of
these vectors in transmitting the pathogen by replacing the susceptible wild population by ge-
netically modified individuals refractory to the infection by the pathogen (population

Table 3. Estimates of survival probability for marked population of Ae. aegypti released in Z—10, Rio de Janeiro, according to the hierarchical
model. Estimation realized using samples from 16000 iterations using data from both studies. The hierarchical model results are obtained using JAGS after
running 10000 iterations per chain (first 2000 were discarded) in two Markov chain simulations. Fisher—Ford estimates are obtained using a bootstrap ap-
proach (re-sampling Rs = 1000).

Hierarchical Model

Cohort Mean Std. dev. Median 95% CI

ST1—b 0.82 0.03 0.82 0.75–0.89

ST1—b + p 0.77 0.03 0.76 0.70–0.83

ST1—b + p + y 0.76 0.03 0.76 0.71–0.82

ST1—b + p + y + g 0.75 0.03 0.76 0.71–0.80

ST2 0.80 0.02 0.80 0.75–0.84

doi:10.1371/journal.pone.0123794.t003

Table 4. Abundance estimation in simulated scenarios, using the hierarchical and the Fisher-Fordmodels. The total number of iterations was 12000
for each of 2 Markov chains. The first 3000 iterations are discarded as burn-in interval. The area of attraction is of size 5 (b5) and also 8 (b8), probability
p = 0.5. The number of traps is J = 64. For the Fisher—Ford estimates a number of Rs = 1000 re-sampling was used and the daily survival probability was ϕ =
0.8, same value used in the simulations. For the case (200, 300) with a small attraction area the sample size (2) is very small and no Fisher—Ford estimates
are reported. The notation (m,u) refers to the quantity (number of captures, capture ratios) for marked and unmarked mosquitoes, respectively.

Simulated scenarios Hierarchical Model Fisher—Ford

simulation # captures (m,u) capture ratio Mean Std. dev. Median 95% CI Mean 95% CI

b5-h / (200, 300) (5, 29) (0.03, 0.10) 323 85 329 152–470 – –

b5-h / (300, 500) (14, 48) (0.05, 0.10) 386 128 372 169–642 217 152–332

b5-h / (400, 700) (17, 74) (0.04, 0.11) 583 176 566 295–953 435 246–552

b5-h / (500, 900) (21, 85) (0.04, 0.09) 705 185 686 414–1116 473 350–658

b8-h / (200, 300) (17, 64) (0.09, 0.21) 363 88 360 202–546 199 124–316

b8-h / (300, 500) (36, 104) (0.12, 0.21) 501 109 491 322–736 263 172–339

b8-h / (400, 700) (41, 167) (0.10, 0.24) 963 164 973 612–1234 539 328–811

b8-h / (500, 900) (46, 205) (0.09, 0.23) 818 166 790 570–1237 731 546–961

b8-h / (2000, 3000) (186, 645) (0.09, 0.21) 2780 286 2755 2229–3399 2895 2253–4961

doi:10.1371/journal.pone.0123794.t004
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replacement). Evaluation of the potential success of such interventions requires detailed knowl-
edge of the dynamics of the mosquito population, including its abundance in time and space
[8]. In this paper, we present a hierarchical probabilistic model for the estimation of female
Aedes aegypti abundance fromMRR studies. The knowledge of mosquito density from estima-
tion can help in control strategies, at least at a planning phase. The model performs well under
simulation conditions and provides more precise estimates than the ones given by the Fisher—
Ford method. The proposed model expands previous contributions by Royle et al. [17] in add-
ing a survival component and a trap component that models the life span of individuals during
MRR experiments and the trapping limitations that make difficult multiple capture events for
each of the study individuals. We apply the concept of centers of activity present in [17, 25] to
the distribution of a mosquito population within a given area. Clusters of human dengue cases
have been identified and associated with certain locations in the community, like neighbor’s
homes, local meeting or gathering places and attributed primarily to variation in Ae. aegypti
population density [44, 45]. The underlying mechanism leading to a positive association be-
tween human and mosquito infections at the level of individual houses and neighboring resi-
dences [46] is yet not entirely explained and one might speculate that this pattern expresses an
indirect evidence of the presence of center of activities for the vector.

This model can be extended in order to account for difference in life–history components,
for instance, if using cohorts of different origins. This could be the case of releasing cohorts of
mosquitoes especially prepared for control interventions, such asWolbachia–infected mosqui-
toes. Other extension possibilities include recruitment and survival of unmarked mosquitoes
and also influence of gonotrophic cycle in the centers of activity. Such extensions would permit
to study important biological relations but would also require more elaborated design in the
field experiments to gather data, and by consequence, an added cost of complexity in
the analysis.

The method was illustrated with data collected from Z—10, a study area located in a dengue
endemic area. According to the hierarchical model’s results, Z—10 had approximately 700 fe-
male mosquitoes in the late winter-early spring of 2012, corresponding to a measure of 0.99
mosquitoes/premise (95% CI: 0.80 – 1.23 mosquitoes/premise) or 0.33 mosquitoes/person

Fig 4. Estimates obtained fromMRR data in the simulated scenarios. The estimated values for
abundance are shown along the y–axis (for all cases in the y–axis on the left–hand side, except for the case
N2 = 3000 shown along the y–axis on the right–hand side), whereas each case is shown along the x-axis,
described by the number (known value of) of unmarked individuals used in the simulation. The plot on the
left–hand side shows results for a small basin of attraction, whereas on the right–hand side results are shown
for traps’ basins of attraction that have radiuses 60% greater. Red lines indicate the numbers of unmarked
mosquitoes that were used in the simulations for each of the configurations.

doi:10.1371/journal.pone.0123794.g004
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(95% CI: 0.27 – 0.41 mosquitoes/person). This corresponds to the period of low dengue trans-
mission. In March 2013, during the high transmission season, mosquito abundance jumped to
5.2 mosquitoes/premise (95% CI: 4.3– 5.9 mosquitoes/premise) or 1.8 mosquitoes/person
(95% CI: 1.5 – 2.0 mosquitoes/person). The estimated daily survival probability was similar in
both seasons, despite the difference in temperature, being between 0.71 and 0.80. This provides
an estimate of average life span of 7.5 to 9 days (adding the four days in the laboratory) and is
comparable to other values presented in the literature [35]. The analysis using the hierarchical
model also provides an estimation of the pattern of spatial distribution of the mosquito popula-
tion. One can see that in the low transmission season (Sept 2012), there are several hotspots
distributed throughout the area, but each one holds an average of approximately 1 mosquito
per 100m2. In the high transmission season, local mosquito abundance has a fourfold increase
in some areas, and the highest abundance is concentrated in the southern part of the neighbor-
hood. Considering that this is the area with more human movement, the presence of hotspots
represents a critical situation for virus invasion and dissemination in this community.

The possibility of estimating spatial density of the population of Aedes aegypti is an advan-
tage over methods that consider homogeneous distribution of mosquitoes, such as Lincoln,
and Fisher—Ford. The Fisher—Ford method takes survival into account, which is quite impor-
tant in the case of mosquito populations that have high mortality rates. It is, however, inherent-
ly sensitive to a good estimate of survival probability, since an error introduced in the survival
parameter might underestimate or overestimate the abundance as a consequence. The attempt
at using another capture–recapture method, the Jolly–Seber model, in a package implemented
by Laake et al. [47] that uses Markov chain Monte–Carlo was not successful because of lack of
convergence, due to the insufficient data (low capture ratio, single capture per individual).
Such results, taken in a pre–intervention phase, integrated with other tools might be useful in
control policies for limiting the spread of the vector.

Aedes aegypti larvae were raised using standard rearing protocols, which include low intra-
or inter- specific competition, low variations in temperature and high amount of resources.
Thus, it is expected that the wing size of lab-reared mosquitoes would be higher when com-
pared to wild mosquitoes, as shown in the results. This would clearly influence dispersal as size
has been shown to impact dispersal of individuals, i.e., small females disperse further than larg-
er individuals [27]. However, also in [27], size had no significant impact on survival rates.

Methods for estimating Aedes aegypti absolute abundance, other than methods using MRR
data, have been proposed in the literature. Williams et al. [48] and Jeffery et al. [49] used data
from comprehensive quantitative pupae surveys to estimate absolute population abundances
using life-table models. Since pupal mortality is low, one can compute the mosquito standing
crop from the number of containers in the area, number of pupae per container, and adult sur-
vival. The latter is generally taken from published MRR studies. The underlying assumptions
are that pupal production and survival are stable over time, which rarely hold for more than a
few days. An even more detailed life-table model is the classical CIMSIM [50] which requires
as input, meteorological, demographic and container availability data. A stochastic model with
more than one hundred parameters is required to convert input data into estimates of mosqui-
to abundance [43]. Despite the success of this approach in some settings [50], its large scale ap-
plication might have drawbacks, especially in areas where the availability and quality of
containers varies temporally and/or spatially.

Vector density and survival are key parameters that enter the expression of vectorial capaci-

ty V ¼ ma2pv

�logp
, wherem is the density of mosquitoes per humans, a is the biting rate, v is the aver-

age incubation period for the pathogen, and p is the survival probability [8]. This expression
has guided past control efforts, such as the use of insecticides, and remains the primary
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benchmark against which new strategies are compared. The methods proposed here make
more efficient use of data collected in the field than under current approaches familiar to ento-
mologists and surveillance systems. These models make explicit the sources of uncertainty by
allowing the estimation of credibility intervals that accompany each estimate. By casting the es-
timation process under a formal statistical framework, one can benefit from well established
processes of model building which consist of the entertainment of several possible sensible
models, parameter estimation in these models, hypothesis testing and deviance analysis, exami-
nation of residuals, graphical considerations including displays of the observed and fitted val-
ues, and model selection by means of information criteria. This procedure does not guarantee
the identification of the “true”model but provides clear steps in model validation through the
quantification of uncertainty and the identification of deviations from the premises that en-
tered the formulation of the model. Such formal framework will certainly impact positively on
the evaluation process of modern complex intervention strategies that intend to suppress or re-
place vector populations.
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(PDF)

S1 Dataset. Data from Experiment ST1. CSV file that contains data obtained fromMRR ex-
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nates of capture points (traps) and day of collection.
(CSV)
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