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Abstract

Influenza viruses pose a serious global health threat, particularly in light of newly emerging
strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the pri-
mary method for preventing acquiring influenza or for avoiding developing serious compli-
cations related to the disease. Vaccinations based on inactivated split virus vaccines or on
chemically inactivated whole virus have some important drawbacks, including changes in
the immunogenic properties of the virus. To induce a greater mucosal immune response, in-
tranasally administered vaccines are highly desired as they not only prevent disease but
can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pres-
sure has been used as a potential method for viral inactivation and vaccine production. In
this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus,
while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vacci-
nated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling).
Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their
bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We
found that the whole inactivated particles were capable of generating a neutralizing anti-
body response in serum, and IgA was also found in nasal mucosa and feces. After the vac-
cination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-y.
Our data indicate that the animals present a satisfactory immune response after vaccination
and are protected against infection. Our results may pave the way for the development of a
novel pressure-based vaccine against influenza virus.

PLOS ONE | DOI:10.1371/journal.pone.0128785 June 9, 2015

1/20


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0128785&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Pressure Inactivated Avian Influenza and Immune Response

Apoio a Nucleos de Exceléncia (PRONEX) to J.L.S.,
AM.O.G., and A.C.O. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Introduction

Influenza viruses pose a serious global health threat, particularly in light of the newly emerging
strains, such as the avian H5N1 and H7N9 viruses [1-3]. Influenza virus causes respiratory in-
fections resulting in great human and animal suffering and substantial economic losses [4]. In
humans, it is responsible for 3—-5 million clinical infections and 250,000-500,000 deaths annu-
ally worldwide [5,6]. In recent years, there has been a sharp increase in the number of out-
breaks of avian influenza in poultry, which has been associated with several avian influenza
outbreaks in humans [7,8].

Vaccination remains the primary method to prevent acquiring influenza or to avoid devel-
oping serious complications related to the disease. Vaccination is the most cost-effective meth-
od for preventing economic losses and for decreasing influenza-related morbidity and
mortality in humans and animals [9].

Virus-inactivated split vaccines induce the production of antibodies against the globular
head of the hemagglutinin [10,11]. Most current influenza vaccines are split vaccines aimed at
inducing a neutralizing antibody immune response. These vaccines are specific according to
the subtype and often the strain, thus the vaccines based on this strategy require accurate pre-
diction of the circulating viral strains during an influenza outbreak. Unfortunately, such accu-
rate predictions are not feasible [12]. Most current avian vaccines, which are primarily based
on the chemically inactivated whole virus [13], have some important drawbacks, such as the
risk of partial inactivation of the virus, a change in the immunogenic properties of the virus,
and the toxicity of the inactivating agent [14,15]. Hydrostatic pressure (HP) inactivation does
not introduce exogenous substances into the vaccine and usually results in highly immunogen-
ic preparations. In addition, this process is straightforward when considering large-scale im-
munization [16,17].

An ideal vaccine would stimulate the production of CD8" T and CD4" T cells, a cytokine re-
sponse, IgA production in the nasal mucosa, a longer lasting immune response, and cross pro-
tection. Individuals vaccinated parenterally with an inactivated virus develop a rapid systemic
immune response in the blood and a weak mucosal immune response. To induce a greater mu-
cosal immune response, vaccines introduced by intranasal administration are highly desired
because vaccination via this route can not only prevent disease but can also block an infection
at its primary site [18].

Hydrostatic pressure (HP) is a non-thermal, energy-efficient technology that has been used
as a potential method for viral inactivation and feasible vaccine production. It allows for the
control of the dissociation of oligomeric proteins of virus particles [19-21]. HP has been
shown to cause structural changes in some viruses [22], preserving covalent bonds [23] while
interfering with their infectivity [24] and triggering humoral immunological responses in their
recipients [25].

Some studies discuss the use of avian subtypes for human vaccination [26,27], since the
avian and human influenza virus homologues possess epitopes that are located on the internal
viral proteins and nucleoproteins. Thus, cellular immunity induced by infection with an avian
virus could confer heterosubtipic protection against human influenza viruses [28].

Our study model, the avian influenza A H3N8 subtype, has infection spectrum to birds,
horses, dogs and camels. A pressing concern is the infection of pet dogs, a primary companion
for humans. This raises the possibility that dogs may provide a new source for transmission of
novel influenza A viruses to humans [29, 30].

Here, we investigated the effect of HP on inactivating the H3N8 virus. We also asked wheth-
er the pressure-inactivated virus would be able to promote humoral and cellular responses.
Lastly, we asked whether the pressure-inactivated virus was capable of protecting challenged
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animals. We found that HP completely abolishes H3N8 virus infectivity while still maintaining
hemagglutination and neuraminidase functionalities. Our results may pave the way for the de-
velopment of a novel pressure-based vaccine against influenza viruses.

Material and Methods
Ethics statements

All mouse studies followed the guidelines set by the National Institutes of Health, USA. The an-
imals used in the studies received humane care in compliance with the Principles of Laboratory
Animal Care formulated by the National Society for Medical Research and the Guide for the
Care and Use of Laboratory Animals prepared by the US National Academy of Sciences.

The Institucional Animal Care Committee (Comissio de Etica com Uso de Animais
(CEUA) em Experimentagio Cientifica do Centro de Ciéncias da Saude da Universidade Fed-
eral do Rio de Janeiro) approved the animal protocols (UFR], Brazil, protocol IBQM059).

Written informed consent from the donor was obtained for use of the erythrocyte samples
in the hemagglutination assays. These protocols received approval from the Ethics Commit-
tee of University Hospital from the Federal University of Rio de Janeiro, Brazil (Comité de
Etica em Pesquisa do Hospital Universitario Clementino Fraga Filho, CAAE number
03102012.4.1001.5257).

Mice
Six-week-old female BALB/c mice, obtained from the Laboratory Animals Breeding Center,
Oswaldo Cruz Foundation (CECAL/FIOCRUZ) were used in this study.

Animals were caged in microisolator cages with food and filtered fresh water ad libitum in a
room at 24°C and a 12-h light-dark cycle. All manipulation of mice and cages was performed
in the laminar flow hood (Class II Biological Safety Cabinet).

Animals were monitored for signs of disease daily (including changes in body weight). Each
treatment group was used only once. All efforts were made to minimize suffering. All animal
experiments were performed in the afternoon. Mice were euthanized if they lost 20% of their
body weight after vaccination and/or challenge.

Influenza virus preparation

The virus purification was performed as described by Rovozzo and Burke [31]. Briefly, an
avian influenza A/duck/Ukraine/1/63 (H3N8) virus sample was replicated for 24 h at 37°C in
the allantoic cavity of 10-day-old embryonated chicken eggs. The allantoic fluid was collected,
and the cell debris was removed by a low speed spin (6,000 X g). The virus was pelleted by spin-
ning the allantoic fluid at 80,000 x g and was then resuspended in TE buffer (20 mM Tris, 2
mM EDTA, pH 8.4) and banded at 100,000 x g on a continuous 20-60% sucrose density gradi-
ent in TE buffer, pH 8.4. The protein concentration of the virus samples was determined as de-
scribed by Lowry et al. [32], and the samples were then stored at -80°C.

Assay for the detection of the residual virus infectivity in cell culture and
embryonated eggs

The residual infectivity of the pressurized virus samples was assayed for three sequential serial
passages in embryonated chicken eggs and monolayers of Madin-Darby canine kidney
(MDCK) cells. For each blind passage, the samples showed no infectivity by the hemagglutina-
tion assay or the TCIDs,. Each assay was performed three times to assure the reproducibility of
the results.
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Cell culture and the TCIDsg

MDCK cells were cultured in low glucose Dulbecco's modified Eagle medium (DMEM,; Invi-
trogen) supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA). Before
the infection, 80-90% confluent cells were washed with PBS to remove the FBS and were in-
fected with 100 ug of the virus diluted in serum-free DMEM with 2 pg of trypsin and incubated
for 1 h at 37°C. The infection medium was removed, and the cells were washed with PBS. The
period of infection was 48 h. The infectivity of the influenza virus was studied by a determina-
tion of the 50% tissue culture infectious dose (TCIDs() in the MDCK cells. The cells were in-
fected with serial dilutions of 10" to 10°®. After 48 h at 37°C, the cytopathic effects of influenza
virus were observed under a microscope, and the TCIDs, was calculated according to the Reed
and Muench method [33].

Hemagglutination assay

Virus preparations were assayed for their hemagglutinating activity in 96-well micro-titer
plates (U type, Nunc, Roskilde, Denmark). A total of 25 uL of the viral suspension was added
to the first well in column one and serial dilutions were made. The positive control was per-
formed with lectin, and the negative control was performed with PBS. Lastly, 25 uL of a 0.5%
human erythrocyte suspension was added to each well of the plate and hemagglutinating titers
were recorded after 45 min as described previously by Hierholzer and Killington [34].

Sialidase assay

Virus preparations were assayed for sialidase activity in 96-well micro-titer plates (black flat-
bottom type, Corning, NY, USA) with 4-methylumbelliferyl-N-acetyl-a.-D-neuraminic acid
(4-MU-NANA) ammonium salt (Nacalai Tesque, Kyoto, Japan) according to a fluorometric
assay method as described previously by Song and colleagues [35]. Five microliters of the viral
suspension, 20 pL of the NA inhibitor solution, and 20 pL of the 0.1 mM 4-MU-NANA solu-
tion were mixed and incubated for 60 min at 37°C. The fluorescence of the released 4-MU was
measured with the excitation at 365 nm and emission spectra were recorded at 450 nm in a
SpectraMax M5 fluorescence spectrophotometer (Molecular Devices, California, USA). Rela-
tive activities were calculated as described by Song and collaborators [35].

Electron microscopy

The visualization of the pressurized and control viruses was performed using a Morgani trans-
mission electron microscope operated at 100 kV. The samples (400 pg/mL) were placed in a
400 mesh copper grid coated with carbon, rinsed 3 times with water, and contrasted with 2%
uranyl acetate.

Vaccine preparation

An egg-grown inactivated H3N8 whole virus vaccine was prepared using hydrostatic pressure
as the inactivating agent. Allantoic fluid was clarified and concentrated by ultracentrifugation.
The viruses were inactivated by pressurization for 12 h at 282.7 MPa at 25°C.

HP apparatus and procedure

The HP pump used in this study has a cylindrical body and is made of Vascomax 300. The
samples were placed in the interior of the pump in a polyethylene tube with a volume of 1.5
mL. The pump is a manual pressure generator and was designed for applications in which a lig-
uid is compressed within a small volume. It was purchased from ISS (Champaign, IL,USA).
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The experiment was started when a pressure of 282.7 MPa was reached. The pump was coupled
to a thermostatic bath that maintained the temperature of the sample at 25°C. To monitor the
cell temperature, a conduit for a thermometer was drilled into the pump. Ethanol was used as
the pressure-transmitting fluid. Additional details concerning the HP equipment can be found
in the report of Paladini and Weber [36].

Prophylactic immunization, challenge, and the assessment of the
immune response in mice

Six-week-old female BALB/c mice (10 per group) were immunized intranasally at weekly inter-
vals, with 3 doses corresponding to 10*° TCIDs, (3 ug per dose of the pressurized virus). On
day 21, the mice were challenged via the intranasal route with 4 - 10**TCIDs, of wild-type
H3NB8 virus.

One week post-vaccination and two weeks after challenge, the sera were collected. One and
12 weeks post-vaccination, feces and nasal washes were collected. These samples were used for
the anti-influenza antibody assay. Additionally, cellular immunity was assessed by a cytokine
ELISA assay of splenocyte supernatants, after the complete immunization and challenge. All of
the experiments were performed before vaccination, one week after vaccination, and two weeks
after challenge. Blood sampling were performed under 4% isoflurane in oxygen anesthesia. Eu-
thanasia was performed under overdose of isoflurane in oxygen. Death was confirmed by per-
sonnel trained to recognize cessation of vital signs in euthanized mice. A combination of
criteria was used to confirm death, including lack of pulse, breathing, corneal reflex, inability to
hear respiratory sounds and heartbeat by use of a stethoscope, graying of the mucous mem-
branes, and rigor mortis.

Determination of virus titers in lungs

Groups of six BALB/c mice were vaccinated with pressurized virus or saline (as a control) and
challenged by the intranasal route. On days 3 and 6 post-challenge, the animals'lungs were re-
moved for quantification of virus. Briefly, lung tissue was homogenized in PBS containing 1%
BSA. The homogenates were spun at 1000 x g to remove cellular debris, and the supernatants
were used for virus quantification. Titers are expressed as TCIDs, per milliliter of lung homog-
enate in MDCK cells. The results are expressed as the means of 6 animals.

Viral quantification by gRT-PCR

When virus titration was not feasible due to low amounts of sample, influenza RNA levels were
quantified by real-time RT-PCR. This was performed for the nasal washes of placebo and vacci-
nated animals. RNA was extracted with a commercial kit (RNeasy mini kit; Qiagen). All reagents
for one-step real-time RT-PCR (qRT-PCR), including primers, probes and enzymes, were used
as recommended by the World Health Organization (WHO) [37]. Virus quantification was
based on a standard curve, as previously described [38]. In brief, RT-PCR with RNA from experi-
mental assays was performed in parallel with serial 10-fold dilutions of PET26b+ plasmid (Nova-
gen) containing an influenza M1 synthetic gene insert (Genescript) flanked by the plasmid's
Xhol and HindIII restriction sites. Quantification was expressed as copies/mL (http://cels.uri.
edu/gsc/cndna.html). Negative controls without template were included in all reactions.

Detection of influenza-specific antibodies

Antibodies were measured in sera, feces, and nasal washes using an ELISA. The ELISA assay
used 2 pg of A/duck/Ukraine/1/63 (H3N8) per well and goat anti-mouse IgA, IgG1, and IgG2a
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horseradish peroxidase-conjugated antibodies (Southern, Biotechnology Associates, Birming-
ham, AL, USA) in a 1:1,000 dilution in blocking buffer. The reaction was developed with O-
phenyldiamine (Sigma-Aldrich Co), stopped with 1 N sulfuric acid, and read at 492 nm. Each
individual serum sample was analyzed in triplicate in double-blind tests. Positive and negative
control sera were included in each test. The results are expressed as the mean of the absorbance
values (492 nm) of the 1/100 diluted sera of each animal.

Hemagglutination Inhibition (HI) assay

Neutralizing antibodies were also measured in sera using an HI assay, as described in the WHO
Manual on Animal Influenza Diagnosis and Surveillance [39]. Briefly, the serum samples were
serially diluted in PBS and were then mixed with aliquots of virus, corresponding to eight HA
units, in V-bottom 96-well plates (Nunc, Roskilde, Denmark) and incubated for 60 min at room
temperature. At the end of the incubation, 1.0% human red blood cells were added and incubat-
ed for a minimum of 30 min. The serum HI antibody titer of a given sample was defined as the
reciprocal of the last serum dilution that completely inhibited the hemagglutination.

Analysis of cytokines

All further analyses of the cellular immune response were carried out using 10° splenocytes
after 5 days of in vitro culturing at 37°C and 5% CO, in supplemented RPMI medium and/or
10 pg of influenza virus (in vitro re-stimulation).

The secretion of IFN-y, TNF-q, IL-2, IL-4, and IL-6 was evaluated in the supernatants of in
vitro cultured splenocytes with an ELISA assay using the mouse IFN-y, TNF-q, IL-2, IL-4, and
IL-6 ELISA Set II kits (BD Pharmingen, San Jose, CA, USA and eBioscience, San Diego, CA,
USA) according to the manufacturer’s instructions.

Bronchoalveolar lavage (BAL) and leukocyte counts

The animals (6 per group)were euthanized by CO, inhalation, and the trachea was surgically
exposed and cannulated at two weeks after the last challenge. BAL fluid was collected from the
mice by washing the lungs with 1 mL of PBS. The BAL fluid samples were centrifuged at 500 -
g for 8 min at 4°C to obtain the supernatants. The total number of leukocytes (diluted with
Turk’s 2% acetic acid solution) was counted using a Neubauer hemocytometer. Differential
counts were performed in the cytospins stained by the May-Grunwald-Giemsa method. The
counts are reported as the total number of cells per mL of BAL fluid.

Lung permeability

Mice were sedated with 4% isoflurane in oxygen (9 per group). After we confirmed that mice
were sedated, they were injected intravenously with 0.2 mL of 2% Evans Blue dye (Sigma) and
were sacrificed one hour later. The lungs were collected and placed in 2 mL of formamide and
incubated at 37°C overnight (VETEC, Duque de Caxias, R], Brazil) to extract the Evans Blue
dye from the tissue. The absorbance was measured at A = 620 nm (Molecular Devices Spectra
Max 190). The Evans Blue dye concentration was calculated from a standard curve and is ex-
pressed as mg of Evans Blue dye per lung tissue.

Quantification of BAL cytokines

The cytokine concentrations in the BAL fluid were measured using commercially available
ELISA kits for TNF-o, IFN-y, IL-4, and IL-6 (BD Pharmingen, San Jose, CA, USA) according
to the manufacturer’s protocol.
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Histopathology

For the histopathology analysis, anesthetized mice (8 per group) were exsanguinated through
the vena cava, and the lungs were inflated by injecting 1.0 mL of 10% buffered formalin
through the same catheter that was used to perform the BAL. The lungs were then removed,
fixed in 10% buffered formaldehyde, and paraffin embedded. Lung sections (5-pm thick) were
stained with hematoxylin-eosin. The analysis of the tissue sections was performed using an
Olympus BX41 light microscope at a magnification of 100X. The qualitative analysis of the tis-
sue sections and of the captured images was carried out using a computer-assisted image ana-
lyzer (Image-Pro Plus Version 4.1 for Windows; Media Cybernetics, LP, Silver Spring, MD,
USA). One observer who was unaware of the experimental conditions examined all of the tis-
sue sections in a random order.

Statistical analysis

The results are expressed as the mean values and the corresponding standard deviation of the
individual results.

The normal distribution of the values of each variable was assessed by the Anderson Darling
A2 test (Analyze-it). The statistical analysis was performed using SPSS software (for Windows).
Comparisons between and within groups were performed by an analysis of variance test (one-
way ANOVA) and Student-Newman-Keuls test (significance level of 0.050).

Results
Hydrostatic pressure inactivates the avian influenza virus H3N8

Influenza A virus subtype H3N8, pressurized at 282.7 MPa for 12 hours, showed no infectivity
as detected by a TCIDs assay (Fig 1). We next tested for potential residual infectivity with seri-
al passages in embryonated chicken eggs and cultured MCDK cells. For each blind passage, no
infectivity was detected by the hemagglutination or TCIDs, assays (Table 1).

We could not associate the presence of the pressure-inactivated virus with any sign of dis-
ease (ruffled fur, lethargy, weight loss, and huddling) or mortality in the vaccinated animals. In-
fection with the native virus was able to kill 5-week-old mice and was associated with all of the
disease signs investigated here. However, 9-week-old adult mice were not killed by the native
virus despite showing all of the disease symptoms. Thus, effective pressure inactivation condi-
tions were established as 282.7 MPa for 12 h at 25°C.

Fig 1 shows the transmission electron micrographs of influenza A H3N8 virus particles after
incubation at atmospheric pressure or at 282.7 MPa (for 12 h, 25°C). The viruses treated with
the hydrostatic pressure had a smaller size compared with the native viruses, and their shells
were not as regular as the native shells.

To confirm viral inactivation we evaluated lung and nasal lavage samples from vaccinated
animals. Infectious titers were not detected in the lungs of the analyzed animals, when the eval-
uation was performed according to TCIDs,. Nasal lavage was also evaluated by qRT-PCR, and
the results showed the absence of infectious titers (Table 2).

HP slightly affects envelope glycoproteins

To test the effects of HP on viral binding activity, we evaluated the capacity of influenza virus
to bind to erythrocytes by performing a hemagglutination assay. Even after 12 h of pressuriza-
tion, the viruses were capable of binding to the cells, with a 2-log reduction in the titer (Fig
2A).
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Fig 1. Inactivation of the avian influenza virus by hydrostatic pressure. Influenza virus was pressurized for 12 hours/282.7 MPa at 25°C. The H3N8
Influenza virus electron microscopy is shown. (A)shows the native virus, and (B) represents the pressurized virus sample. The arrow in B indicates the
formation of a "pore" on the viral envelope. The selected micrographs are representative of all grids analyzed. Bars = 300 nm. In (C), evaluation of the
pressurized virus infectivity is shown. In this assay, viruses were used at 100 ug/mL. The MDCK cell monolayers were infected with virus dilutions of 107" up
to 107. The plates were incubated at 37°C, 5% CO; for 48 hours. TCIDs, values were calculated using the Reed-Muench method. ND = not detected by the
method used.

doi:10.1371/journal.pone.0128785.g001

Table 1. Analysis of residual virus infectivity after pressure-induced inactivation®.

Sample TCIDs0(l0g10) Cytopathic effect in MDCK cells Viral growth in embryonated eggs
Saline NDP 5 .
Native virus 104.5 + +
Pressurized virus NDP 5 .

& The residual infectivity of the pressurized virus samples (282.7 MPa for 12 h at 25°C) was assayed for three sequential serial passages in embryonated
hens eggs and in MDCK cell monolayers. For each blind passage, the samples revealed the absence of infectivity by a hemagglutination assay or a
TCIDsp.

b No residual infectivity was detected in MDCK cells.

doi:10.1371/journal.pone.0128785.1001
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Table 2. Virus titer measured in nasal wash and lung after vaccination®.

Nasal wash(viral RNA levels (x 1072 copies/mL))® LungTCIDso/mL(logo) °
3 days 6 days 3 days 6 days
Vaccinated NDP NDP NDP NDP
Saline NDP NDP NDP NDP
Challenged 319.99 + 10.07 410.02 £ 23.22 10° 10"

3 BALB/c mice were vaccinated with pressurized virus. Samples were collected 3 and 6 days after vaccination.
P The results are expressed as the means of six animals.

doi:10.1371/journal.pone.0128785.1002

We also investigated neuraminidase activity. The NA activity was evaluated by testing the
cleavage of the fluorometric substrate 4-MUNANA. We found that this pressure range slightly
affected NA activity under the conditions tested (Fig 2B).

Vaccinated mice are protected against infection

Using a mouse model, we investigated the immunogenic capacity and protective efficacy of the
pressure-inactivated virus against infection. Fig 3A presents the time line of the experiments.
To this end, we observed the mortality rates and clinical signs (ruffled fur, lethargy, weight loss,
and huddling) in the mice. None of the vaccinated animals showed any weight loss or other
clinical signs during the vaccination period (21 days). However, all of the non-vaccinated ani-
mals showed all of the clinical signs evaluated, but no death was observed. Challenging the vac-
cinated animals was not associated with weight loss during the observational period (28 days).
However, challenging the non-vaccinated animals was associated with significant weight loss
(p<0.05, day 20 post-challenge) (Fig 3B).

The cellular inflammatory response to influenza virus was assessed in the bronchoalveolar
lavage (BAL) fluid of the vaccinated animals and the challenged vaccinated mice. The BAL was
performed one week post-vaccination and two weeks post-challenge, as described in the Mate-
rial and Methods section. Viable counts were performed to determine the total cell numbers.
One week after the end of the vaccination period, we observed no difference in BAL fluid cell
counts. After challenge, we observed a significant increase (p<0.001) in the BAL fluid total cell
counts in the non-vaccinated mice compared with the vaccinated mice (Fig 3C).

Inflammation leads to changes in vascular integrity and permeability. To evaluate the alter-
ations in lung vascular permeability we used the Evans Blue dye assay. Fig 3D shows that no al-
terations in the Evans Blue concentration were detected between the vaccinated and non-
vaccinated mice. However, after challenge, the Evans Blue content in the lungs was significantly
(p<0.05) increased in the non-vaccinated mice (Fig 3D).

The degree of the lung inflammation was also evaluated in hematoxylin and eosin-stained
sections two weeks after challenge. The histological analysis showed increases in lung inflam-
mation as revealed by the presence of perivascular inflammatory infiltrates in lung tissue sec-
tions from the non-vaccinated animals compared with the vaccinated animals (Fig 3E).

Lung homogenates were evaluated for TCIDs, titers to determine whether vaccination with
pressurized virus induced a protective immune response following challenge. At days 3 and 6
post-challenge, the vaccinated mice showed no detectable infectivity, whereas animals that
were not vaccinated but challenged presented infectious titers of 10> and 10" TCIDs, respec-
tively (Table 3).
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Fig 2. Activity of the surface glycoproteins in the pressure-inactivated influenza virus. (A) The hemagglutinating activity of H3N8 was tested as a
function of the incubation time under pressure (282.7 MPa) at room temperature. The virus was pressurized for 12 hours at pH 7.4. For the assay, 50 pL of
virus and 50 pL of 0.01 M phosphate buffered saline (PBS) were added to the wells. The contents of the wells in column 1 were serially diluted (1:2) through
column 12, resulting in dilutions ranging from 1 to 1/1024. Fifty microliters of a 1% human blood cell suspension was added to all of the wells. The
hemagglutination units (HAU) were calculated by the reciprocal of the highest dilution where complete hemagglutination was observed. (B) The virus was
pressurized for 12 hours (282.7 MPa) at pH 7.4. The virus particles were diluted in 32.5 mM MES, pH 6.5, 4.0 mM CaCl, prior to the assay such that the final
concentration of virus was 20 pg/mL. N-acetylneuraminic acid (Neu5Ac) was used as negative control. All of the reactions were carried out in triplicate. The
mean values of these replicates were used in the analysis of the data.

doi:10.1371/journal.pone.0128785.9002

Influenza vaccine is associated with increased antibody levels

To investigate the capacity of pressure-inactivated virus to induce humoral immunity, we used
an ELISA to measure the IgA and IgG subclasses of influenza-specific antibody responses.
Higher levels of all of the antibodies were observed after the vaccination and challenge (Fig
4A), and similar results were obtained at all tested intervals (one, two, three and four weeks)
between the last immunization and the challenge. The results for IgG1 were similar, and the
levels of IgG2a were increased slightly with longer intervals (S1 Fig). The third dose of the vac-
cine, given at day 21, significantly boosted the IgG2a and IgG1 antibody titers in serum. IgA
was the least robustly increased in serum but remained elevated even 12 weeks after vaccina-
tion (data not shown). The antibody response in serum followed the distribution pattern
IgG2a > IgG1 > IgA.

IgA levels were also measured in nasal lavage and feces one week post-vaccination. We ob-
served an increased level of IgA in the vaccinated mice. At 12 weeks after vaccination, the levels
of IgA were still higher in the vaccinated animals than in the non-vaccinated animals (Fig 4B).

The ability of serum antibodies to neutralize the native virus was also tested in different in-
tervals. After vaccination and challenge, all animals presented high seroprotective (>1:40) HAI
titers (Fig 4C and S2 Fig).

Pressure-inactivated virus induces high IFN-y secretion in the
vaccinated mice and in the vaccinated and challenged mice
To further investigate the ability of the pressure-inactivated virus vaccine to stimulate the im-

mune system, we evaluated the production of cytokines in splenocyte supernatants and
BAL fluid.
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doi:10.1371/journal.pone.0128785.9g003
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Table 3. Virus titer measured in lung homogenates after challenge®.

TCIDso/mL(log0)°
3 days Post-challenge 6 days Post-challenge
Saline ND° ND°
Non-vaccinated/challenged 10° 10"
Vaccinated/challenged ND° ND°

2 BALB/c mice were vaccinated with pressurized virus and challenged intranasally with native virus.
P The results are expressed as the means of six animals.
° No infectivity was detected in MDCK cells.

doi:10.1371/journal.pone.0128785.t003

In mice, the most common Th1 cytokines involved in the immune response are IFN-y, IL-
12, and IL-2, whereas IL-4, IL-5, IL-6, and IL-10 are associated with a Th2 response. A similar
Th response pattern is observed in humans [40]. Thus, we evaluated cytokine production by
analyzing the BAL fluid and the supernatants from splenocytes after in vitro H3N8 influenza
virus stimulation.

One week post-vaccination, we observed an increase in all of the measured cytokines, pri-
marily IFN-y and IL-6 (p<0.001). Two weeks after challenge the IL-2, IFN-y, TNF-a, and IL-6
levels were higher than the levels observed post-vaccination. We also measured IFN-y, TNF-a,
and IL-4 at 12 weeks after challenge, and only IFN-y remained higher than the controls (data
not shown) (Fig 5A). These data indicate that the cytokine response in the vaccinated animals
and the challenged vaccinated animals was directed towards a Th1 response.

The evaluation of BAL fluid revealed that the post-vaccination production of cytokines was
higher than in the controls (p<0.001). In the vaccinated-challenged animals, we observed the
same pattern of increased cytokine production as was observed after the vaccination. However,
IL-6 was especially high after challenge (Fig 5B).

Discussion

In this study, we have shown that the intranasal vaccination of mice with an avian influenza
virus inactivated by HP induced effective protection against infection.

Importantly, we demonstrate that the method used for virus inactivation in the production
of a whole avian influenza virus vaccine induces not only the production of neutralizing anti-
bodies in sera but also the production of IgA in nasal mucosa and in feces. Furthermore, we ob-
served a marked IFN-y response after vaccination.

We found that the pressurized virus particles were smaller than the native virus particles
(Fig 1). These structural changes would be the cause of inactivation. Inactivation was assessed
using a TCIDs assay and qRT-PCR (Tables 1 and 2). Previous studies have shown that human
and animal viruses can be inactivated by HP [41,42]. Additionally, other authors have also
shown changes in particle shape, membrane integrity, or capsid proteins [24,31]. To our
knowledge this is the first study to investigate the humoral and cellular immunogenic response
in vaccinated and challenged vaccinated animals with a virus inactivated by hydrostatic
pressure.

We evaluated the effect of HP on HA and NA activity (Fig 2). The pressurization led to a
drop of 2 logs, in the hemagglutination test. We believe that this result is due to changes in the
binding site of HA with N-acetylneuraminic acid. In 2003, Gomes et al. showed that HP led to
structural changes in the membrane G protein from VSV. It was also demonstrated that the
pressurized particles were capable of fusing with the cell membrane but unable to cause an
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H3NB8 neutralizing antibodies in sera is shown. The serum of the vaccinated and further challenged mice was assessed by a hemagglutination inhibition
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The dotted line represents the detection limit of the assay at a dilution of 10'°. The symbols represent the result for each individual animal. Sal = Saline,
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<0.0001 and a Student-Newman-Keuls post-test).

doi:10.1371/journal.pone.0128785.g004

infection [43]. More recently, our group showed similar results with the human H3N?2 influen-
za virus [44]. These previous studies indicate that the inactivation by pressure preserves, even
partially, the viral structure because the virus is able to bind to the target cell but is unable to
enter the replication cycle [45].

In general, the pressure acts in the secondary structure, tertiary and quaternary structures of
proteins, which are maintained by hydrophobic interactions, electrostatic and hydrogen bonds
[46]. However, the literature shows that quaternary structures are the most affected [47,48].
Based on our data, we believe that the inactivation by HP changes the structure and activity of
both hemagglutinin and neuraminidase, but preserving the generation of neutralizing response
when the pressurized particles are used as a vaccine (Fig 4C and S2 Fig). More studies are being
performed to determine the extension of these changes and whether the pressure-inactivated
virus generates cross-protection.

We observed that the challenged non-vaccinated animals showed weight loss and had other
clinical signs (Fig 3B), while the challenged vaccinated animals maintained their weight within
the expected growth curve [49]. Furthermore, we found that challenged vaccinated animals
showed no detectable viral titers by TCIDs, assay (Table 3). These results suggest that the vac-
cine used in this study is effective at controlling the viral infection.
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An influenza infection causes lung damage. This is associated with the infiltration of inflam-
matory cells and the increased leakage of proteins into the lung. In this study, we also analyzed
lung damage by evaluating the cytokines and cellularity in BAL fluid and lung vascular perme-
ability. We observed that the lungs of the challenged vaccinated animals showed a lower
amount of blue dye compared with the challenged non-vaccinated animals, suggesting an effec-
tive action of the vaccine in controlling inflammation (Fig 3D). Moreover, these data are con-
sistent with the results obtained by Gehlen et al. in mice, rats, and rabbits [50].

We also evaluated the vaccine-induced protection of the lung by histological analysis. The
challenged non-vaccinated animals had lung inflammation, whereas the lung tissue of the chal-
lenged vaccinated animals had a normal appearance (Fig 3E). The lung inflammation in the
challenged non-vaccinated animals was consistent with an influenza virus infection [51,52]
even though the damage observed was milder than that observed using a mouse-adapted influ-
enza virus or H5N1 [51,53].

The method most frequently used to evaluate the immunogenicity of a vaccine is the deter-
mination of antibody levels before and after vaccination [54]. Usually studies of immune re-
sponse of vaccines start using BALB/c mice as model [55]. A vaccine response that resembles
immune response to natural infection is considered the "gold standard" for protection [56].

We observed that the vaccination increased IgG2a levels and, to a lesser extent, IgG1 levels
(Fig 4A). However, other authors have also found that lower levels of IgG2a, compared with
those of IgG1, protect challenged animals [57]. Additionally, it is more desirable for the IgG2a
subtype to be higher after a vaccination because it is linked to cross-protection [55]. Until now
the hallmark for the efficacy of an influenza vaccine has been the induction of adequate levels
of serum-neutralizing antibodies [56,58].

The influenza virus is spread in large quantities by excretion in the feces of birds [59]. Mu-
cosal IgA secretion is the first line of pathogen defense. Thus, an increase in the IgA-specific vi-
ruses in the feces is an important observation (Fig 4B), as a positive correlation between the
increase in the level of the mucosal IgA and the protection against a challenge has been re-
ported [60,61]. We also observed an increase in the serum IgA in all of the vaccinated animals,
regardless of challenge (Fig 3A). Serum IgA may act as a second line of defense [62], inducing
phagocytosis by neutrophils [63]. Based on the work of Lu et al., who showed that the avian
and human influenza viruses can infect mice and induce neutralizing antibodies detectable by
the hemagglutination inhibition assay, we performed the test to verify that the antibodies
found in the sera had a neutralizing capacity [64]. Our data show that all of the vaccinated ani-
mals had high protection titers (Fig 4C and S2 Fig) [65,66].

Studies of vaccines usually do not consider the production of cytokines [67]. However, it is
known that native virus vaccines and whole virus vaccines induce similar responses, indicating
that the structural integrity of the viral particles is important for the immune response [68].
We observed a mixed Th1/Th2 profile in the splenocyte supernatants. All of the vaccinated an-
imals showed an increase in the secretion of all of the measured cytokines (Fig 5A). However,
the high secretion of IFN-y drives the immune response to a Th1 response. This pattern was
still noted at 12 weeks after the infection (data not shown) and was also observed by Geeraedts
et al. in 2008 [68]. The memory response against influenza is not completely understood. It is
known that not only are memory B cells essential for generating antigen-specific antibodies but
that memory T cells also play an essential role against reinfection with influenza virus [69].

Our IL-6, TNF-a, and IFN-y results are in agreement with the literature, which states that
whole virus vaccines induce high levels of these cytokines (reviewed by Reeth, 2000) [70]. IFN-
v is effective in inducing IgG2a and IgA in serum and protection against challenge [71], which
corroborates our results. The increased concentrations of IL-6 and IL-10 could explain the
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presence of IgA at our dosages because these two cytokines are involved in the immunoglobu-
lin class switch to IgA [72].

The analysis of BAL fluid is considered a sensitive method for the diagnosis of pulmonary
inflammatory diseases [73]. The cytokine analysis in BAL fluid showed that in all of the vacci-
nated animals, an increase in all cytokines, particularly IL-6, took place (Fig 5B). Zosky et al.
showed increased IL-6 and TNF-o in the BAL fluid of the challenged mice [74]. The increase
of these cytokines in all of the vaccinated animals agrees with the literature showing an increase
in the cytokines in BAL fluid of mice and humans after an influenza infection [75].

Our data show that the pressure-inactivated virus was able to generate neutralizing antibod-
ies in serum, mucosal IgA, and strong IFN-y response. Furthermore, the challenged animals
showed no symptoms of disease and had better immune responses than the control animals.

Hydrostatic pressure is a well-established technique used in the food industry to eliminate
bacteria and viruses from processed foods, such as canned products, milk, oysters, ham, and
juice [76,77]. These technological developments increased the feasibility of commercial appli-
cation in pathogens inactivation area [78]. Then, the establishment of an HP vaccine would
not require technological innovations.

Besides, intranasal vaccination is non-invasive and prevents viral disease by blocking the
site of entry, and this route also has the advantage of preventing horizontal transmission [79].

Although whole inactivated virus reactogenicity commonly raises concerns, a study in hu-
mans showed that there were no significant differences in the side effects between the split vac-
cine and the WIV groups. This study also suggested that despite the incidence of adverse
effects in young children, the benefits of low doses may outweigh the risks [80].

Another advantage of the intranasal method is that the vaccine is easily administered and
does not require skilled personnel. Thus, immunization campaigns adopting intranasal vac-
cines may be easily conducted in remote areas or in those areas with very limited resources,
representing additional justification for developing a pressurized intranasal vaccine against
influenza viruses.

Once all the viral components are present in the vaccine, the response observed in our
results may be also influenced by the innate response [81,82]. Further investigation is
necessary to elucidate the specific roles of the innate immune system and the adaptive im-
mune system, or what pathways are triggered by vaccination with the pressure-inactivated
virus.

Supporting Information

S1 Fig. Influenza-specific IgG1 and IgG2a levels at one, two, three and four weeks be-
tween the last vaccination and challenge. After the third vaccination, antibodies were mea-
sured with one, two, three and four weeks resting time between the last vaccination and the
challenge. The control animals were inoculated with saline and challenged. The antibodies
present in serum were measured by ELISA using 2 pg of the antigen per well and goat anti-
mouse IgG1 or IgG2a horseradish peroxidase-conjugated antibodies. The results are ex-
pressed as the mean of the absorbance values (492 nm) of serum diluted 1/1,000 from each
animal.

(TIF)

S2 Fig. Induction of neutralizing antibodies by the pressurized H3N8 vaccine. The data
show neutralizing antibodies in sera after four weeks resting time between the last vaccination
and challenge, assessed by a hemagglutination inhibition assay. The titer of the antibodies is re-
ferred to as the reciprocal of the highest serum dilution that resulted in the complete inhibition
of the cytopathic effect. The dotted line represents the detection limit of the assay at a dilution
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of 10'°. The symbols represent the result for each individual animal. Sal = Saline, Vir = Pressure-
inactivated virus, P.I. = Post-infection with native virus (challenge).
(TTF)
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