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ABSTRACT 

A dual phase gas diffusion-FIA system containing a tubular PTFE- 

membrane was studied as a mean of producing gas samples for routine 
15N/14N isotopic ratio mass spectrometry. The method is based on 
Rittenberg's reaction; the ammonium sample is injected into a liquid alkaline 
stream containing hypobromite and the N2 gas produced in the reaction 
diffuses across a PTFE-membrane into a helium carrier stream which carries it 

to the detector. 

Initially here, the use of a tubular microporous PTFE-membrane as a device 
for the preconcentration of samples in aqueous solutions was investigated. 
The performance of such a membrane was studied under a variety of 
operating conditions. A qualitative model of the membrane mechanism was 
developed based on the diffusion transport of vapour away from the 

contained liquid surface through the connected pore space. The dispersion 

undergone by the sample in the GD-FIA system containing this 

preconcentration unit was also studied and this FIA system was applied as a 
practical device for the determination and speciation of aluminium in a river 
water sample. 

The procedure for generating nitrogen gas involved optimisation of the 
system parameters including the oxidation reaction step and the production 
on-line of the chemicals used. The nitrogen gas was generated easily and 
rapidly, allowing a sample throughput capability of the order of 20 h-1. The 

system was applied to the determination of total nitrogen content in 

agricultural sample prepared by the Kjeldahl digestion. The method offered 
precision and accuracy comparable to those of the standard distillation- 
titration procedure. Isotope ratios were determined with good precision and 
means for obtaining accuracy comparable with established techniques were 
developed. 

It was also shown that the DPGD-FIA system can be readily adapted to 

enable different forms of nitrogen e. g. N02-, N03- and NH4+ to be 

determined. 

Keywords - Flow injection, gas diffusion, preconcentration, nitrogen 

speciation, nitrogen-15 isotope ratio mass spectrometry, 

- vii - 



CHAPTER ONE 
BASIC PHENOMENA IN MEMBRANE SEPARATIONS 

1.1 Introduction 
Although the utilisation of membranes for the separation of substances for 

analytical purposes can be considered comparatively rare 1, this method 
presents a series of advantages such as simplicity and compactness in the 
design of apparatus, ecological cleanliness, the continuous nature of the 
process and the possibility of automation. These advantages have led to the 
rapid development and use of membrane technology in industry, for 

example, in processes such as desalination, separation of gaseous mixtures, 
purification and concentration of impurities from waste, biotechnology and 
space science. Generally, membranes have been used as separation methods 
to replace well established methods such as evaporation, solvent extraction, 
adsorption and others. 

A membrane is a semi-permeable barrier separating two phases. This barrier 

should selectively restrict the movement of chemical species (ions or 
molecules) across it to insure that a separation takes place. For practical uses, 
the membrane should have good mechanical and chemical stability and the 
transport rate for the permeating species must be high enough to assure 
reasonably fast separations. There are many ways in which a membrane can 
restrict molecular transport such as by: size exclusion, differences in diffusion 

coefficients, electrical charges and by differences in solubility. In general, 
membrane separation is a rate process. The separation is accomplished by 
driving forces, not by equilibrium between phases. 

1.2 Types of membranes. 
Membranes can be classified under several different schemes 2. The most 
common classifications are by nature, by structure, by application and by 

mechanism of action. The most important are presented in Table 1.1. 



Table 1.1 Schemes for classification of membranes2. 

by nature natural 1. living membranes 
2. natural substances 

synthetic 1. inorganic - metal, ceramic, glass 
2. organic - films, tubing, hollow 

fibers 

by structure porous 1. microporous - inorganic, 

polymeric, filter 
2. microporous 

non porous 1. inorganic 
2. polymerics - films, tubes, 

hollow fibres, 
laminatedfilms 

by 

mechanism adsorptive 1. microporous -Vycor, compressed 
powder 

2. reactive 

diffusive 1. polymeric 
2. metallic 
3. glass 

ion-exchange 1. cation-exchange 
2. reverse osmotic 
3. electro-osmotic 

non-selective 1. fritted glass 
2. filter screens 
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This work is concerned only with synthetic membranes and these can be 

conveniently classified into four groups3: 
1.2.1 Homogeneous membranes 
1.2.2 Microporous membranes 
1.2.3 Asymmetric membranes 
1.2.4 Ion exchange membranes 

1.2.1 Homogeneous membranes 
This type of membrane comprise a homogeneous film or interface, Figure 1.1, 
through which a misture of chemical species is transported by molecular 
diffusion (permeation). The separation of various components in a mixture is 
directly related to their transport rates within the interface, which are 
determined by the diffusivities and the concentration of the individual 

components in the film. 

Homogeneous membranes are prepared from polymers, metals, or metal 
alloys by film-forming techniques. Silicone rubber (poly [dimethylsiloxane]) is 
the most common substance used4. This material is chemically and 
mechanically stable and has a high permeation rate for a large variety of 
analytes, particularly for acidic gases and inorganic and organic compounds. 
It also has a high resistance to fouling, mechanical and chemical resistance 
and differences in selectivity and transport efficiency for different chemical 
species. 

acceptor 3tream 

...................................... .............................. ...................................... ............................. 
........................ ho mogeneou3 

................ ...................................... ...................................... ...................................... (nonporous) .... ......................... ...................................... ... * .................................. ...................................... 
...................................... -- --------- 

donor *ea m 

permeation 

Figure 1.1 Structure of a homogeneous membrane. 
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An important property of these membranes is that chemical species of similar 
size, and hence similar diffusivity, can be separated efficiently when their 
solubility in the membrane phase differs. The overall separation process 
involves dissolution of the analyte in the membrane, diffusion transport in 
the condensed phase across the membrane and desorption (evaporation, 
diffusion) on the other side. Therefore, the selectivity is determined primarily 
by the solubility of the species (permeation), not by the volatility. 

They are used to separate components that have similar size but different 

chemical nature in processes such as reverse osmosis, gas and vapour 
separation and pervaporation. Furthermore, due to the combination of 
solubility and diffusivity through the membrane matrix, homogeneous 

membranes exhibit higher selectivity than microporous membranes. 

1.2.2 Microporous membranes 
A microporous membrane has a very simple physical structure and consists 
of a solid matrix containing heterogeneous holes or pores, Figure 1.2. The size 
of the pores(about 20 gm) is extremely small in comparison to the classical 
filters. The smaller the pore size and porosity, the higher the resistance to 
leakage of water across the membrane due to much higher water permeable 
pressures which determine the pressure limits over which the aqueous 
solution starts leaking across the membrane. 

Separation of chemical components is achieved by a sieving mechanism 
determined by pore diameter and particle size. Although the mechanism is 
based on physical properties, the membrane used adds some selectivity to the 

system5. This selectivity is consistently poor and it is mainly governed by the 

volatility of the compound and the differences in diffusion coefficients in the 

other phase. 

Microporous membranes can be made from materials such as ceramics, 
graphite, metals, metal oxides and polymers. The polymers most used are: 
Teflon (PTFE), polyvinylidene difluoride (PVDF), polyvinyl chloride (PVC), 

isotactic polypropylene, cellulose ester (acetyl, nitro). Sometimes, 

polypropylene, nylon, vynil/acrylic copolymer and hydrophobized paper 
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represent economical alternatives to the more expensive PTFE and PVDF 

membranes. 

The structure can be symmetric or asymmetric, depending on whether the 

pore diameters vary over the membrane cross section. Microporous 

membranes are used in processes to separate components that differ 

markedly in size or molecular mass such as micro or ultrafiltration and 
dialysis. 

acceptor stream 
......................... ........................ 

................. ..................... ............. 

microporow 
......... ........ .... ..... . .. . .......... . ...... ... .... . . .... ... .... .... 

donor stream 

diff u: 3ion 

Figure 1.2 Structure of a microporous membrane. 

1.2.3 Ion exchange membranes 
These consist of highly swollen gels or a microporous structure with the pore 
walls carrying fixed positive ( anion-exchange, alkylammoniurn groups) or 
negative (cation-exchange, sulfonic sulphate or carboxylic groups) charges. 
Membranes that consist of a mixture of negatively and positively charged 
segments are called mosaic membranes 4. 

Separation in charged membranes is achieved not only by the structure of the 

membrane matrix, but also by exclusion of co-ion, i. e. ions which bear the 

same charges as the fixed ions of the membrane structure. 

These membranes exhibit good thermal, chemical and ion transport 

properties. The separation properties are determined by charge and the 

concentration of the ions in the solution and in the membrane structure. Ion 

exchange membranes are generally prepared either by dispersing a 
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conventional ion exchange material in a polymer matrix, or from a 
homogeneous polymer in which electrically charged groups such as sulfonic, 
carboxylic or quaternary amine groups have been introduced. This type of 
membrane has been used in a limited scale due to problems involving the 

production of a stable and with high flux ion-exchange material. 

However, in recent years, DuPont has developed a line of cation-exchange 
membranes based on a poly(tetrafluoroethylene) backbone with sulfonic acid 
groups attached at the end of short side chains based on the 

perfluoropropylene ether unit: 

[(CF2 CF2)n CFCF2 ]x 

(OCF2CF)mOCF2CF2SO3- (or -COO-) 

CF3 

5- 13.5, x= 1000, m=1,2,3. 

Membrane formed from this polymer is called Nafion@ ionomer membrane6. 
It is a strong cation-exchange membrane with an active fluorosulfonic acid 
group. It consists of two phases, ionic clusters (domains) and perfluorinated 
matrix (hydrophobic backbone structure). Similarly, perfluorinated 
carboxylate membranes containing the -COOH group are rather strongly 
acidic in their H-forms because of the strong electron-withdrawing effect of 
the fluorine atoms. 

In spite of the predominance of hydrophobic regions, the polymer has the 

ability to absorb relatively large quantities of water and other protic materials 
causing swelling of the polymer. Its unique structure is due to the molecular 
aggregation of hydrophilic and lipophilic segments of the polymer. It 

produces a more uniform exchange site environment and gives a dynamic 

nature to the cluster (large changes of water content for different forms of the 

material). 
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Its sulfonate groups essentially inhibit anionic constituents from penetrating 
across the membrane when either dilute solutions or gaseous streams are on 
both sides of the membrane. On the other hand, hydrophilic compounds, 
such as acid gases (HCl, S02, and HN03), aniline, cresols, etc., are efficiently 
and relatively rapidly transmitted through the membrane when an aqueous 
stream is on one side. 

The mechanism of the transport is not clear, but it has been suggested4 that it 

can occur through the aqueous channels (by dissolution of the species in the 

water forming ionic components), or it can occur through the lipophilic 
domains that have a structure similar to PVDF. 

The main applications of ion-exchange membranes are in electrodialysis, 
electrolysis, batteries, fuel cells, and in pervaporation. 

1.2.4 Asymmetric membranes 
Transport rates through membranes are inversely proportional to membrane 
thickness. To achieve high transport rates it is desirable therefore to construct 

membranes as thin as possible, but these would lack mechanical stretch and 
be difficult to handle. Asymmetric membranes consist of a very thin (0.1 to 2 

gm) polymer layer skin, supported on a highly porous 100-200 grn thick 

sublayer, Figure 1.3. 

acceptor(donoý stream 

..... .... ... 

. ............. .. 
diffusion 

microporOU3 

homogeneous Permeation 
(nonporous) 

donor(acceptoo stream 

Figure 1.3 Structure of asymmetric membranes. 
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The skin, which is the discriminating part, may be a porous or homogeneous 

material and may be neutral (silicone rubber) or charged (ion-exchanger). The 

sublayer ( nylon, PTFE, PVDF, etc. ) acts only as a support for the thin, fragile 

membrane and has little effect on the separation characteristics or the mass- 
transfer rate of the membrane. The double-layer structure combines the 

selectivity of both materials. The separation characteristics are determined 
by the nature of the membrane material or the pore size, whereas the mass 
transport rate is determined mainly by the skin thickness. Because of the 
thinness of the homogeneous material, the rate of permeation is much higher 

than for single-layer homogeneous membranes. 

Asymmetric membranes are used in pressure-driven processes such as 
reverse osmosis, ultrafiltration, or gas separation because these can best 

utilise the high mass-transfer rates and good mechanical stability. 

1.3 Fundamentals of Membrane separation processes 

1.3.1 Mechanisms of transport 
The transport of fluids or solutes through membranes can occur by several 
different mechanisms, depending on the structure and nature of the 

membrane. In all cases, transport of any species through the membrane is 
driven by a difference in the free energy or chemical potential of that species 
across the membrane. These driving forces may result from differences in 

pressure, concentration, electrical potential or a combination of these factors 

between the fluid phases or the upstream and downstream sides of the 

membrane. 

The transport process itself is a non equilibrium process and is conventionally 
described by a phenomenological equation which relates the flow to the 

corresponding driving forces in the form of a proportionality. Some of the 

phenomenological equations are given in Table 1.2. The driving forces in 

some membrane processes may be interdependent, giving rise to new effects7- 
Thus, a concentration gradient across a membrane may not only result in a 
flow of matter but, under certain conditions, can also cause the build-up of a 
hydrostatic pressure difference, this phenomenon is called osmosis. Similarly, 

a gradient in hydrostatic pressure may not only lead to a volume flows but 
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may also result in the formation of a concentration gradient, this phenomenon 
is called reverse osmosis. Another example is the establishment of a 
temperature gradient across a membrane which may result not only in a flow 

of heat, but may also lead to the transport of matter. This process is called 
thermodiffusion or thermoosmosis. The reverse process, when a mass flow 

causes a temperature gradient, is known as the Dufour effect. 

Most often, the transport of a permeant through a membrane can be specified 
in terms of a permeability coefficient P. This coefficient relates the driving 
forces and corresponding mass fluxes through a membrane. It is defined as: 

JL (eq. 1.1) 
A ly 

where 
j is the permeant flux (in appropriate units), 
L is the membrane thickness, and 
Ao is the difference in hydrostatic pressure, partial pressure, concentration 
or potential between the upstream and downstream fluid phases. 

Permeability coefficients depend strongly on the chemical and physical 
nature of the membrane and on the properties of the chemical species in the 

mixture. 

The mechanisms involved in the variety of possible membrane separation 

processes can be categorised as basic transport phenomena. Definitions for 

some of these specific phenomena become important to clarify the processes 
involved and to provide pertinent delineation of appropriate mass-transfer 

models for different systems. 
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Table 1.2 Phenomenological relationships between fluxes and 
corresponding driving forces8. 

phenomenological flux driving forces constant of 

relationship propor onality 

Fick's law concentration 

coefficient mass j differences AC diffusion D 

J=DAC 

Fourier's law heat Q temperature heat conductivity K 

Q= KAT difference AT 

Hagen-Poiseuille's volume pressure hydrodynamic 

law V= hdAP permeability V difference AP resistance 

1.3.1.1 Diffusion 

Diffusion is a universal phenomenon by which matter is transported from one 
point to another under a concentration gradient. The mathematical theory of 
diffusion is based on the fundamental principle of non equilibrium 
thermodynamics, that is, diffusional flux is proportional to the concentration 

gradient2. The diffusional movement of mass in one direction through a plane 
is expressed by Fick's law: 

D dC 
(e 1.2) dx 

where 
Jx, the diffusional flux, is the rate of mass flow per unit area in the x 
direction (measured in g moles cm-2 S-1), 
D is the diffusion coefficient (in cm2 s-1), and 
dC/dx is the concentration gradient of the solute (in g moles cm-4) in the 
direction x, which is normal to the plane. 

The negative sign indicates that the mass flows in the direction of lower 

concentration. This equation states that the flux (mass) is equal to the product 

of the driving force (concentration gradient) and a constant (diffusivity), that 
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is, the flux is directly proportional to the concentration gradient. For the 
purpose of our discussion of membrane diffusion, we can avoid the 
complicated vector notations, since the transport will be usually 
unidirectional and membranes are relatively thin. 

Fick's first law is inadequate for the solution of most diffusion problems, 
because the concentrations are usually unknown. The fundamental equation 
for the mathematical treatment of diffusion processes is the diffusion 

equation known as Fick's second law: 

dC d( DdC (e q. 1.3) dtdxdx 

where 
t is the time. 

This equation describes the accumulation of material at a given point as a 
function of time. The above two laws are the most fundamental equations of 
diffusion but, for membrane diffusion processes, different equation must be 
deduced and additional terms introduced due to the presence of the 

membrane which acts as another component in the diffusion system. 

1.3.1.2 Hydrodynamic flow 
When the membrane is porous and the fluid flow is laminar, a simple 
hydrodynamic theory applies. In the case of gas-phase flow, the pores must 
be large enough compared with the mean free path of gas molecules to ensure 
viscous flow. For many membranes, the structures of pores are very 
complicated and frequently not known. Various models have been used 
introducing numerous pore structure factors, such as average pore diameter, 

pore size distribution, tortuosity, and specific surface area. 

The basic law governing the flow through porous media was originally 
developed by Darcy2. It states that the flow rate is directly proportional to the 

pressure gradient causing flow. The linear relationship is once again an 
example of the general phenomenological equations of fluxes and forces in 

non equilibrium thermodynamics, Here the flow coefficient is divided by the 

viscosity of the flow, and K is called the permeability, so that, 
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_M_- 
KAP. (eq. 

stpI 

where 
V= volume flow 

area 
K= permeability 
g= viscosity of the flow 
I= thickness of the porous media 

The viscosity of a fluid is a measure of internal friction between fluid laminae 
flowing at different velocities. If a fluid undergoes laminar flow, this friction 

yields shear forces. When a flowing fluid contacts a solid surface, it adheres 
to the surface, resulting in a zero fluid velocity at the surface. As a 
consequence of the viscosity and the adhering property of the fluid, the solid 
surface experiences a drag force. The viscous resistance is a counter force to 
this drag. 

Darcy's law expresses that the flow resistance is due to viscous drag and the 

permeability K contains all properties of the porous medium. This definition 

of permeability is intended to separate the fluid property, that is, the 

viscosity, from the pore-structure properties in the overall flow coefficient. 
The unit of Darcy's permeability is a darcy, which is a flow of I cm3 s-1cm-2 
with a pressure gradient of 1 atm cm-1 for a fluid with 1 cP viscosity. The 

expression of permeability as a function of pore-structure parameters will 
depend on the specific pore models. 

When a porous membrane consists of straight cylindrical capillaries of equal 
size, the Hagen-Poiseuille equation2, should apply directly describe the flow 

and 

V 
t 

nSTrr4 Ap 

8v 1 (eq. 1.5) 

In terms of molar units: 
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F=V P nSnr4 p Ap 
t RT 8pRT I 

where 
total flow rate 

r radius of capillary, 
n number of capillary per unit area, 
R gas constant 

q. 1.6) 

Comparing Eq. 1.4 and Eq. 1- 5, we can obtain the Darcy permeability for the 

capillary model. The porosity, E, for the capillary membrane will be 

nnr2 (e q. 1.7) 

and the permeability becomes 

r2E K=8 (e q. 1.8) 

Other hydrodinamic equations for a porous membrane have been developed. 

Kozeny2 assumed that for a membrane consisting of a capillary bundle with 

noncircular cross-section, the path of fluid flow would be tortuous. Using the 

concept of the hydraulic radius, he derived the following equation: 

vE3 AP 
(e q. 1. 

St K'(1 - E)2S2V I 

Where 
K' is a dimensioneless constant, dependent only on the pore structure. 
Comparing Eq. 1-4 and Eq-1-9, the Darcy permeability becomes 

E (eq. 1.10) 
K(l - E) 2S2 
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Numerous modifications of the original Kozeny theory have been developed, 

and all of these offer various structural theories of permeability for different 

pore models. 

1.3.1.3 Knudsen Flow 
When the pore size of a membrane becomes small and the mean free path is 

comparable or larger than it, the fundamental concept of viscous flow breaks 
down. In this situation, the collisions between gas molecules become much 
fewer than the collisions between gas molecules and the wall. This situation is 
known as a "free-molecular diffusion" or "Knudsen flow". In experimental 
work it has been shown that at high-pressure the flow obeys the Poiseuille 

equation. As the absolute pressure becomes lower, the flow for a given AP 

reduces to a minimum, but then increases again before becoming 
independent of the absolute pressure. In the extremely low pressure range, 
the flow becomes independent of pressure, which is the true Knudsen regime. 
Based on the kinetic theory of gases, Knudsen derived the following equation 
for free molecular flow through a long circular capillary: 

F=8, n r PI P2 (eq. 1.11) 
3 (2, n RM T) 

where 
r= the radius of the capillary, 
M= is the molecular weight of the gas. 

Basically, the same equation can be applied to all microporous membranes 
with the application of a geometric modification factor G. 

GS PI P2 
(eq. 1.12) 

(2 Ti RM T) 

Many authors have attempted to evaluate the geometric factor G for different 

pore models considering quantities such as tortuosity and porosity. 

1.3.1.4 Electrochemical phenomena 
When the solute or membrane is ionised, electrical potential can play a role in 

transport just as do concentration and pressure. This process involves two 
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separated driving forces, that is, concentration difference and electrical 
potential difference and an extension of Fick's law for an ionic species i in an 
electrical field do / dx can be expressed as the sum of two flow rates: 

J, Di dCi + ZI Ci Fda 
(eq. 1.13) dx RT dx 

where 
Zi = ionic valence 

Faraday constant. 

The first term in the Eq. 1.13 represents the flow rate due to simple diffusion 

under a concentration gradient. The second term represents the ion flux 
driven by electrical potential, which is directly proportional to the electric 
current across the membrane. 

Applications of an electrical field on such a system may induce a transport 
flux of ions which, in general, is opposed by molecular diffusion from the 
concentration gradient induced. Oppositely, molecular diffusion by an 
imposed concentration gradient of ion i induces an electrical field, or 
streaming potential, that opposes this transport and affects all others ions in 
the system. 

When the solution contains several different free ions, unequal distribution 

of ions will result across the membrane and an electrical potential difference 

called Donnan effect will be created. There are usually two cases in which the 
Donnan effect may occur. One is with ion-exchange membranes placed in a 
solution of strong electrolytes. The other is a system of colloidal solution. One 

important but simple example of the Donnan effect is as follows: if electrolyte 
solutions are placed on the right, R, and left, L, sides of a membrane 

permeable to cations but not to anions or water, then the anion concentrations 

of the two solutions will not change. However, the cations will redistribute 
between the right and left solutions until an equilibrium is established. If the 

cations are a mixture Na+ and Ca2+, then at equilibrium 
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[Ca2+ IR [Na"IR 2 

[Ca2+1 L Na+l L 

Thus, by placing a dilute Ca2+ solution on one side of the membrane and a 
concentrated Na+ solution on the other, one can develop a more concentrated 
Ca2+ solution by what has been referred to as Donnan dialysis9. 

1.3.1.5 Other mechanisms 
Temperature gradients may lead to species transport that can be explained in 
terms of non equilibrium thermodynamics. When the temperature gradient 
causes diffusion, this process is known as thermal diffusion. If the 
temperature gradient is responsible for the flow of solvent, it is called thermo- 
osmosis. If the flow is in the Knudsen regime it is called thermal effusion. The 
thermal phenomena do not play a significant role in any membrane 
separation process, since the magnitudes of the coupled phenomena are 
usually quite small. 

When diffusional phenomena are coupled with chemical reactions, the 

resultant transport rates may be greatly affected. For example, in facilitated 

transport, carrier molecules present in a membrane react or complex with the 

permeating species to create an additional gradient that contributes to 
transport 9. Facilitated transport does not affect the ultimate equilibrium state, 
but simply acts as a catalyst which increases the rate at which equilibrium is 

approached. 

1.4 Membrane separation processes 
Membrane separation processes differ greatly depending on the membrane, 
the driving force and the area of application. Table 1.3 summarises the most 
important of these separation processes. The driving force can be a 

concentration gradient, hydrostatic pressure gradient, or an electrical 

potential gradient and in some cases a pressure and concentration differences 

can be utilised. 
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Typical pressure-driven membrane processes are microfiltration, 
ultrafiltration and reverse osmosis. They are basically similar and differ only 
in the size of the particles to be separated and the membranes used. A 

mixture of components of different size is brought to the surface of a 
semipermeable membrane. Under the hydrostatic pressure gradient, some 
components permeate through the membrane, whereas others are retained. 
Microfiltration and ultrafiltration are based on a sieving effect and particles 
are separated because of their differing dimensions. The term microfiltration 
is used when particles with a diameter of 0.1-10 gm are separated from a 
solvent or other components with molecular masses < (0.1-1) x 106. In 

ultrafiltration, the components to be retained by the membrane are molecules 
or small particles: ý 0.1 gm in diameter. In reverse osmosis (hyperfiltration), 

particles, macromolecules and low molecular mass compounds such as salts 
and sugars, are separated from a solvent, usually water. In this case, the 
osmotic pressure of the solution becomes significant and cannot be neglected 
in comparison with the hydrostatic pressure driving force. 

In a gas permeation process, the feed mixture consists of gases or vapours. 
Asymmetric solution-diffusion membranes and a hydrostatic pressure 
driving force are used to transport components through the membrane. The 

membrane selectivity is determined by the solubility and diffusivity of the 
components in the membrane interface. 

Dialysis involves selective transport of solutes through a membrane as a 
result of concentration differences between two fluid phases. It achieves the 

separation (or purification of a solution) of solutes that are transferred more 
rapidly than others as a result of the relative permeabilities of these species 
through the membrane. One of the most important commercial uses of this 
technique is haemodialysis in which human blood is cleansed of metabolic 
wastes, such as urea, creatinine, and uric acid, while retaining essential higher 

molecular weight constituents and blood cells9- 
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Table 1.3 Important membrane separation process; operation principals 
and applications8. 

separation membrane driving method of application 
process type force separation 

symmetric hydrostatic sieving 
microfiltration microporous pressure mechanism and sterile filtration 

membrane difference adsorption clarification 
(0.1 -10 ) ýtm (10 -500 )KPa 

asymmetric hydrostatic 
ultrafiltration microporous pressure sieving separation of 

membrane difference mechanism macromolecular 
1- 10) gm (0.1 -1) MPa solutions 

hydrostatic 
reverse osmosis asymmetric pressure solution separation of 

skin-type difference diffusion salts and micro- 
membrane (2 - 10) MPa mechanism solutes 

symmetric separation of 
dialysis microporous concentration diffusion in salts and 

membrane gradient convection free microsolutes 
(0.01 - 1)Pm layer from 

macromolecular 
solutions 

cation-and electrical electrical charge desalting of 
electrodialysis anion-exchange potential of particle and ionic solutions 

membranes gradient size 

homogeneous or hydrostatic 
gas separation porous polymer pressure and solubility separation of gas 

membrane concentration diffusion mixture 
gradient 

asymmetric 
pervaporation homogeneous vapour pressure solubility separation of 

polymer gradient diffusion azeotropic 
membrane 

I I I 
mixture 

I 
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Pervaporation employs both a concentration gradient and pressure as driving 
forces for separation8. Volatile organic compounds are removed from a liquid 
into the gas phase. Because of the presence of both liquid and vapour phases, 
the term pervaporation is used to describe this process which involves 

selective sorption of a liquid mixture into the membrane, selective diffusion 

or flow through the membrane, and then desorption into a vapour phase. 

Electrodialysis is a process in which solute ions move across membranes by 

application of an electrical field, involving two separated driving forces, 

concentration differences and electrical potential difference. Although 

electrodialysis, can be considered as a modification of ordinary dialysis, the 
two process are distinctly different in many ways. Dialysis depends on the 

concentration gradient and the flow of solute is always from the more 
concentrated to the less concentrated solution. In electrodialysis, the 
direction of transport can be either way, depending on the field direction. In 

electrodialysis, the external electrical potential can be easily maintained until 
the desired degree of separation is achieved while in dialysis, the 

concentration gradient may diminish gradually as a result of the mass 
transport. The types of membrane used in the two processes are also different. 
Usually, ion-selective membranes are employed in electrodialysis, while in 

ordinary dialysis, microporous membranes are used. 

1.5 Membrane techniques in analytical chemistry. 
In recent years, most of the known membrane separation processes have 
found application for the separation of molecular mixtures. Micro filtration, 

ultrafiltration, reverse osmosis, dialysis and electrodialysis, are now widely 

used to produce potable water from sea and brackish water sources, to 

recover valuable products from industrial effluents, or to perform various 

concentration, purification and fractionation tasks in the chemical food and 
drug industries8. Although membrane processes are being used in diverse 

fields, their application is still impaired by high costs and shortcomings in 

membrane performance. However, membrane technology is in a state of 

rapid development and new membranes with better separation characteristics 

and improved thermal, chemical and mechanical properties are being 

developed. 
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In analytical chemistry, membranes are used mainly for separation and 
preconcentration of materials into pure species. Membranes are also used in 

many cases as isolating barriers to protect sensitive systems from the ambient 
environment. The combination of these two roles are well utilised in ion- 

selective membrane electrodes and specific gas probeS2. In both cases, reagent 
and electrodes are surrounded by ion-specific or permeselective membranes 
so that only specific ions or gases may permeate through the membranes 
while the electrode system is protected. 

The application of membranes to separate two phases, such as organic and 
aqueous solutions or a gas and a liquid, has increased recently especially with 
the development of flow injection as an on-line sample treatment technique. 
In flow injection, a high degree of selectivity is desired and the use of a 
membrane interface may enhance selectivity, for example, by removing the 
analyte from the complex sample matrix and introducing it into a carrier 
stream free of matrix. It may also be employed as a means for dilution or 
preconcentrationlO. The most used processes are: dialysis and gas diffusion, 
but, pervaporation and electrodialysis processes have also been used in flow 
injection systems. 
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CHAPTER TWO 
GAS DIFFUSION FLOW INJECTION ANALYSIS 

2.1 Introduction 
Membrane separation in conjunction with flow injection offers great potential 
for selectivityand /or sensitivity improvement. Gas diffusion is the most 
popular separation technique used and is well suited for incorporation into 
flow systems. Due its easily automation becoming simple, fast and 
reproducible, in contrast to equilibrium modes, which are normally time 

consuming and inappropriate for quantitative measurements. 
This technique can be used for: 

-separation of an analyte from a matrix 

-separation of a matrix from an analyte 

-preconcentration 

-dilution 
-speciation (different physicochemical forms of the analyte) 

-separation of two imiscible phases ( including hydride techniques) 

-introduction of reagents and samples 

-preparation of standards 

-interfacing of hybrid techniques 

The GD-FIA technique is based on the separation of the particular species 
from the original sample matrix to a new matrix, the acceptor stream, which 
contains no chemical or physical interferents thus increasing the sensitivity 
and selectivity of the detection 11,12,13. 

A large number of volatile inorganic ( gases, volatile compounds, and gas- 
evolving ions such as ammonium, carbonates, sulphides etc. ) and organics 
phenols, aldehydes, ketones, alcohols, carboxylic acids, etc. ) species can be 

measured after their separation and/or preconcentration using the GD-FIA 
technique. A typical GD-FIA manifold is shown in Figure 2.1. The substance 
from the original matrix donor stream, is converted into a gas which diffuses 

to an acceptor stream under optimised conditions. The transport of through 
the gas/ diffusion unit can be realised from from a gaseous , liquid, aqueous 
or organic donor stream ( and also from solid samples in some special cases), 
in which the compounds of interest can eventually be chemically converted to 
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a transportable species, into a suitable gaseous or liquid(organic solvent or 
aqueous) acceptor stream. Thus, different combinations can be realised 
depending on the characteristic of the sample and of the analytical system. 

C donor 
P ýrtream GD 

R1w 
R2 

acceptor DW 
strea m 

Figure 2.1 Typical manifold for a GD/FlA system. S= sample, C= carrier flow, V= 
injection valve, R1 and R2 = reagents, GID = separator unit D= detector 
and W= waste. 

To chose a suitable acceptor stream, it must have enough absorption capacity 
to quantitatively and rapidly collect all of the diffused analytes. This capacity 
is directly related and dependent on experimental factors such as sample 
contact time with the membrane, contact area of the membrane, composition 
of the donor and acceptor fluids and the membrane properties. At given 
experimental conditions the transfer efficiency for different species is related 
to Henry's constants, the partial pressures, partition coefficients between the 
fluids and the membrane matrix and diffusion coefficients through the 

membrane matrix. Several theoretical models of mass transport have been 
discussed 14,15,16 but all appear to be of limited value for optimisation of the 

mass transport through membranes in a flow diffusion cell. 

The analytes of interest, injected in a suitable form or generated on-line, can 
be detected directly based on their physicochemical properties. Peak heights 

or peak areas are commonly used for quantitation of the analytical signal 

which has a typical FIA profile corresponding to the concentration profile of 
the original reaction zone. 

This chapter presents brief descriptions about the instrumentation involved 

and the experimental factors influencing the analytical sensitivity and 

selectivity when GD-FIA systems are used. 
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2.2 Instrumentation 

2.2.1 GD-FIA manifolds 
The material used to construct a GD-FIA manifold are the same as those 
needed for conventional FIA systems but with the addition of the separation 
unit. They must be chemically inert and not interact either with the analyte or 
reagents. A variety of the detectors, optical, electrochemical and others can be 

coupled to the system for quantitation of the analyte. Non selective detectors 
i. e., conductometric, potentiometric, etc. can often be used as the GD-FIA 
technique can offer high analyte selectivity. 

Several manifolds of differing complexity have been utilised for determining 

gaseous, gas evolving, and volatile species. Kuban et al. 4 has described about 
15 different manifolds. Generally, a defined volume of an untreated sample, 
aqueous or gaseous, is injected into either an inert carrier stream or a suitable 
modifier stream. The sample disperses into the carrier stream, or sample 
components react with the modifier in a mixing/reaction coil to form species 
that are transportable through the membrane in the separation unit. The 

geometry of the coil is dictated by the rate of the mixing process, the 
dispersion and the reaction rate. The presence of a modifier (a buffer for 

example) increases the efficiency and /or the selectivity of the separation. 
The transportable species from the donor stream penetrate across the 

membrane in the separation unit where they are collected in a stagnant, 
circulating or continuously flowing acceptor stream. 

Two types of GD-FIA manifolds have been used: 

- the continuous flow 

- the stopped - flow. 

In the first, Figure 2.2 a, the acceptor stream flows continuously to the 
detector, in the stopped -flow mode, a known amount of the acceptor fluid is 

enclosed inside the sample loop of the injection valve or it can be 

continuously circulated in a closed loop. In most cases a continuous flowing 

acceptor stream is used, but a considerable loss of sensitivity occurs even 

when the donor/acceptor stream flow rate ratio is large. In order to increase 

the sensitivity, and thus to increase the efficiency of transport through the 
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membrane the stopped- flow mode is usedl7,18,19. This combination 

produces a degree of preconcentration during the separation. The 

preconcentration factor reached depends on the total permeation through the 
membrane, the flow-rate of the donor stream and mainly on the time of 
permeation. A linear relationship exists between the time of exposure of the 
membrane to the sample and the concentration of the analyte in the sample 
20. Precise timing is therefore critical when running in the stoPped-flow 
mode. 

S- v 
c -- 

Ri 
p GD w 

R2 D 

S 
AAA 

GD 
w cw 

p 
R1 

D 

(b) 

Figure 2.2 Examples of manifolds for continuous and stop-flow mode (a) and a closed 
loop mode (b). S= sample, C= carrier, R1 and R2 = reagents, P= peristaltic 
pump, V= valve, AC = acceptor stream, MC = mixing coil, RC reaction coil, 
GID = gas diffusion separator unit, IDS = donor stream and W waste. 

Another approach for the on-line preconcentration of gaseous and volatile 
analytes from fluid or gaseous samples is the closed-loop manifold2l. This 

arrangement allows the acceptor liquid to be circulating in the loop while the 

carrier stream continuously enters the membrane device and is directed to the 

waste, Figure 2.2 b. The analyte is continuously separated and 

preconcentrated into a small volume of the acceptor fluid circulating in the 

closed loop . The detector can be situated on the closed-loop, Figure 2.3 a, 

monitoring the analytical signal continuously; or it can be located outside of 
the loop where the analytical signal is monitored after a preselected time 

period. The preconcentration factor in this case depends on the loaded 
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volume of the sample ( time of sampling), the transfer efficiency and the 
acceptor loop volume. 

RC 
sw 

WvD 

"i 

n R TS 
pw 

R 

(a) 

ss 

wV sampling wv po3ftion wa3hing 
RR po3ftion 

(b) 

mc GD 
s- w 
mIm 

"- 

D 
ppw 

R 

(C) 

Figure 2.3 A closed-loop manifold for continuous introduction of a fresh gaseous sample 
into a continuous circulating acceptor stream. (a) A segmented mode 
containing a T-piece (TS) segmenter and a debubbler (PS) as a separator 
unit; (c) with a membrane device. The sampling and washing positions of 
the valves also are shown, (b) 

A similar approach for gaseous samples is based on the continuous transport 

of gases into an acceptor flow across an open gas /liquid interface. The loop is 

connected to a fresh sample stream, which continuously enters the closed 
loop system via a four-way valve and leaves the loop after separation in the 

phase separator( a membrane type or a simple debubbler)22,23. 
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The incorporation of a second membrane into the manifold, (two separation 
units), can provide considerable additional selectivity for the determination, 
Figure 2.4. This approach is capable of producing practical solutions to 
problems requiring extraordinary discrimination between two similar 
analytes, e. g., two volatile acid gaseS24. The separation can be conducted both 
in the continuous flow mode or in the stopped-flow mode. A particular group 
of analytes can be pre-separated from the major components of the matrix in 
the first stage and subsequently selectively transported across the membrane 
in the second stage. A preconcentration step can then eventually be 

performed in either the first or second stage. 

The separation units can contain either two identical or two different kinds of 
membranes. Each analyte is then collected in two separated acceptor streams 
of different composition. The two membranes can be arranged in series, as 
shown on Figure 2.4, or in parallel as shown in Figure 2.5. 

This system can, for example, be used for the simultaneous determination of 
acidic and alkaline gases with two detectors in parallel, Figure 2.5 b or with a 
single detector situated after the confluence point, Figure 2.5 a. 

Speciation of a particular analyte can be achieved using two membrane 
devices either in series or in parallel. The sample can be fed continuously into 
the first membrane, with the analytical signal being related to the content of 
free species. The acceptor stream is then, mixed with a suitable reagent 
(modifier) before it enters the second membrane unit. The combined 
analytical signals correspond to the total or available content of the analyte. 

The sample can also be split or injected simultaneously into two separated 
channels passing two membrane units in a parallel configuration figure 2.6. 
Two detectors can be used to monitor the amount of the analyte Figure 2.6 a, 
or two separated peaks can be obtained using a delay coil of a suitable length 
in each particular line and a confluence point in front of a single detector, 

Figure 2.6 b. 
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Figure 2.4 Manifold with two-stage separation and preconcentration in the first step (a) 
and in both steps, (b). 

DC 
AS1-- AS I 

ppDw 
w 

AS2- 

W TEW AS2- 

w 
v 

(b) 

Figure2.5 FIA manifolds with parallel dual-membrane gas diffusion devices, with a single 
detector, (a), or two detectors in parallel, (b), and analytes p reco ncent ration 
in both lines. 
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Figure 2.6 FIA manifold for the simultaneous determination of two components or 
species applying a single detector (b) and two detectors in parallel (a), the 
analyte preconcentration in both lines after splitting (a) or simultaneous 
injection (b) of the sample into two independent lines. R1 and R2 are 
modifiers of different composition in (b). 

2.2.2 Gas diffusion separator unit - membrane devices 

The separation unit in the GD-FIA systems is a special part of the manifold. 
In general, the donor and acceptor streams are separated from each other by a 

semipermeable membrane, although GD-FIA systems without membranes 
have been reported. The performance of the membrane separation/ 

preconcentration device is one of the keys for the success of the GD-FIA 

techniques. The membrane material, the area of the membrane exposed to the 
donor and acceptor streams and the volume and geometry of the grooves or 
the cavities on both sides of the membrane are some factors to be considered 
in order to design an efficient membrane device. 

Some studies of cell designs and membrane properties have been published24, 
25. To work properly, the membrane device has to continuously separate the 

analyte with stability of the mass transfer over a wide range of flow rate and 
flow rate ratios. It should also avoid any additional dispersion and unwanted 
dilution and provide, where appropriated, selectivity. 
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The material to make the membrane device must be chemically inert to 
prevent any reactions with the sample and reagents. The device can be made 
of a transparent material to allow observation of the correct functioning of 
the device. No adsorption should occur on the walls of the grooves or in the 
surface of the membrane to avoid any changes to the active contact area that 
could affect the efficiency of the separation. 

The volume and geometry of the channels are fundamental to the transport 
process and should be as small as possible with the maximal contact area. The 

enlargement of the membrane area can be achieved either by making the 
grooves shallower and wider, or longer (or both), depending on the 
geometry of the membrane. Many kinds of membrane are suitable to be 
incorporated into a GD-FIA system. The selection of the membrane depends 

on many factors that may vary during experiments such as: the flow rate, the 
flow rate ratio, the physical and chemical properties of the donor and the 

acceptor streams, selectivity requirements, the mechanical properties of the 

membrane material, the nature and number of samples and the membrane 
separation cell design. Several different types of semipermeable membrane 
can be applied in flow analysis for each particular membrane separation 
process. The nonporous ( silicone or natural rubber) and microporous (Teflon, 
PVDF, cellulose) membranes are most frequently used in GD-FIA systems, 
particularly for the determination of gases, gas-evolving species and highly 

volatile substances. Types such as, ion-exchange, modified supported liquid 

membranes and others, are less suitable for FIA purposes because of 
insufficiency of mechanical strength, availability in appropriates dimensions 

and reproducibility of preparation. Membranes are available in sheet 
(supported or unsupported) and tubular (capillary) forms of different sizes. 
Both types are manufactured with diverse porosity, pore size, and thickness. 
Sheet membranes with a mechanical support are sometimes necessary for best 
durability, ease of handling, and resistance to deformation under pressure. 

The life time of the membrane is dependent on the nature of the samples, 

character of the membrane, and other factors. The membrane must not be 

stretched excessively when it is mounted because it could alter the diffusion 

properties and shorten the lifetime. In addition, sharp edges on groove 

channels, rough surfaces, and over tightening may damage the membrane 
during the mounting procedure. 
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The separation unit can be easily incorporated into a GD-FIA system 
according to the manifold configuration to be used. It can be connected 
straight to the donor/acceptor streams; it can be an integral part of the 
injection valve to allow preconcentration by stopping the acceptor flow or it 

can also be a part of a closed loop with the acceptor continuously circulating 
in the loop. 

Sandwich modules for sheet membranes18,26, are the most frequently used 
designs, Figure 2.7). The classical sandwich device consists of two pieces, each 
one having a matching groove facing the gas semipermeable membrane. 

clonot 

. ............... .. ............... .. .......... ... .......... .. A I.,. *., ........... *. V. l. 1: 1 ............... .. . ................ . ...................... ...................... 

(C) 

acceptor (e) 
II 

Figure 2.7 Sandwich membrane gas diffusion device; (a) with sheet (planar) membrane 
sandwiched between two bodies, having (b) straight, (c) meander, or (d) 
helical grooves. In (e), different possibilities for the cross-sectional area. 

The two grooves can be of identical or different volumes, with a constant 
cross-sectional area and rectangular, triangular or circular profile. Straight, 

circuitous or concentric spiral grooves having several tenths of a millimetre 
depth and a 1-5 mm width have been used. The membrane also can be 

sandwiched between two spaces, made of silicone rubber, Teflon, etc., with 
straight grooves just fitting the inlet and outlet channels of the donor and 
acceptor bodies. The inlet and outlet tubes at the ends of the grooves can be 

oriented either perpendicularly or at an angle to the main axis of the device. 

Using a circular groove shape has the advantage to increase the contact area 
between the membrane and the donor/acceptor stream. When sheet 

membranes are used, specially with a circular groove shaped, a flat support 
for the membrane is desired. Teflon, nylon, or metallic net positioned on one 

or both sides can be placed into both channels for flat support of the 

-30- 



membrane. The use of a membrane support can bring advantages such as , 
better fluid mixing and a improvement on the radial transport of a solute in 

channels destroying the laminar flow and increasing the radial diffusion24,27. 
Thus, they reduce the thickness of diffusion layers and the total volume of the 
cavities. Devices containing two membranes can be also employ a sandwich 
configuration. Two identical or different membranes are positioned on either 
side of a donor stream situated on the central body, Figure 2.8. The donor 

stream flows through the central channel and species of different properties 
pass across the particular membrane and are collected in suitable acceptor 
streams. 

When the membrane to be used is tubular shaped, a coaxial configuration is 
used, Figure2.9 26,28,30. 

acceptor 

acceptor 2 

acceptor 1 
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sa mple 
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ýý= 

(b) 

outer block 
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oLAer block 

Figure 2.8 A dual- membrane device containing two identical or different membranes. 

In these configurations, the donor stream can flow in either the annular space, 
Figure 2.9 a, or through the central membrane tube, Figure 2.9 b. The coaxial 
configuration has the advantages of being resistant to leakage of liquid and is 

easy to construct. It is preferred when gaseous analytes must be separated 

selectively from matrixes containing particles, solids, etc. 

-31- 



in 
T-piece 

acceptor Out 

donor / donor 
............ ..................................... in -- ---------------------------------- -o LA 

membrane tef Ion tube 

in 
acceptor out 

donor donor 
---------------- in OLA 

L............. z- 
-- - F== 

(b) teflon tube gla: 3: 3 tube 

Figure 2.9 A coaxial devices for tubular membranes. Device constructed with 
polypropylene T-pieces (a), and a straight diffusion scrubber device (b). 

2.2.3 Detectors 

The GD-FIA technique needs high precision components in spite of the 
dynamic process occurring in the flowing streams; the concentration of 
detected species is continuously varying and highly reproducible pumping 
and injection systems are needed as in a conventional flow injection system. 
For this technique, is desirable that the detector has high sensitivity, low 

noise, rapid response and a minimum contribution to mixing processes in the 
flowing stream. The two first factors contribute towards the detection limit 

obtained by the particular analytical method, the second two contribute to the 

separation between successive peaks in the record of detector response vs. 
time. It is necessary to be able to make quantitative measurement of peak 
height or peak area free from contributions from neighbouring peaks. 

Optical, electrochemical and others detectors coupled either with a chart 
recorder or a computer are commonly used for quantitation. Due to the high 

selectivity reached using the GD-FIA technique where the species to be 

analysed is previously separated, the sensitivity of the detectors can be 

intrinsically enhanced and non-selective detectors, i. e., conductometric, 

potentiometric, etc. can also be used to great advantage. 
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The detector must be chosen according to the species to be analysed and the 
reagents involved to the gas generation. Ionic, oxidising agents and reducing 
compounds from the donor stream, can cause serious interference in the 
determination of gases and volatile compounds, bringing matrix effects, high 
background and unstable baseline for the determination. Different 

approaches to minimise those effects have been proposed30. 

2.3 Important parameters for GD-FIA systems 
In all analytical techniques, optimisation is required to achieve maximum 
sensitivity. In the case of the conventional FIA techniques many parameters 
can influence the analytical signal and, when an additional process such as 
gas diffusion is added, optimisation becomes more difficult. 

In all transport processes factors such as: time of exposure, sample volume, 
concentration gradient and experimental conditions on both of the membrane 
side, i. e., temperature, pressure, flow rate must be examined in detail. 

In the case of GD-FIA membrane techniques, the mass transfer depends on 
the resistance of the interface and that of the donor/acceptor streams. A 

relationship exists between the analytical signal and the concentration of the 

analyte, the volume of the acceptor solution inside of the donor stream ( 

injector loop), the effective surface area of the membrane in direct contact 
with the sample, the permeability of the species and the temperature, etc. The 

sample and the acceptor flow rates, there time of exposure of the membrane 
to the sample, the volume of the sample, the length, the diameter, and the 

wall thickness of the membrane as well as the flow cell geometry, all affect the 

efficiency of the mass transfer through the membrane. For any specified 

membrane material, temperature, analyte concentration, etc., the amount of 

analyte penetrating the membrane is constant. The concentration profile 
depends on the distribution coefficient of this analyte between the membrane 

and the sample and acceptor stream. 

2.3.1 Types of membrane 
The type of membrane is an important factor determining the transition rate 

of the analyte as it affects its diffusion rate in the membrane, its solubility in 

the membrane matrix and diffusion through the two diffusion boundary 
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layers. For a good mass transfer efficiency, the analyte must have a high 
distribution coefficient from the sample into the membrane and from the 
membrane matrix into the acceptor fluid. The response time also varies for 
different membranes, being very short ( less than seconds), for microPorous 
membranes compared to the others type of membranes which enables rapid 
switching between sample and blank. 

2.3.2 Distribution coefficients 
The distribution coefficients between the membrane and the acceptor fluid 

governs the rapidity with which the analyte is removed from the membrane. 
A well defined concentration profile of the original sample plug and a short 
contact time of the sample zone with the membrane will result in a better 

shaped analytical signal. 

Transport efficiency depends on these coefficientsl4.16.31. This is the factor 
determining the slope of the trailing part of the signal and how rapidly the 

peak returns to baseline. A high value for the peak height/peak width ratio 
indicates that the analyte is removed efficiently from the membrane into the 

acceptor. The parameters of the peak maximum depend on the sample 
concentration, the diffusion rate and, both depend on the distribution 

coefficients. 

2.3.3 Geometry of the membrane 
Transport rates across membranes are nearly inversely proportional to the 

membrane thickness and proportional to the active surface area. The thinner 

wall membranes produce a better peak shape and a shorter response time. 
Smaller pore size is more effective in avoiding permeation of other species 

across the microporous membrane. 

2.4 Experimental con tions 

The factors connected with the experimental conditions on both sides of the 

membrane are the most important factors from the point of view of sensitivity 

and/or selectivity of determination. 
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2.4.1 Flow rate 
Preconcentration factors depend on total permeation through the membrane 
and the flow rate ratio of the donor and the acceptor streams in the 
continuous-flow mode. A high flow rate of the acceptor stream can be used as 
a dilution scheme, and a low flow rate or stop-flow mode can be used to 
concentrate the sample. Usually, the amount of species transported across the 
membrane increases with the flow rate, but the results show some decrease of 
the signal when the contact time is too short. The contact time is longer at 
lower flow rates and, thus, more species can pass across the membrane. 

2.4.2 Time of preconcentration 
The magnitude of the analyte preconcentration factor depends linearly on the 

sample volume passing through the donor chamber and, of course, mainly on 
the time of preconcentration provided that the receptor fluid has sufficient 
absorption capacity. A linear relationship exists between the signal 
corresponding to the analyte transported across the membrane, the product of 
the time of exposure of the membrane to the sampling environment, and the 

concentration of analyte in the sample. Precise timing is thus critical when the 

stopped - flow mode is used. 

2.4.3 Temperature 
An increase in temperature will increase the diffusion rates, diffusion 

coefficients, and also the solubility of the analyte in solution and in the 

membrane material. Depending on the changes in distribution coefficient, this 

could result in either positive or negative change in the transition rate and the 

transport efficiency. 

2.4.4 Pressure 

The two different transport mechanisms for homogeneous and porous 

materials explain the differences in the influence of the gas pressure applied 

on the donor side of the membran e24. While an increase in the pressure 
increases the solubility of gases in silicone rubber and ion-exchange 

membranes, the pressure decreases the transport efficiency through the 

microporous membrane, probably widening the diffusion layer inside the 

membrane and making it protrude into the acceptor liquid. Some excess 

pressure on the donor side can be applied to improve the efficiency of the 
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transmembrane transport and the sensitivity of a procedure using nonporous 
silicone rubber membranes. 

2.4.5 Composition of donor and / or acceptor streams 
The actual composition of the fluids on both sides of the membrane is the 

most important factor affecting the selectivity of a determination. 

Appropriate chemical reactions, i. e., acid/base, complexation, oxidation, 
reduction, precipitation, etc., can improve the selectivity of the method 
significantly. Combining the different factors allows selectivity, and also 
sensitivity, to be simply changed over a wide range (several orders of 
magnitude). 

2.5 Applications of GD-FIA technique 
The GD-FIA technique has undergone extensive development as reflected in 

the large number of papers published on this topic over the last few years. 
Simplicity, speed and high sampling rates are qualities of the GD-FIA 

technique which persuade more and more research groups to become skilled 
in this technique. 

Numerous examples of membrane-assisted flow injection determinations are 

given in the literature. They cover a wide range of methods and analytes. A 

summary of the variety of analysis in different areas where this technique has 

been successfully applied is given in Table 2.1. 

The first application of GD-FIA was presented by Baadenhuijsen in 197932 

when he decided to apply the flow injection technique to the well-stabilised 
Auto Analyzer technique for C02 as modified by Kenny and Cheng33. The 

same principle is used for all existing procedures for total carbonate and free 

carbon dioxide in different samples The procedure relies on adjustment of the 

sample pH to convert total carbonate to the free acid form, transport of a 

reproducible fraction of the C02 to a suitable receptor across an appropriate 

membrane and measurement of the transferred gas via spectrophotometry 14, 

28,32,33, potentiometry34. and conductimetry35,36. A fibber optic based 

fluorescence sensor, using a receptor buffer and hydroxypyrene trisulfonate 

as the acid- base indicator, has also been described60. Aoki et al. 54 have 

determined organic carbon from sea water samples using chemiluminescence 
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detection. Inorganic C032- is produced from the oxidation of organic species 
by S2082- reacts with H2SO4, and the C02 formed permeates through the 

microporous PTFE membrane and reacts with luminol reagent. 

Similar methods have been developed for the routine determination of 
ammonia. The ammonium ion is injected into an alkaline solution and the 

ammonia formed diffuses across the membrane into a acceptor stream. The 
trapped ammonium has been determined spectrophotometrically 11,14,47,611 

with an acid-base indicator, by conductimetry measurements 43, by 

potentiometry with a liquid ion-exchanger ammonium selective electrode 37, 
47,61 and by fluorimetry62. 

Determination of total nitrogen in food and fertilizers has been reported by 
Pasquini et al. 43. Organic nitrogen compounds of biological or agricultural 
samples are converted to ammonia after the classical Kjeldahl digestion and 
the digest is injected into a GD-FIA system using a conductimetric detector. A 

simple concentrator based on a microporous PTFE membrane and polymer 
net has been developed and combined with an ammonia-selective gas 
electrode for the continuous flow determination of low concentrations of 
ammonia ions in water49. The gas dialysis concentrator continuously gives 
about a ten-fold increase in the concentration of ammonium ions. the system 

was applied to the determination of residual concentrations of ammonium in 

water purified by destillation and/or de-ionisation and to natural water 

analysis. 

A sophisticated GD-FIA conductimetric method, employing only one reagent, 

one FIA manifold and one detection system, for the determination of low 

levels of ammonia, total inorganic nitrogen and its two major forms of 
inorganic species, nitrite and nitrate was described by DeFaria et al. 26. The 

method has been tested for water analysis. All nitrogen forms are 
transformed on-line into ammonia. The nitrite and nitrate samples are passed 
into a zinc reducing column. For nitrate determination, the sample is first 

treated with sulfamic acid. This way, all nitrite present is reduced to nitrogen 

gas and only nitrate remains in solution. 
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Table 2.1. Different areas of application for the GD-FIA techniques. 

sample species 
determined 

system feature detection reference 

CLINICAL 
blood plasma C02 silicone rubber 

membrane 
SP 32 

NH3 P 37 
serum urea immobilized 

enzyme PTFE 
membrane 

SP 38 

sahcylate P 39 
urine/blood NH3 40 
FOOD 
milk acetoacetate PTFE tape SP 41 

Cl- P 42 

vegetable tissue NH3 PTFE tape 
100 samples h-1 

C 43 

wine and 
beverages C02/SO2 

sheet PTFE 
membrane 
25 samples h-1 

SP 34 

S02 SP 44 
ethanol sheet PTFE 

membrane 
P 45 

ethanol immobilized 
PTFE membrane, 
150 samples h-1 

A 46 

ENVIRONMENT 
water NH3 PTFE tape, 

100 samples h-1 
SP 47 

ozone teflon membrane, 
65 samples h-1 

' 

SP 48 

CN- F- NH3 PTFE membrane SP 19 

NH3 silicone rubber 
membrane 

P 49 

N03- N02- 
NH3 

PTFE tape, 
60 samples h-1 

C 50 

Hg nafion membrane CV ICP-EAS 51 
Br- PTFE membrane, 

30 samples h-1 
A 52 

As tubular PTFE 
membrane 

HG ICP-EAS 53 

cont/... 
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sample species 
determined 

system feature detection reference 

waste water S- silicone rubber 
membrane 

SP 18 

CN- silicone rubber, 
20 sample h-l 

SID 17 

air S02 P 23 
air and water volatile 

compounds 
silicone rubber Ms 31 

total organic 
carbon 

PTFE membrane CL 54 

industrial effluent Cl- NH3 PTFE membrane SP 55 
OTHERS 
metallurgical CN- tubular 

PTFEmembrane 
SP 56 

chemical reagents NH3 teflon tape P 57 
Hg Nafion CV ICP-EAS 51 

synthetic samples CN- SCNý 10 sample h-1 SP 58 
BH4 A 52 
NOx N02- sheet PTFE 

membrane, 
30 sample h-1 

P 59 

Note: SP, Spectrophotometry; P, potentiometry; C, Coulometry; A, amperometry; CL, 
chemiluminescence; 

Recent applications of FIA-GD separation and preconcentration with a PTFE 
membrane include the determination of different anionic species such as 
sulphide, chlorine and cyanide. 

Hydrogen sulphide evolved from an acidified sample was preconcentrated 
by permeation in a stationary alkaline acceptor solution enclosed in a silicone 

rubber sample loop18. Depending on the sample volume preconcentrated, the 

applicable analytical range spanned low ýtg 1-1 to tens of mg 1-1. The 

sensitivity was increased by a factor of 30 compared with conventional 

methods, and it permitted practical determinations in the sub ýIg 1-1 range 

using nitroprusside and methylene blue reagents. The same research group 
has also been used silicone rubber membranes for permeative transport of 

various sulphur anions, H2S and S02, in sour water samples 63. 

Bartroli et al-44 determined total and free sulphur dioxide in wine by GD-FIA 

using p- aminoazobenzene as the colorimetric reagent. 
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Schulze et al. 57 has determined simultaneously ammonium and sulphide 
using spectrophotometric detection. They used a dual-detection manifold 
designed to enable estimation of the membrane efficiency. This configuration 
permit the determination of the volatile components in both the donor and 
the acceptor stream. A retardation loop was used in the case of sulphide. For 

ammonium, two gas diffusion units were coupled with each other. The 
transfer efficiency was ca. 40% for hydrogen sulphide and ca. 7% for 

ammonia. The effects of temperature and different type of membranes on the 

efficiency of separation were tested. 

A GD-FIA method for the preconcentration and selective determination of 
sulphide has also been reported by Milosavljevic et al. 64. The method is based 

on using the acceptor stream of the diffusion unit in a closed loop, mobile 
(recirculating) mode for the accumulation of the analyte. Part of the analyte 
present in the large sample volume (5ml) is effectively preconcentrated into 

a much smaller volume (0.15ml) of the recirculating acceptor loop. The 

analyte is subsequently injected into a sodium carbonated stream and carried 
to the amperometric detector. The sensitivity of this preconcentration method 
is directly proportional to the sample volume. 

Barros et al. 65 used the GD-FIA technique to provide results in a much shorter 
time than the usual methods for determination of the volatile acidity in 

wines. The method involved injecting the wine sample into a de-ionised 

water stream which then flowed through a PTFE membrane separator. The 

acetic acid diffused through the membrane into another water stream that 

passed through a conductivity cell. Alternatively a spectrophotometric 

method was similar. The acetic acid diffused into a stream of bromocresol 

purple solution, at pH 7.0, which passed through a flow cell. 

Rios et al. 24 have applied the GD-FIA technique to the determination of 

sulphur dioxide in air samples. They used electrochemical detection and a 

closed-loop manifold configuration. 

Planar and tubular PTFE microporous membrane of different porosity, pore 

size and mechanical properties, have been employed to improve the 

selectivity of the reactions for cyanide determination58,66,67. Kubdn17 have 
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determined cyanide based on the reaction with highly selective sodium 
isonicotinate-3-methyl-l-phenyl-2-pyrazolin-5-one. This reaction was 
optimised and compared with other spectrophotometric methods based on 
Konig's reaction. Most interferences, including those of CNS-, were 
eliminated by discrimination of mass transport through. a non-porous 
silicone-rubber membrane. 

Zhu and Fang 68, introduced a technique to improve the transfer efficiency of 
the gaseous species through the microporous membranes. It has been 

reported by Van Der Linden 14 that only a quarter of the total amount of gas 
generated, even under favourable conditions is separated on-line. For 
improvement of sensitivity in applications for which low detection limits are 
required, they arranged the gas diffusion unit as a part of the sample loop of 
the injection valve. The acceptor stream was kept stationary in the groove 
throughout the sampling/ preconcentration sequence during which time 

sample containing the analyte was pumped continuously after been heated 
by passage through a Teflon tubing immersed in a 600 C water bath. Part of 
the analyte liberated was absorbed by the acceptor solution and injected into 

the manifold for reaction and detection. They applied this system for the 
determination of trace levels of total cyanide in waste waters. Zhu and Fang 
19 used the same system, with some modifications, to determine traces of 
fluoride and ammonium ion. Tanaka et al. 29 have shown that both cyanide 
and thiocyanate can be determined rapidly by GD-FIA and 

spectrophotometric detection. A mixture of pyridine and barbituric acid was 

used as the chromogenic reagent and discrimination between cyanide and 
thyocyanide was achieved by differences in the transport of HCN and HSCN 

gases through a tubular microporous PTFE membrane at different pH values 

of the donor stream. In a similar way, Sweileh58 has developed a method for 

both anionic species of cyanide. The method involves a two-step procedure in 

which the total concentration of both species is first determined 

spectrophotometrically using the same chromogenic reagent as Tanaka et 

al. 29The cyanide is then complexed with Ni(II), and the thiocyanate is 

quantified separately and the cyanide concentration is then calculated by 

difference. 

Figuerola et al. 69 used the GD-FIA technique to study interferences from 

metals and inorganic anions in the spectrophotometric determination of 
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cyanide. The results reveal the advantages on selectivity when the analyte is 
separated from Zn(H), Cu(I), Cd(H), NH4+ and some inorganic anions. The 

principle of diffusion of gaseous HCN across a tubular microporous PTFE 

membrane in different metallurgical samples has been applied by Marion et 
al. 56. The membrane was directly immersed in an alkaline solution or in an 
aqueous mineral suspension for the on-line sensing of cyanide. The gaseous 
HCN diffuses through the membrane and is dissolved in a sodium hydroxide 

carrier solution which is then determined spectrophotometrically by the 
pyridine-barbituric acid method. 

Hollowell et al. 70 studied either the possible interferences and the selectivity 
of the membrane for chlorine dioxide and chlorine. In the same way, Gord et 
al. 71 have shown that the GD-FIA technique provides elimination of 
interferences from ionic species including transition metals, chloride ions, 
chlorite ions and chlorate ions in routine determination of free chlorine (02, 
HOO, OCl-) in aqueous systems. 

The permeation of halogens through microporous membranes has been 

studied by Motomizu et al. 72. It was found that halogens such as bromine and 
iodine, which are not gaseous at room temperature, permeated through a 
microporous membrane. They reported that the permeability through a 
microporous PTFE membrane decreased in the order chorine > bromine > 
iodine. Iodine and bromine ions were determined by spectrophotometric 
methods coupled with oxidation by permanganate. Iodine was determined 

on the basis of the reduction of iodine to iodide. Residual chlorine was 
determined by spectrophotometric and by potentiometric detection with a 
coated-wire ion-selective electrode. 

An important application for the membrane-assisted flow injection technique 
is as a gas-liquid phase separator for cold vapour /hydride generation 
atomic spectrometry, (FI-CVAAS, FI-HGAAS). In this technique, the gas- 
liquid interface is critical to achieve stable signals. The use of a gas-diffusion 

unit on-line avoids condensation on the transfer tube walls that causes a 

gradual loss of sensitivity and base line drift for AAS, AFS and ICP systems. 
In 1983, De Andrade et al. 73 made an important contribution to flow 

injection-hydride generation atomic absorption spectrometry, (FI-HGAAS 
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with the development of a PTFE membrane phase separator for use in CV- 
AAS, (cold vapour atomic absorption spectrometry). The device was based on 
the permeability of PTFE tape to mercury vapour. Mercury vapour was 
formed in a carrier stream on one side of the PTFE membrane which then 
diffused directly into the absorption cell positioned in the light path of the 

spectrophotometer. 

Many applications of gas diffusion, coupled to cold vapour or hydride 
53,74,75,76 generation techniques, have been reported in the literature, . All of 

them use planar or tubular microporous PTFE membranes in the separator 
unit. They have reported that the improvement in sensitivity achieved is not 
only due to a reduced dead volume in the gas liquid separator, but also that 
the use of the membrane decreases interferences from transition metals 77,78. 

A more effective way to remove moisture carryover in cold vapour mercury 
generation has been published recently by Coms et al. 79, and Fernandez et 
al. 51. The removal of moisture by using a semi-permeable Nafion membrane 
dryer tube is described. As the wet gas from the separator passes through the 
inner membrane, the moisture is removed and transferred to the outer tube. 
Meanwhile, a dryer gas, air, nitrogen or argon flows in a direction opposite to 
that of the wet gas removing the moisture on the outer surface of the 
membrane. 

Canham et al. 80 have discussed the feasibility of determining arsenic and 

chloroform using GD-FIA and mass spectrometry. 

Volatile organic species have been also determined using the GD-FIA 

technique. Oxidised ketones in milk were determined by MarStorp4l 

acetoacetates were decarboxylated to acetone, which was separated from the 

sample by gas diffusion through a Teflon tape membrane and measured 

spectrophotometrically. 

Melcher 31 has tried to apply GD-FIA to liquid chromatography. The ability 

of silicone rubber membranes to separate and concentrate organic 

compounds, even of low volatility, from sample matrices which could not be 
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directly injected into a chromatographic system has been demonstrated and 
the critical parameters for the system defined. 

To increase the versatility of the GD-FIA technique, a novel method using 
enzyme modified membranes has been reported. In these, urease was 
immobilised onto a PTFE membrane. The immobilisation is possible as urease 
can undergo the addition of perfluoroalkil groups of the free amine residues 
of the enzyme. This modification generates localised areas of hydrophobicity 

on the enzyme, thereby converting a completely soluble enzyme into one 
with limited solubility which can then be adsorbed onto the gas-permeable 
membrane. The advantages offered by this method is due to the great 
specificity of enzymes. The method was used for the determination of urea in 

water and biological samples38. The urea is enzymatically converted to the 

ammonia, which is detected spectrophotometrically by changing the 

absorbance of a mixed pH indicator. It has also been used to enhance the 

specificity of ethanol determinations in beverages and medicines46. 
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CHAPTER THREE 
A MICROPOROUS MEMBRANE AS A PRECONCENTRATOR 
FOR AQUEOUS SOLUTIONS 

This chapter describes the development of a preconcentration device 

containing a microporous PTFE membrane in which the species to be 
determined remains in solution and the preconcentration takes place based 
on the evaporation of the water from the aqueous solution which contains the 
analyte. The solution is pumped through the inside of a tubular microporous 
PTFE coil where under specific operating conditions, the vapour produced is 
separated through the microporous material. 

Mass transport through the microporous membrane depends on many 
parameters of the system as stated before. Temperature, pressure, surface 
contact area, concentration of the species to be separated inside and outside of 
the membrane, must be intensively studied to be able to predict the capability 
of a device to preconcentrate aqueous solutions. Two systems have been built 
and used for these studies. 

In an effort to characterise the membrane as a preconcentrator device, a model 
based on diffusion processes has been investigated. In this model, each pore 
of the membrane is considered as a diffusion tube and Fick's law has been 

applied. 

Two possible arrangements are proposed to couple the preconcentration device 
in a FIA system and these systems were characterised. Practically, the device 
investigated was used for determination and speciation of aluminium. in riv, -: -r 
water samples. 

3.1 Characterization of the membrane 

3.1.1 Experimental 
The characterisation of a tubular PTFE-microporous membrane as a device for 

preconcentration involves a study of the behaviour of the system under 
different operating conditions. Parameters such as: temperature, surrounding 

air flow rate, length of the membrane and the air moisture outside the 
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membrane were considered and optimum conditions for achieving rapid 
removal of water vapour through the membrane were found. 

The Apparatus used to carry out the studies necessary for the characterization 
of the membrane and the study of the operating conditions are shown in Figure 
3.1. The first system in Figure Ma was composed of a 52 cm long piece of 
tubular membrane, enclosed in a glass tube in which air could flow at 
different rates. The glass tube which contained the membrane was kept in the 

water bath to allow temperature control. A heating glass coil, 5 mm bore size 
and 3 metres long, was used to raise the air temperature to the experimental 
temperature and a Teflon tubing coil, 0.8 mm i. d. and 3m long, was used to 
heat the liquid before it passed through the membrane. Both coils were kept in 

a water bath. The efficiency of these heating coils was studied using a 
thermocouple. 

In the second system, Figure 3.1b, a 10 m long membrane was mounted on a 
cylindrical cage and heated in a laboratory fan-assisted oven, (Gallenkamp). A 

switch was incorporated into the oven to allow the internal fan to be switched 
on or off. Plates containing silica gel were used inside the oven to produce a 
dry atmosphere. 

Two Gilson peristaltic pumps, Minipuls 2 and Minipuls 3 were used to 
introduce the sample into the membrane. In the first system, a compressor 

produced the air flow surrounding the membrane. The air was passed through 

a drier column consisting of a Teflon tube, 8 mm bore size and 1m long, filled 

with silica gel and its flow rate varied using a mass flow controller. 

The parameters of the membrane used in both systems are described below. 

membrane: tubular microporous-PTFE 

maximum pore size: 10 gm 
total porosity: 50% (based on relative density) 

internal diameter: 0.45 mm 

external diameter: 0.90 mm 
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Figure 3.1 Systems used to investigate the optimum conditions for removal of water through 
the membrane. (a) System 1: using a water bath and a compressor; (b) System 2: 
using a fan-assisted oven. 

An analytical balance Oertling model NA 114, was used for all weighing. 
Copper concentrations were monitored using an atomic absorption 
spectrophotometer, Phillips, model PU 9100, equipped with a Phillips copper 
hollow cathode lamp. 

The first experiments were performed using the system shown in Figure Ma. 

Initially the amount of mass lost at different surrounding air flow at several 
temperatures was determined. Two different methods for monitoring the mass 
lost were used to study the performance of the weighing method. In the first, 

the solution was pumped from a reservoir flask through the membrane and 

collected in another flask. The mass of vapour lost through the membrane was 

calculated by the method of weighing by difference. The second, consisted of 

pumping the solution from the reservoir flask, through the membrane and back 

to the same flask. The reservoir /collector flask was weighed and the mass 

recorded at regular intervals. Each experiment took 15 minutes, and the liquid 

flow rate through the system was 0.5 ml/min. 
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The membrane is a delicate material and can easily be stretched when it is 
connected to the outer tubes. Two different ways to connect it were 
investigated. The first consisted of introducing a short stainless steel tube 
inside the membrane tubing ends to reinforce them. The second way was to 
insert the membrane ends into a wider and harder Teflon tube and to make the 
connections to this. The second method was easier and more valuable and was 
adopted for the subsequent experiments. 

Copper standard solution was used to detect any mass lost caused by leakage 
through the membrane or from the membrane connections. The amount of this 
metal in both the source and collector solutions was determined and 
compared. 

The practical data for the loss of water was compared with those calculated 
applying Fick's law of diffusion for a system of water /air. 

3.1.2 Calibration of the instrumentation used and selection of weighing 
method 
The results for the mass transfer using the two different methods to weigh the 
mass loss are shown in Table 3.1. The comparison of two methods was 
validated using the T-test and it can be concluded that there is no difference 
between the methods. 

Table 3.1 Comparison between two different methods for monitoring the loss 

of liquid through the microporous PTFE tubular membrane. Method 
1, interrupted flow. Method 2, uninterrupted flow. Time of sampling 
5 min. 

Temperature 
Oc 

mass loss, gmin-1 
method 1 

mass loss, gmin-1 
method 2 

20 0.015 0.020 
50 0.057 0.060 

70 0.106 0.116 

80 0.131 0.139 

90 0.168 0.160 

-48- 



3.1.2.1 Calibration of the peristaltic pumps. 
Two different peristaltic pumps: Gilson Minipuls 2 and Gilson Minipuls 3, 

were used to deliver the liquid. Each was calibrated gravimetrically by the 

method of weighing by difference. The flow rate was calculated as the volume 
of water pumped in unit time. Water density was approximated to 1g cm -3 
over the temperature range 20-25' C. The flow rate capabilities of the two 

pumps for different tubing are shown in Figures 3.2 and 3.3. 

The reproducibility of the pump flow rate was studied as it was a crucial factor 

in the present investigations. The Minipuls-3 pump, along with 1.65 mm i. d. 

pump tubing, was used in two different procedures for the studies. In the first 

one, the pump was run continuously and the amount of water pumped was 
measured by continuous weighing over a fixed time period for different pump 
rate settings. The results are shown on Table 3.2. The second procedure 
involved pumping water from a reservoir into a collector for a fixed time and 
then stopping the pump to weigh the reservoir and the collector bottles to find 

out how much water was pumped; Table 3.3. 
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Figure 3.2 Calibration graph for Gilson Manipuls-2 pump peristaltic pump: pump tube 
dimensions: (a) 0.38 mm id.; (0) 0.63 mm id.; (a) 1.14 mm id.; (o) 1.65 mm id. 

-49- 

0 200 400 600 800 1000 



5 

E 

'o 
CD 

E 
0- 1 

0 

4 

0 10 20 30 40 50 

speed control setting 

Figure 3.3 Calibration graph for Gilson Manipuls-3 peristaltic pump. Pump tube dimensions: 
(a) 0.63 mm id.; (*) 1.14 mm id. 

Table 3.2 The reproducibility of the flow rate for a Gilson Minipuls-3 pump 
when the reservoir was weighing at 5 min intervals. Pump tubing 
1.65 mm i. d. and sampling time 5 min. 

speed control 
setting 

average flow rate 
/gmin -1 

RSD 
% 

3.7 0.792 1.64 
4.7 1.004 0.59 
6.0 1.266 1.57 
9.4 1.891 0.42 
20.0 3.951 0.71 
25.0 5.162 1.36 
30.3 5.926 0.17 
35.8 7.001 0.68 
40.1 7.759 0.41 
46.55, 8.954 0.48 
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Table 3.3 The reproducibility of the flow rate for a Gilson Minipuls-3 pump 
using reservoir and collector bottles. The pump was stopped and 
the flow interrupted for each weighing. Pump tubing 1.65 mm. i. d. 

and weigh time 1 min. 

speed control 
setting 

average flow 

rate /g min-1 

RSD 
(n=5) 

40 7.860 1.22 
48 9.347 1.09 

3.1.2.2 Calibration of the mass flow controller. 
The mass flow controller was calibrated using the water displacement method 
for two different gases, air and argon, to give a specific flow rate. The results 
are shown on Table 3.4. The calibrated flow was used in all subsequent 
experiments. 

Table 3.4 Calibration of the mass flow controller for two different gases. 

meter flow 
/I min-1 

time to fill 
2L flask/ s 

practical flow 
/I min-1 

air 
2.5 48 2.50 

5.0 28 4.28 

6.0 24 5.00 

10.0 15 8.00 

g1gon 
_ - 1.0 1.08 

3.0 36.69 3.27 

8.0 14.16 8.47 

10.0 11.97 10.02 
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3.1.2.3 Calibration of the thermocouple 
A chromel-alumel thermocouple with a digital multimeter, Racal-Dana 

voltarnmeter, model 4009, was used for monitoring the temperature inside 

and outside the membrane. It was calibrated using a water bath and a mercury 
thermometer. The calibration graph is shown in Figure 3.4. 

The thermocouple was inserted into the glass tube containing the membrane to 
measure the temperature of the carrier air surrounding the membrane. It was 
also inserted into the liquid stream via a Teflon T-piece placed just before the 

membrane to measure the temperature of the liquid emerging from the 
heating coil. 
The air temperatures at different air flow rates are tabulated in Table 3.5. 
The 3 metre heating coil was shown to be efficient for flow rate as high as 
10 1 min-1. Similar experiments showed the liquid heating coil to be efficient 
raising the liquid temperature to that of the heating bath. 
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0 

temperature / QC 

Figure 3.4 Calibration graph for thermocouple using a mercury thermometer and a water 
bath. Slope, 0.040872; y-intercept, -0.934772 ; correlation coefficient, 0.999. 
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Table 3.5 Air temperature thermocouple response for different flow rates 
and different water bath temperatures. 

air flow temperature / 'C 
/Imin-1 35 'C 44'C 53 T 75 T 90 OC 

2 32.7 39.5 49.8 74.9 88.2 
4 33.4 40.0 49.5 74.7 88.9 
5 33.1 39.9 50.0 74.9 89.2 
7 32.7 39.7 50.2 74.9 89.7 
8 32.4 40.0 50.5 75.2 89.7 
9 32.4 40.2 50.2 75.2 89.7 
10 

1 
32.4 

1 
40.0 

1 
50.2 

175.2 
89.7 

3.1.3 Results and discussion 

The results for the mass loss (gmin-1) versus temperature using four different 

air carrier flow rates are shown in Figure 3.5. It can be observed that different 

air flows do not affect the loss greatly, but temperature is a critical parameter. 

The curve in Figure 3.6 shows how the system was checked for leakage of 
liquid during each experiment. The amount of copper run into the system 
divided by the amount collected after each experiment must be equal to 

certify that only loss of vapour took place during the experiments. 
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Figure 3.5 Influence of temperature and air flow on the liquid loss through 52 cm 
microporous PTFE tubular membrane. 
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Figure 3.6 Verification of conservation of analyte mass during experiments to 
find the amount of vapour lost under different temperature and air flow 
conditions. 
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The influence of the length of the membrane was studied with an air flow of 
2.5 1 min-1, and at two different temperatures, 500C and 95'C. The flow rate and 
the time of each experiment were the same as used previously. The results in 
Figure 3.7 shows the relationship between the length of the membrane and the 
amount of mass loss is approximately linear under the same operating 
conditions. The results show that 4 metres of tubular membrane is necessary to 
lose 90% of the water for an input flow rate of 2 ml min-1. 
Note: The amount of mass loss (g min-1) does not depend on the flow rate. But 
the liquid flow rate is critical for the preconcentration factor. 
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Figure 3.7 The influence of the length of the membrane on the liquid loss with a air flow 2-5 
L min-1 and two different temperatures. 

3.1.4 A theoretical model based on diffusion process. 
To study longer lengths of membrane, a 10 metre length was mounted in the 

laboratory oven as shown in Figure 3.1 b. The water loss during a five minute 

period, at various temperatures, was investigated and the practical data used 

to test the diffusion model described in the following section. 
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A simple theoretical model based on a diffusion process was used to calculate 
the loss rate through the membrane. Fick's law, equation (1-2) was applied. 

where 

flow s-1 

F= D12(C1-C2)at 
1 

D 12 = coefficient of diffusion, CM2 s- 1 

Cl - C2= concentration difference, g cm-1 
Cl = concentration inside the membrane, g cm-1 
C2 = concentration surrounding the membrane, g cm-1 
a= effective area, cm2 

time, s 
I= the distance between the two regions, C1 and C2 (the diffusion length), i. e. 
the thickness of the membrane, cm 

The parameters necessary to calculate the mass flow in Fick's equation, were 
investigated. 

Diffusion coefficient - (D12)- was calculated for each experimental 
temperature using the equation reported by Reid & Sherwood8l: 

D12= 0.00 1858 T 3/2 (MI +M21 MIM2) 112 

P r, 2 i 12 D 

where 
D 12 = diffusion coefficient, cm2 s-I 
M= M1 + M2 / M1 M2 where M1 and M2 = molecular weigh of species I and 2 
( speciesl = air; species 2= water); 
T= absolute temperature, (K) 
P= absolute pressure, (atm) 

rl 22= collision diameter, (k) 

12 = 
(ro) I+ (ro) 2 

2 
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ID= diffusion collision integral, dimensionless/ function of Boltzman constant 
and energy of molecular interaction. 

The quantities r12 and ID are evaluated and tabulated for the gases in the 
mixture8l. The diffusion coefficients calculated under those considerations are 
shown in Table 3.6. 

Table 3.6 Calculation of diffusion coefficient for a system water/air under 
different temperatures. 

T 
oc 

T 
K 

T3/2 
K 

ID r 122 /A m D12 
/cm2 s-1 

20 293 5015.352 1.346 10.08698 0.3001 0.205971 

50 323 5805.021 1.285 10.08698 0.3001 0.249816 

70 343 6352.449 1.253 10.08698 0.3001 0.280247 

80 353 6632.268 1.233 10.08698 0.3001 0.297338 

90 363 6916.079 1.224 10.08698 0.3001 0.312341 
198 1 

371 7145.965 
1 

1.206 
1 

10.08698 
1 

0.3001 0.327404 

Concentration on both sides of membrane - Cl and C2 - represent the water 

vapour concentration inside and outside the membrane. 
Assumption that saturation occurs in the molecular layers immediately above 
the surface thus C1 is the quantity of vapour produced when the saturated 

vapour pressure is reached and can be calculated using the ideal gas 

equation: 

PV= nRT 

where 
P= vapour pressure, NM-2 
V= volume, m3 
n= number of moles of vapour 
R gas constant, 8.314 j mol -1 K-1 

T temperature, K 
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It is supposed that the air outside the membrane is not saturated by water 
vapour and the value for C2 is close to zero. However, C2 could also be 

estimated from the amount of vapour lost at each temperature. This calculation 
proves that the air is not saturated and the value for C2 is small compared 
with the concentration C1. 

Table 3.7 Calculation for the concentration of water vapour inside the pore of 
the membrane at the liquid interface using the ideal gas equation 
and vapour pressure at different temperatures. 

T/'C T/K Pv 
Nm-2 

PV /RT 
/ mol 

n/V 
g cm-3 

20 293 2337 0.96 x 10-6 17.27 x 10-6 

50 323 12334 4.59 x 10-6 82.67 x 10-6 

70 343 31157 10.93 x 10-6 196.66 x 10-6 

80 353 47343 16.13 x 10-6 290.36 x 10-6 

90 363 70095 23.22 x 10-6 418.06 x 10-6 

100 373 101325 32.67 x 10-6 588.12 x 10-6 

Effective area -(a)- the effective area is the summed cross-sectional area of the 

membrane through which gas can pass. In practice, the effective area is made 
up of contributions from a very large number of individual and connected 
pores. The surface area of the membrane was determined using the system 

shown in Figure 3.8. 

The flow rate generated when nitrogen gas was continually injected through the 
52 cm membrane under several pressures inside and outside the membrane 
(differential pressure=AP) was measured. A water manometer was used to 

measure the AP applied for each experiment, and the flow was measured for 

each AP by the displacement method. The experiments were carried out at room 

temperature (25'C). The results for these experiments are shown in Table 3.8. 
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Figure 3.8 System used for measurement of differential pressure between both sides of the 
membrane and the flow through its pores. Length of the membrane, 52 cm. 

Table 3.8 Flow of nitrogen through the membrane when several differential 

pressures were applied to the system. The flow was determined by 

measuring the time taken to empty a 250 ml volumetric flask. 

AP 
/mmH20 

AP 
/Pa 

time 
/S 

Q 
/ml min-I 

Q, 
/m3 s-1 

14 137.3 108.81 137.85 2.3 x 10-6 

34 333.2 51.18 293.10 4.9 x 10-6 

54 529.2 33.32 450.18 7.5 x 10-6 

74 725.7 23.72 632.38 10.5 x 10-5 

94 921.8 19.00 789.47 13.2 x 10-5 

114 1117.9 15.75 952.38 15.9 x 10-5 
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Figure 3.9 Variation of nitrogen flow through the microporous membrane under various 
differential pressures applied to the system.. Slope, 1.39 x 10 -8; y-intercept, 2.84 
correlation coefficient, 1.00. 

The slope of the AP xQ plot was used to calculate the effective area using 
Poiseuille's and Kozeny's equations. 

calculation using Poisuille's equation: 

n r4, L p 
(e 

8pI 

Q= flow, M3 S-1 
AP = differential pressure applied to the system, it is measured as Ah, cm H20 

and converted to Pa. 

Tc = 3.1416 

r radius 
g viscosity of the gas used. Nitrogen viscosity, 178-Ix 10-7 kg m-1 s-1; argon 

viscosity, 
= thickness of the membrane, 0.45 x 10-3 m 

Q/AP = slope = 1.39 x 10 -8 m3 S-1 and 
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0 Tr 
= slope 8vI 

from those equation 

1.73 x 10-4 m and it corresponds to an area A=9.40 x 10 -8 m2 

Total area of the piece of membrane used is 0.00147 m2, calculated as 
2n rL (2 x 3.1416 x 0.45x 10-3 x 0.52). 
hence 
the effective area is expressed as a% of the total area: 0.00639% 

The same experiment was carried out using argon instead of nitrogen gas and a 
similar value for effective area was found. 

The effective area calculated was very small and Kozeny's equation was 

applied to check if the tortuousity of the pore shape could have any effect on 
the present calculations. 
Kozeny's equation: 

2 

,0p1 

where 
Vk = velocity 
m hydraulic radius 
ko Kozeny's constante 

Darcy stated that for sub-sonic flows for velocity less than 60 m s-1: 

1 

A 

from Poiseuille's equation: 

r2 AP 

PI 
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When the capillary pores are considered tube cylindrical ko =2 and Vp = Vk- 
Under this consideration the hydraulic radius, can be calculated using 
Poiseuille's equation for any value for Q and AP from table 3.8: 

1.73 x 10-4 m 

Q 
pA 

Vp = 2.3 x 10 -6 / 3.1416 x (1.73 x 10 -4) 2 

Vp = 24.46 M2 S-1 (= Vk) 

using Kozeny's equation for a circular pore shape, ko =2m can be calculated: 
m=5.3 x 10 -5 m and applying once more Kozeny's equation considering the 
capillary pores like granular beds ko = 4.5 and 

Vk = 10.856 Vk=Q/A and A=2.119 x 10 -7 m2 
hence 

the porosity = 0.0144 

The diffusion equation was applied and the theoretical data compared with the 

practical result carried out with the system in Figure 3.1b with 10 metre 
membrane. Table 3.9 presents the theoretical figures calculated when the 

simple diffusion equation was applied in a water/air system containing a 10 m 
long membrane. 

The theoretical value were compared with those found practically and this is 

shown in Figure 3.10. 

-62- 



Table 3.9 The water loss flow by diffusion process through a 10 m tubular 
microporous membrane with a effective area 0.0144 % (calculated 
from Kozeny's equation); L, 0.045 cm; a, 0.041 cm2; t, 15 min. 

Temperature 
oc 

D12 

cm2 s-1 

Cl-C2 
/g cm-3 

F/g 

20 0.206 17.27 x 10-6 0.0029 

50 0.250 82.67 x 10-6 0.0169 

70 0.280 196.66 x 10-6 0.0451 

80 0.297 290.36 x 10-6 0.0802 

90 0.312 418.06 x 10-6 0.107 

98 0.327 588.12 x 10-6 0.1577 
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Figure 3.10 Comparison of the practical (o) and theoretical (e) liquid loss through 10 metre 
tubular PTFE -microporous membrane. 

It is evident that significant quantities of water are lost and the actual quantities 
far exceed the calculated loss. 
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Experiments were therefore performed to compare the results obtained with 
the membrane to those of other systems in which a free liquid surface was 
used.. The parameters studied were temperature, the turbulence level in the 
oven and the water vapour pressure in the oven atmosphere. 

To simulate a free surface in which mass transfer was affected only by the 
boundary layer resistance, a beaker of 15.9 cm2 surface area was used. For a 
system in which diffusion occurs without convection, a tube of 1.13 cm2 cross- 
section (with a length about 8 times the diameter) was used. The membrane 
had a total a total surface area 14.7 cm2. In this case, the evaporation is 
affected by two resistances: one from the boundary layer and the other from the 
membrane body. The amount of water loss for these three systems with 
different mass transport processes involved are tabulated in Table 3.10. The 

results obtained for the diffusion tube were multiplied by 14, as its surface area 
is only 1.13cm2, to allow comparison with the others systems. 

The results show that the critical factor for the mass transport when the 
diffusion tube was used is the temperature and the conditions of the 

atmosphere surrounding it do not affect the diffusion process (this is why 
diffusion tubes are used for environmental monitoring). In the other systems 
studied, the convection produced by the atmospheric conditions surrounding 
the system are as critical as the temperature. When the fan was off the vapour 
pressure of air in contact with the boundary layer is very close to the saturated 
vapour pressure and the diffusion is restricted resulting in low mass loss 

(C 1= C2) - When the fan was on, the opposite happens and the does not become 

saturated with vapour, due to the convection process, and the diffusion is 

encouraged (C2 = 0). 

The high values obtained for mass loss through the membrane system 

compared with those for the free surface when the fan is off, are in agreement 

with the findings of Brown & Escombe82. They suggested that the evaporation 
from an open-water vessel surface is increased by placing a multi-perforated 
barrier over the surface. 
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Table 3.10 Comparison of the liquid losses for different diffusion processes at 
different temperatures. A 52 cm long tubular membrane was used 
in the system shown in FigureM b. 

temp. /'C system liquid loss by diferent processes / gmin-1 

membrane free diffusion diffusion tube 

silica/fan 0.031 0.032 0.0024 

at 30 OC sihca 0.019 0.003 0.0013 

fan 0.027 0.033 0.0020 

none 0.017 0.004 0.0012 

sifica/fa 0.069 0.082 0.0059 

at 50 0C sihca 0.046 0.012 0.0029 

fan 0.066 0.056 0.0047 

none 0.046 0.009 0.0034 

silica/fan 0.159 0.170 0.0887 

at 80 OC silica 0.106 0.051 0.0174 

fan 0.148 0.165 0.0274 

none 0.102 0.037 0.0141 

This arise because the mouth of the tube or pore in which the static diffusion 

takes place is surrounded by a water vapour sheI182. Depending on the 

distance between pores the shells may undergone free lateral diffusion or at 
lower pore separations, the shells interact and diffusion is slower. The 

resistance of the boundary layer is therefore increased. The data in Table 3.10 

show that because of the small effective area of the membrane used, the pores 

are not close enough to increase the resistance for the diffusion stream. For the 

free surface, The shell from each incremental area interacts with those 

surrounding it and effectively the whole'surface layer becomes saturated 

thereby greatly increasing the boundary layer resistance. 
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3.1.5 Theoretical model to fit the practical data 
The basis of the refined model is shown in Figure 3.11. Not with standing the 

efficiency of arrays of pores in losing moisture, to explain the high levels of 
water vapour transport it is necessary to assume that the internal pore space of 
the membrane is saturated with the water vapour (i. e. the length, 1, in equation 
1.2 must be reduced). This situation will prevail provided that a monolayer of 
water molecules is sustained on the internal surfaces of the membrane. 
Precedence for this assumption is established in the literature 82,83,84 for flow 

through porous media. 

The loss through the membrane is then determined by the following factors: 

1. The vapour concentration difference between the internal vapour pressure 
inside the membrane ( saturated value) and that in the surrounding 
atmosphere. This is the driving force for the diffusive transport. 
2. A surface resistive component which opposes the diffusive transport through 

the outer pores of the membrane, ( the equivalent diffusion length to this can 

appear to be of the order of the pore dimension, i. e. ca 10 ýtm). 
3. A boundary layer resistance due to the static boundary layer of gas attached 
to the membrane surface. 
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Figure 3.11 Cross- section view of a microporous membrane and its surface. 

Using this model, it is possible to explain the data presented in Figure 3.10. 
Temperature is the most important parameter because it controls the saturated 
vapour pressure inside the membrane. However, the turbulence level in the 

oven is also important because it control the thickness of the boundary layer 

attached to the membrane. The importance of the boundary layer in controlling 
vapour loss has been extensively studied in relation to evaporation / 

transpiration from leaf surfaces84,85,86. Changing the concentration of water- 
vapour pressure inside the oven atmosphere does not appear to have a great 
effect. However, measurements show that the vapour pressure was only 
changed from 0.007 to 0.039 g/l, which is small compared with the saturated 

vapour pressure and therefore the change in CI - C2 achieved was small. 
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3.2 The membrane as a preconcentration device in FIA systems. 
Two arrangements were used to incorporate the membrane preconcentrator in 
a FIA manifold. In the first arrangement, the concentrated sample emerging 
from the membrane unit was used to fill a sample loop which was then 
injected into the system. In the second arrangement, the sample was 
preconcentrated on-line. The sample was injected into the membrane unit 
where it underwent preconcentration and was passed to the detector. 

In the first arrangement, the membrane unit does not directly influence the 
signal obtained by the simple FIA system. The sample dispersion depends 
upon the concentration of the sample injected. Thus, the peak shape was 
dependent upon the preconcentration factor attained by sample treatment 
prior to injection into the FIA system. 

In the second arrangement, due to the geometry of the long tubular membrane 
reactor, a large dispersion coefficient was anticipated. However, it is a 
situation in which two opposite effects are influential. These have been 
investigated and are discussed. 

A FIA system is classified in accordance with the degree of sample dispersion 

within it. By definition, dispersion is the dilution undergone by a sample 
volume injected into a flowing stream 11. It is characterised by the 

concentration profile adopted by a zone or plug inserted at a given point in the 

system without stopping the flow. The characteristics of this profile are 
important as the sample passes through the detector cell and the output signal 
is recorded. It is therefore representative of the dispersion at such a point, and 
can be used to assess the extent of it. 

Two mechanisms contribute to the dispersion of the injected sample which is 

transported along the tube mainly by laminar flow. These are referred to as 
convective and diffusional transportation. When convective transportation 

occurs under laminar flow conditions a parabolic velocity profile is produced. 
Sample molecules at the tube walls have zero linear velocity and those at the 

centre of the tube have twice the average velocity. Dispersion occurs under 
diffusional transport due to the presence of concentration gradients in the 
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convective transport regime, giving rise to axial and radial diffusion, figure 
3.12b. 

turbuler-A flow le. minarflow 

(8) 

axial 

jpk 
mdial 
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W44,11 
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Figure 3.12 Dispersion mechanisms. (a) convective transport; (b) diffusional transport. 

Axial diffusion is due to horizontal concentration gradients at the leading 

and trailing edges of the injected sample zone and contributes insignificantly 

to the overall dispersion. Radial diffusion, is caused by concentration 
gradients perpendicular to the direction of the flow and makes a significant 
contribution to the overall dispersion. 

Various approaches have been proposed to relate theoretical considerations 

and experimental observations. 

Ruzicka's dispersion coefficient (D) was the earliest parameter used to 
describe it. It is a direct measure of the extent of dilution undergone by a 

particular part of the sample zone between injection and detection and is 
defined as the ratio of the concentration before (Co ) and after (C ) transport 

through a given FIA system: 

D= Co 
c 
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Thus each point across the record signal has a corresponding dispersion 
coefficient. The maximum dispersion, Dmax, in routine FIA ranges between 1 

and 15. 

The classification of a FIA system depends on the value of the dispersion 

coefficient. Limited dispersion systems are those whose dispersion coefficients 
are less than 3. These FIA systems are used for measuring a parameter of the 
analyte directly in the absence of processes other than transport. Since the 
residence time is rather short, convective dispersion will prevail over radial 
diffusion. To minimise dispersion, these systems must adopt: a high flow rate, 
a large sample volume and a small reactor length and diameter. Application of 
these conditions affords high sampling rates and better analytical sensitivity 
than is attained in normal FIA systems. 

Systems with a dispersion coefficient between 3 and 10 are used for studies 
involving processes additional to transportation, for example a chemical 
reaction and are called medium dispersion system. 

Large dispersion systems have dispersion coefficient greater than 10 and are 
characterised by the high degree of mixing between the carrier reagent and the 

sample, resulting in a well-defined concentration gradient. The residence time 
is rather long, so in some cases chemical equilibrium is attained. 

The simplest way to measure the dispersion of a FIA manifold is by the 
injection of non-reactive species such as a dye into an inert carrier 86. The 
dispersion is related to the sensitivity and sample throughput of the method. 
It is characterised by the concentration profile of the sample zone at a given 
point in time within the system. Four possible outcomes and their 

corresponding signals are shown in figure 3.13. As the dispersion increases, 

the peak height decreases. This means that the sensitivity decreases. Also, as 
the dispersion increases, the bandwidth increases causing the sample 
throughput to decrease. 

The dispersion can be controlled by manipulating some of the variables of the 

system. The overall dispersion can be given by: 
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D -= Dinjection + Dtransport + Ddetector 

Where Dinjection is the dispersion due to the sample volume and the 
geometric aspects of the system, Dtransport is the dispersion due to the reactor 
and the flow rate and Ddetector is the dispersion due to the flow cell 
geometry. 

no convection 
tmn3port dispemion convection cliffu3ion cliff u3ion 

injection 
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-J 
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Figure 3.13 Sample dispersion and signal profiles. 

Each variable in the above equation can thus be altered to obtain a change in 
dispersion. For example, in a typical FIA manifold it can be shown that the 
dispersion is inversely proportional to the sample volume (V)12,87, 

V 

The travel time, residence time and the bandwidth all vary with sample 

volume. A problem arises with very large samples in that the central portion 
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of the sample zone is not diluted. This implies that when this part of the 
sample passes through the detector, a signal corresponding to the original 
concentration of the sample, is obtained. 

However, hydrodynamic factors such as the flow rate also influence 
dispersion. From Vanderslice's expressions, 88,89 the flow rate is related to the 
travel time and the bandwidth; for a given length of tubing: 

ta k/q 0.125 

Dt W/ q 0.64 

where 

ta isthe travel time; 
at is the total time of the observation peak; 
q is the flow rate; and 
k and k' include the accommodation factor, f, which is independent of the flow 

rate. 

From the above expression, it can be seen that dispersion decreases with 
increasing flow rate. This implies that as the time between injection and 
dispersion decreases, the time allowed for dispersion to occur is reduced. 

The shape of the reactor, i. e., straight or coiled, has a major influence upon 
dispersion. These type of effects are termed geometric factors. For straight 
tubes the travel time, bandwidth and dispersion all rise with increasing tube 
length and diameter. 

For coiled reactors (tube is coiled helically) the centrifugal force caused by the 

circulation of the liquid1l results in a radial flow. At low flow rates this 

centrifugal force is only slightly significant, and the velocity profile produced 
is virtually parabolic. However, at higher rates the velocity profile is altered 
since the molecules at the centre of the tube travel slower than those at the 
tube walls. This has a similar effect to radial diffusion in that it tends to reduce 
the dilution of the injected sample. 
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A third type of reactor can be made knotting end to end a length of flexible 
tubing. This markedly reduces dispersion, because the knots act as very tight 
coils. 

Other devices such as packed tubes and single bead string reactors (SBSR) 
have also been used to control the dispersion. The behaviour of packed 
reactors is well known in chromatography. When the ratio of tube diameter to 

particle diameter lies between 5 and 20, the axial dispersion is directly related 
to the particle size. This implies that the smaller the diameter, the smaller the 
dispersion. The SBSR consist of ordinary Teflon tubes packed with tiny glass 
beads of slightly lower diameter than the id. of the tube. These beads increase 

radial diffusion, reducing dilution of the sample in the flow line, and therefore 
decrease dispersion. 

Temperature is an influential factor and requires consideration 90. Stults et al. 
have been investigated systems with and without chemical reactions. They 
have observed that temperature has a significant and predictable effect on the 
dispersion of a sample plug. 

In a GD-FIA system, all factors influencing the mass transport through the 

membrane (as discussed in chapter 2) will influence the peak shape via 
dispersion. In such systems, these factors plus all other physical factors 

dependent upon the manifold design require to be studied in 

characterisation of the system. 

3.2.1 Experimental 
The system shown in Figure 3.1b, was used in a flow injection system in 

conjunction with flame atomic absorption spectrometry (flame-AAS )- The 

emergent flow from the membrane was used to fill a sample loop which was 

then injected into the nebuliser uptake stream. This arrangement, shown in 

Figure 3.14 a, was necessary because the emergent flow rate from the 

membrane may be as low as 200 gl/min which is not directly compatible with 

typical nebuliser uptake rates, 4.5 ml/min. 

Copper standard solutions were utilised and the absorbance at 324.8 run was 

measured using a flame atomic absorption spectrometer (AAS), Phillips PU 
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9100. and a chart recorder, Phillips PM single pen. Air/acetylene flame and a 
copper hollow cathode lamp operating at 3 mA. The flame-AAS was 
calibrated by the calibration curve technique, using standards in the range 1-4 

ppm. The oven temperature was held at 900C, the oven fan was activated and 
drying agent was present. 

Various lengths of Teflon tubing were used to prepare sample loops of the 
desired size. The volume of those were pre-determined by injecting a dye 

solution into a known final volume. The absorbance obtained were compared 
with those in a calibration graph of volume versus absorbance previously 
prepared by serial dilution of the same solution. 

The effect of sample size on the absorbance was measured by injecting 

standard Cu solutions into the flame-AAS from sample injection loops of 
different volumes. These absorbances were compared with those obtained 
when the same standards were aspirated directly into the flame-AAS. The 
dispersion factor for this simple FIA system was characterised. 

Studies of dispersion were also undertaken with the system in figure 3.1 b 

coupled to a U. V. spectrophotometer fitted with a flow cell, Figure3.14 b. This 

arrangement, Figure 3.14b, used a FIA system Tecator incorporating a 
Tecator 5020 analyser, a Tecator 5022 detector controller and a Tecator 5023 

U. V. spectrophotometer with a pen chart recorder, Phillips PM 8251. 

The possibility of operating at higher temperatures and lower flow rates 

without generation of undesirable bubbles was investigated to determine the 

best conditions for the system. 

To obtain an extended dispersion profile, various concentrations of KMn04 

solution were injected. The absorbances for samples eluted from the 

membrane were measured at 525 nm and recorded using a chart recorder. 

Studies were carried out at various oven temperatures using various sample 

volumes and carrier flow rates. Replicate injections were performed until 

reproducible peaks were attained. 
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Experiments were carried out by replacing the oven with an ice bath at 2 'C, to 
study the maximum dispersion caused by the 10 m straight reactor. Under 
such conditions it was supposed that no water loss occurred and all 
dispersion was due to the length of the membrane. 

Study of the influence of the membrane unit preconcentration factor upon 
peak profiles was carried out using a2 ml injection loop and a 2ml min-1flow 
rate, over the temperature range 20'C - 76'C. The results obtained were 
compared with those for the same standard concentrations of KMnO4 

without use of the FIA system. 

In order to obtain a full illustration of the extent of dispersion, large volumes 
of 8 ppm KMn04 solution were injected into the FIA system. The maximum 
concentration zone was observed on the wider peaks. The volume of sample 
necessary to achieve the maximum concentration zone were calculated for 

each temperature. 
In both arrangements used in this section the system shown in Figure 3.1b 

was used. 
In the first FIA manifold, Figure 3.14a. a The absorbances were obtained using 
a wavelength of 324.8 = and a copper hollow cathode lamp operated at 3 

mA. The oven was set at the required temperature, the oven was fan assisted 
and the drying agent was in place. 

Reagents 
A stock copper solution (100 ppm) was prepared by transferring 10 ml of 
Spectrosol 1000 ppm standard copper solution to a 100 ml volumetric flask 

and making up to the mark with deionised water. The calibration standards of 

concentration 1,2,3 and 4 ppm and the test standard, 0.1 ppm were prepared 
daily from the 100 ppm stock solution. 

A stock potassium permanganate solution (1000 ppm) was prepared by 

weighing out 1g of the salt (Fisons- analytical grade) and dissolving it in 1000 

ml of water. The working solutions, 10 - 120 ppm, were prepared daily from 

the stock solutions. 
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Figure 3.14 The two FIA manifolds arrangements used to study the sample dispersion in 
a flow system containing the preconcentrator unit. (a) Sample preconcentrated 
prior to introduction; (b) sample preconcentrated on-line. 

3.2.2 Results and discussion 

The peak profiles given in Figure 3.15 visually show the preconcentration 
capability of the membrane on running 0.1 ppm solution through the 

membrane at a flow rate of 1.87 ml min-1 at 90'C. At this temperature and 
flow rate, vapour bubbles appeared in the liquid stream emerging from the 

membrane. To overcome this the outflow was passed to an open topped ml 
sample cup and the injection loop filled simultaneously from this buffer 

reservoir. This arrangement is not practical for routine changing of samples, 
but served for the purpose of this experiment. 

The preconcentrated sample gave an absorbance of 2.74 absorbance units 
corresponding to a copper concentration of 1.77 ppm . It may be observed that 

a preconcentration factor approaching 20 was attained. This simple 
experiment illustrates how the membrane may be used successfully as a 

practical preconcentration device for aqueous solutions. 
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It should have been possible to achieve higher preconcentration factors than 
17.7 by increasing the temperature by as little as a few degrees. However, it 

was found that at higher temperatures it took quite a long time to elute 
enough concentrated sample to fill the sample loop. In addition, at 
temperatures above 85'C the high degree of water loss across the membrane 
caused air bubbles to arise in the sample flow. This could have been overcome 
by using a higher sample flow rate, but increasing the flow rate also had the 

effect of reducing the preconcentration factor. 

Different concentrations of copper standard solutions were injected using 
various loop sizes. The calibration graphs in Figure 3.16 show the influence of 
the loop size upon the signal obtained in the simple FIA manifold. This figure 

also gives the signals obtained when the standards were directly aspirated 
into the flame-AAS. The dispersion coefficients were calculated using the 

equation proposed by Ruzicka 11, (Table 3.12). The dispersion coefficients for 

the different size samples are less than 3. Thus, the system can be classified as 

a limited dispersion system. 
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Figure 3.16 Comparison of the copper absorbance for standards aspirated into the flame 
with those for injection of discrete volumes into the FIA system. 

Table 3.12 The dispersion coefficients for the simple FIA system without 
on-line preconcentration. 

loop volume, gl 
concentration 200 266 374 

1 ppm 

_ 

1.85 1.80 1.46 

2 ppm 1.78 1.58 1.32 

PPM 1.69 1.53 1.33 

4 ppm 1.74 1.52 1.30 

5 ppm 1.69 1.42 1.28 

X :t SDV 1.75 ± 0.07 1.57 ± 0.14 1.34 ± 0.07 

When the manifold 3.14 b was used, the limiting conditions for flow rate and 
temperature for operation were found to be 2ml min-I and 760C, 

respectively. Under these conditions the flow emerging from the membrane 
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unit was continuous containing no bubbles to disturb the detector 
background. 

Characteristic peak profiles for injecting KMn04 solutions into this manifold 
at 76'C and a liquid flow of 2ml min-1), and those obtained for large sizes of 
injection volumes at O'C are shown in Figure 3.17. The signal and peak height 

were compared with those on the calibration graph obtained for the system 
without dispersion, Figure 3.18. 

El 

-2 0 

(C) 

min 
ti me 

Figure 3.17 Characteristic peak profiles obtained for KMn04 solutions injected into the 
FIA system with a preconcentrator unit under various conditions. (a ) 440 W of 
40 ppm standard solution injected in a carrier flow rate 2 ml min-1 at 762C; (b 

and (c ) 16 ml of 8 ppm and 20 ppm standard solutions injected in a carrier 
flow rate 2 ml min-1 at OQC respectively . 
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Figure 3.18 Spectrophotometric calibration curve for KMn04 at 525 nm . 
Slope, 0.0793; 

y-intercept, -0.52622; correlation coefficient, 0.999. 

Under optimum preconcentration conditions a concentration factor of 10 was 
anticipated. However, the signal generated represented half the expected 
signal for concentration of the volume injected. Therefore, the value of the 
dispersion coefficient, 1.79, suggests that the preconcentration factor was too 
low to'overcome the dispersion of 10 m of membrane. Extensive tailing of the 

sample peaks might be expected, however, this was not the case. The peak 
shapes presented have more defined edges, with little tailing, in comparison to 
those produced when the membrane is placed in an ice bath. This would 
suggest that the membrane has the ability to reduce dispersion substantially 
when used under optimum conditions for sample preconcentration. 

The effect of the preconcentration factor upon peak shape is shown in Figure 
3.19. As the temperature increases, more well defined peaks are generated 
due to the increase in sensitivity. Similarly, as the carrier flow rate increases 

the peak height decreases as the mass loss efficiency is inversely proportional 
to the flow rate, Figure 3.20. 
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Figure 3.19 Effect of the temperature on the peak shapes obtained for 2 ml injection of 
20 ppm KMn04 standard solution in a carrier flow rate 2 ml min-1. 

Figure 3.21 shows the peak profiles obtained when 8 ppm KMn04 solution 

was continuously injected to produce a maximum concentration zone. It can 
be clearly seen that the larger injection volumes yielded higher peaks. These 

peaks exhibit sharp well defined edges and there is an absence of tailing, 

showing that the concentration factor for the membrane reduced dispersion. 

The concentration of these samples were calculated using the calibration 

curve, Figure 3.18. The results are given in Table 3.13. 
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Figure 3.20 Effect of the carrier flow rate on the peak shape when 20 ppm KMN04 
standard solution was injected continuously for 3 min. (a) 3 ml min-1; (b) 5 ml 
min-1. 

These results successfully illustrate the dispersion reducing ability of the 

membrane, while concentrating the sample plug. The flat top region of the 

peaks represents the maximum concentration factor of the membrane. While 

the sloped edges represent the dispersion associated with each injection. There 
is little peak tailing reaffirming the conclusion that concentration process in 

the membrane substantially reduces the influence of the dispersion. 

Table 3.13 Calculated concentrations for injection of when 8 ppm 
KMn04 solution into the FIA system with preconcentrator unit 
at various temperatures. 

temperature 
/OC 

peak height 
/ cm 

concentration 
/Ppm 

34 0.9 18 

48 1.2 22 

61 2.2 34 

76 5.1 71 
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Recalculation of the dispersion coefficient yields a value of 0.125 because 
the concentration of the signal peak maximum is greater then the initial 

concentration of the sample as a result of the concentrating nature of the 
membrane. Therefore the dispersion is illustrated as the sloping region of the 
peaks. 

From these peak profiles it is possible to calculate the exact volume of sample 
necessary to achieve maximum concentration at various temperatures, these 

are: 4.1 ml at 34'C; 4-8ml at 48'C; 7.3 ml at 61'C and 12.8 ml at 76'C . As is 

expected increasing the temperature causes increase in the preconcentration 
factor of the membrane unit, thus, large volumes of sample are required. 
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Figure 3.21 Characteristic peak profiles obtained for continuous injection of sample into 
the carrier flow at various temperatures. 
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3.3 Application of the membrane preconcentration device to Aluminium 

speciation in natural water samples. 
The possible link of Alzheimer's disease with aluminium in water and the fact 
that aluminium is known to be largely responsible for rendering natural 
waters unsuitable for fish stocks, has made analysis of water for aluminium a 
routine quality control procedure. The geochemical mobility of aluminium in 

many aquatic systems has increased probably as a result of acidic deposition 
91,92. This observation, coupled with the demonstrated differential toxicity of 
various aluminiurn species to aquatic and terrestrial organisms and the 
suspected detrimental human health effects it presents 92,93, has greatly 
increased the utilisation of a variety of analytical methods, both for 
determination and speciation. 

The characteristics of aluminium as a potential analyte are such that the 
determination and speciation in natural waters represents a formidable 

challenge. Any procedure has to give special attention to particular properties 
that characterise aluminium as an analyte: - amphoteric behaviour, slow 
hydrolysis kinetics, pronounced influence of polynuclear complexes, high 

adsorbability and pH dependence of the analysis. 

Total aluminium in natural water can be determined by a large number of 

methods which vary in approach and complexity. The available methods 
include voltammetry94,95,96, spectrophotometry 97,98,99,100,101,102/ 

spectrofluorimetry103, atomic absorption 104,105 and atomic emission 

spectrometry 106,102,107,108,109, but the toxicity and bioavailability of 

aluminium is related to its speciation and therefore total aluminium 
determination alone is of limited use for monitoring or assessing its 

environmental effects. 

The possible aluminium species in solution are: 

- alkaline PH: AI(OH)4- 

- below PH = 4: Al 3+ 

- PH range 4 -7: monomer and polynuclear complexes of 
hydroxide ions, fluoride anions, and certain 
chelating organic ligands. 
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Alurninium in natural water is normally found at trace levels and separating 
it into fractions further reduces its concentration in the various fractions. This 
inevitably creates a need for a preconcentration step to enhance sensitivity 
and detection. 
Different preconcentration steps such as ion-exchange, solvent extraction and 
electro-deposition have been used in aluminium determinations. 

West et -al. 
110 proposed that for samples low in salts (e. g. potable waters), 

enrichment procedures may be considerably simplified to mere evaporation. 
The PTFE membrane takes advantage of this simple enrichment process due 
to its properties. It is hydrophobic and thus does not allow water to pass 
through it while water vapour formed by evaporation can pass through the 
porous media. 

The ability of the membrane to improve detection limits has already been 
investigated and it is proposed to incorporate it in a scheme for the speciation 
of aluminium. 

Even though detailed schemes for physical and chemical speciation of 
aluminium have been described, for routine purposes a simple analytical 
procedure has been suggested by Seip et al. 111 

. The pyrocatechol violet 
method might be applicable for adaptation to speciation procedures and it is 

used as a standard method by Driscoll 93 and involves passing the water 
sample over a cation exchanger in the sodium form. The free labile 

aluminium is exchanged for the sodium ion and the column elute contains 
only organically chelated aluminium. 

The three most important aluminium fractions produced by this method are: 
1. Organically complexed (non-labile aluminium). 
2. Inorganic (labile) monomeric aluminium. (this fraction includes free 

aluminium and soluble aluminium hydroxide, fluoride, and sulphate 
complexes). 
3. Acid soluble aluminium. 

In the present study, the total aluminium concentration was determined 

using electrothermal atomisation - atomic absorption spectroscopy (ETA- 

-87- 



AAS). The total monomeric aluminium was estimated by complexation with 
pyrocatechol violet, the total polymeric fraction being the difference between 
the two. 

The monomeric fraction was further split into two by stripping the labile free 
Al fraction off, using Amberlite resin, and determining the non-labile part 
using the same method as for total monomeric aluminium. The membrane 
unit was used as a preconcentration technique. 

3.3.1 Experimental 
The scheme used for the aluminium speciation incorporating the membrane 
unit is described below: 

water 3ample 
I 

total alu miniu mE TA-AAS 
(A) 

total mono meric alu miniu m (B) total polymeric aluminium 
FIA- pyrocatechol violet) by difference C=A-B 

labile free Al 3+ 
(by difference D=B-E 

non-labile mono meric Al 3+ (E) 
cation de3afted 
preconcentrator 
flow injection 

The flow-injection pyrocathecol violet method used is based on Royset's 100 

optimised method. In this method inorganic aluminium. was determined by 

reaction with pyrocatechol violet, followed by visible spectrophotometric 
detection of the coloured product. 
The system shown in figure 3-Lb was coupled to a visible 

spectrophotometer, Phillips PYE UNICAM SP6-250, set at 585 nm, using a 
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Hellman flow-through cell (10 mm light path, 15 mm path height, 30 gl 
volume and made of quartz). The manifold is shown in Figure 3.22. It was 
built with 0.8 mm id. Teflon tube and a chart recorder, Tekman TE 200 - 
Two peristaltic pump, Gilson Minipuls2 and an Ismatec were used to pump 
sample and reagent. Flow rates of reagents were as shown in Figure 3.22. 

pr, econcerytmtor unit 
,1-- ml min 

5 2.2. T 

C 2.3 
v 

M150 
R12.0 M 600 
R21.2 

w 
R31.2 

U. V. 3pect. 

Figure 3.22 Flow injection manifold for the determination of aluminiurn by pyrocatechol 
violet. S, sample; W, waste; V, injection valve; M, mixing coil (length in cm); C, 
carrier; R1, iron-masking reagent; R2, PCV reagent; R3, buffer and T, 
condenser. 

A micro condensing device was connected in between the membrane and the 
injection valve containing a sample loop, 200 cm. This device was used to 

recondense vapour formed in the membrane as it was heated and to avoid 
bubbles entering the detector. The preconcentrator unit was used with 8.85 m 
tubular membrane and the preconcentrator factor for this unit was checked 

up to 90'C at different sample flow rates. 

For the aluminium total determination, an ETA-AAS was used as a detector 

instead of a visible spectrophotometer. A atomic absorption spectrometer, 
PYE UNICAM SP9, was used - It used an aluminium hollow cathode lamp 

with lamp current set at 7mA. The wavelength was set at 309 nm and the slit 

width was 0.2 n-m. A D2 lamp was used for background correction and the 

furnace was purged with argon. The preconcentrator unit was not on-line 

and samples and standards were collected manually from the concentration 

step and then analysed by ETA-AAS. 
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The furnace programme used is tabulated in Table 3.14. It is an adaptation of 
that described by Person et al. 112. The effect of nitric acid and the phosphoric 
acid matrix modifier was studied by preparing the standards in 0.02 M nitric 
acid and 7 gM phosphoric acid solution. An autosampler was used for 

automatically inject 20 gl sample solution on the ETA-AAS furnace. 

Table 3.14 Furnace programme. Cool down was about 30 seconds with 
argon purge. 

stage Temperature 
/ oc 

time /s ramp / 
oc S-1 

drying 110 40 7 

ashing 1250 40 4 

atomisation 2300 8 - 
cleaning 2550 5 

The first experimental step was to prepare the resin Amberlite IR-120 to a 
sodium form. About 20g of resin in the hydrogen form, was stirred with 
0.5M sodium chloride solution. The sodium chloride solution being changed 
daily. After a week the concentration of the sodium chloride was reduced to 
0.005M and stirring has continued for another two days, until the pH of the 

supernatant was higher than that of the sodium chloride solution. 

The resin was then transferred to a 1cm diameter, 20cm long column and 

adjusted so that 1x 10-3M sodium chloride solution eluent produced an 

eluent of pH 5.0. After this initial equilibration of the column with eluent, 50 

to 60ml of sample was passed through the column to displace the eluent and 

was then discarded. An additional 60ml was then collected for analysis and 
the column was regenerated using 400ml of eluent113 

The stability of the aluminium-PCV complex was studied by measuring 

manually the absorbance at different times of colour development using a 

static uv-visible spectrophotometer and employing reagents at the 

recommended concentrations 114. The ability of the PTFE membrane to 

enhance detection limits was demonstrated by analysing standards before 

-90- 



and after passing them through the membrane, using both the pyrocatechol 
violet method and the ETA-AAS method. 

Standards and samples were run with and without the preconcentrator. The 
pH range 6.1 - 6.2 is optimal to minimise changes in background and 
sensitivity and this range was attained by using a hexamine buffer at a 
concentration of 3 M. 

Standards were analysed with and without having been preconcentrated and 
were all prepared in deionised water. 

Reagents 
Aristar - reagent grade materials and deionised water used throughout. 
Reagents for cation desalting 

- Sodium chloride 0.5 M 

- Sodium chloride (29-22g) was dissolved in water and made up to a litre. 
Further dilution were made as and when required. 

-Amberlite IR 120 Resin. The hydrogen form of the resin was converted to the 

sodium form by equilibrium with sodium choride solution. 

Reagents for visible sl2ectrol2hotometry 
Reagents were prepared according to Royset'slOO optimised method. 

-hydrochloric acid OAM - this acid solution was prepared by dilution of 5M 

hydrochloric acid with water. 

-1,10 phenanthroline solution 10 mM - hydroxylammonium chloride (34.75 g) 

was dissolved in approximately 800 ml of water. 1,10 phenanthroline hydrate 

(1.98 g) was then dissolved in the above solution. the solution was transferred 

to a 1000ml volumetric flask and made up to the mark with water, and was 
thoroughly mixed. The solution was then stored in a polyethylene bottle. 

-pyrocatechol violet solution 5 mM - pyrocatechol violet (1-93 g) was 
dissolved in 75 ml of water, transferred to a 100 ml volumetric flask and made 

up to the mark. The solution was thoroughly mixed and stored in a 

polyethylene bottle. 

-hexamine buffer solution 3M- hexamethylene tetramine (420.57g) was 
dissolved in water and made to a litre, then 17ml of 37% w/v hydrochloric 
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acid was added to a litre of the buffer to give a final concentration of 0.2 M 
hydrochloric acid. The solution was then stored in a polyethylene bottle. 

-standard aluminium, solution 20 ppm - 10 ml of a 1000 ppm standard 
aluminium solution was transferred to a 500 ml volumetric flask and made 
up the mark with 0.1 M hydrochloric acid solution, and mixed. The solution 
was stored in a polyethylene bottle. Appropriate dilutions were then made as 
and when required 
For the flow injection system, the carrier (C) and all standards were prepared 
in 0.1 M hydrochloric acid. To the samples, hydrochloric acid was added to a 
final concentration of 0.1 M. 

Re , eagents for ETA-AAS 

-nitric acid 0.01M - the nitric acid solution was made by dilution of Aristar 

grade 15.85M nitric acid. 

-phosphoric acid 7 gM (7 x 10-6M) - the phosphoric acid solution was made 
by dilution of Aristar grade 14.75 M phosphoric acid. 

-standard aluminium solution 20 ppm - 10 ml of a 1000 ppm standard 
aluminium solution was transferred to a 500 ml volumetric flask and made 
up to the mark with water and mixed. The solution was stored in a 
polyethylene bottle and appropriate dilutions were made when required 
either with water or 0.01 M nitric acid. 

Water sample 
The water sample was collected from a small isolated clough on Hallam 

Moor, approximately half a mile from Moscar (GR 235875), and 6 miles from 

the Howden Reservoir site. On this occasion it was after spells of heavy rain 

and snowfalls and the sampling conditions were as follow: 

pH 
temperature of sample 
weather 
date 

4.0 

3-5'C 

sunny, cold 
4th January 1991 

The sample was filtered through a 0.45 ýtm membrane within 3 hours of 

collection, to remove colloidal material and arrest bacterial changes. 
Some of the water was cation desalted ( removal of free A13+) by using a ion- 

exchange resin, Amberlite IR 120 as described under methods. 
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3.3.2 Results and discussion 
Figure 3.23 shows the effect of the time on the coloured compound when 
prepared from standard aluminium and natural water sample respectively. 
The plots depict stabilisation of the absorbances for the natural water sample 
between 10 and 30 minutes of colour development (which are in agreement 
with other workers 115,116 and 10 minutes was the chosen work time. 

To check the preconcentration factor, the oven was set at 90'C and distilled 

water was pumped through at different flow rates. Results are shown in 
Table 3.14. To get a 10 fold concentration, an input of 2.2 ml min-1 at 90'C 
would be ideal. Figure 3.24 shows characteristic peaks obtained for 0.035 ppm 
aluminium standards without preconcentration and after 10 fold 

concentration. 

Table 3.16 Concentration factors obtained at different flow rates through 
the system 3.1b with 8.85 m microporous PTFE tubular 
membrane. 

input flow 
ml min-1 

output flow 
ml min-1 

concentration 
factor 

3.46 1.34 2.58 
2.3 0.44 5.77 
2.28 0.26 8.80 
2.20 0.21 10.48 
1.55 0.13 11-63 
1.56 0.12 13. 

-93- 



0.26 

0.255 

0.25 

0.245 

0.24 os 

0.235 

0.23 

(a) 

0.44 

o. 43 

0.42 

o. 41 

0.40 

0.39 

o. 38 

(b) 

I ---------- L ------- I., 

-------- Ir 

.1 

05 10 15 20 25 30 35 

time, min 
40 

------------------- 

------------------ -------------------------- 

---------------- r 

10 15 20 25 

time, min 

30 35 40 

Figure 3.23 Stability testing of the coloured compound formed on reacting pyrocatechol 
violet (PCV ) with (a) aluminiurn standard and (b) water sample. 
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Figure 3.24 Example of a ten fold concentration of 0.0035 ppm aluminium standard. 
Peak A, without passing through the membrane; peak B, after passing through 
the membrane. 

The absorbances obtained for standards without preconcentration, Figure 
3.25, resulted in a calibration curve with a correlation coefficient 0.998, y- 
intercept -4.67x 10-4; slope 0.3455. Reproducibility was 9.4% RSD at the 
0.114ppm level for aqueous standard and sampling rates of 10 samples an 
hour could be attained. 
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For the standards that were preconcentrated, Figure 3.26, the calibration 
curve presents a correlation coefficient 0.998, y-intercept 2.21x10-2; slope, 
1.688 with a precision of 6% RSD at the 0.0447ppm level for aqueous 
standards. The sampling rate was greatly reduced due the preconcentration 
step- 

The limit of detection (LOD) were calculated from the calibration graph 
following Miller and Miller117. The determination without preconcentration 
gave a detection limit of 0.0397ppm and that after preconcentration, which 
allows the use of more diluted standards, the detection limit improved to 
0.0042ppm . 

The preconcentrated samples gave fairly reproducible results once the 
membrane environment had stabilised, but the between experiment 
reproducibility was very poor. Therefore standard must be included in each 
run. 

The standards that were passed through the membrane had to be diluted 10 
times before being pumped through the membrane, otherwise the 10 fold 

concentrated standards tended to react with all the available colour forming 

reagent (PCV) and gave similar signals. A high molar excess of PCV over 
aluminium is desirable, not only to minimise interference from anions which 
form complexes with aluminiumlOO, but also to allow the signal to reflect, and 
depend on the amount of aluminium present. 
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Figure 3.25 Peaks obtained for aluminium standards using the pyrocatechol violet 
spect rop hoto metric method. Chart recorder sensitivity, 1; chart speed, 10 mm 
min-1. Peak A, 0.1 14ppm; B, 0.226 ppm; C. 0.334ppm and D, 0.447 ppm. 
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Figure 3.26 Peaks obtained for standards having having been preconcentrated and 
analysed using the spectrophoto metric pyrocatechol violet method. Chart 
recorder sensitivity, 2 and chart speed 10 mm min-1. Peak A, 0.01 14ppm; B, 
0.0226ppm; C, 0.0334ppm and D, 0.0447ppm. 

Care had to be taken to reduce ( or eliminate) the concentration of the 
hydrochloric acid in the preparation of the standards to be preconcentrated, 
since on passing these through the membrane, the acid was also concentrated 
tending to off-set the effect of the hexamine buffer. Reaction of the aluminium 
and the pyrocatechol violet was thus reduced resulting in reverse peaks. 
When the standards were prepared in distilled water, normal peaks were 
obtained, since well controlled pH conditions were achieved, so that the 

concentration profile formed in the continuous flow system became the 

governing factor of the response curve. 
In conjunction with the electrothermal atomiser, the membrane unit was 
employed off-line and in this case increased the detection limit from 

0.0158ppm (without preconcentration) to 0.00303ppm (with 

preconcentration). 
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For standards without preconcentration the calibration graph is as shown in 
Figure 3.27. Each point is an average of six to ten replicate measurements. 
Reproducibility was 14.7% RSD at the 0.0447ppm level for aqueous standard 
and sampling rates of 30 samples an hour were attainable. 
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Figure 3.27 Calibration curve for aluminium standards without preconcentration and 
determined by ETA-AAS. 

For standards with preconcentration, the calibration curve is shown in figure 

3.28. The reproducibility in this case was 29.4% RSD at the 0.00447 ppm level 

for aqueous standards. The sampling rate was similar to that for non- 

preconcentrated standards once the preconcentration step had been 

undertaken. 
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Figure 3.28Calibration curve for aluminium standards preconcentrated off-line and 
determined by ETA-AAS. 

The use of phosphoric acid as a matrix modifier on standards prepared in 0.01 
M nitric acid 105 was attempted. The absorbances obtained when the modifier 
was used are compared with those without modifier, Table 3.16. 

The micro molar concentrations of phosphoric acid added improved 

significantly the trace level aluminium determinations as Craney et al 105 

pointed out, giving a limit of detection of 0.0059 ppm for straight aluminium 
standards and a correlation coefficient of 0.999. The detection limit is better 

than for standards prepared in deionised water. However the reagents 
introduced a high background absorbance reading, since even the Aristar 

grade reagents had about 0.05 ppm of aluminium in them. 
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Table 3.16 Comparison of the use of matrix modifier on the signal in 

aluminium. determination by ETA-AAS. 

Al standard 
concentration, 

PPM 

absorbance for 
std in water 

absorbance for 
std in matrix 

modifier 
0.0000 0.023 0.005 0.200 + 0.057 
0.0226 0.110 0.059 0.370 0.088 
0.0447 0.310 0.038 0.530 0.076 
0.0663 0.470 0.043 0.680 0.061 
0.0874 0.570 0.058 0.800 t 0.094 

Standards were therefore prepared in distilled water in accordance to 
Sperling118 who suggested that the fewest number of manipulations and 
chemical additions are desirable when dealing with trace levels of 
determinations. 

The membrane unit was incorporated in the simplified speciation scheme 
and the water sample was analysed. 

The total aluminiurn content was determined using ETA-AAS, with no 
sample pre-treatment other than diluting 10 times to bring the absorbances 
within the range of the standards. The sample gave a mean absorbance of 0.40 
for six measurement. The concentration of aluminium (A) was found to be 
0.59 ppm. 

The concentration of the total monomeric fraction was estimated by the 

pyrocatechol violet-flow injection method. The mean absorbance for for five 

sample injections was 0.096 and the concentration (B) was found to be 0.28 
PPM- 

By difference the total polymeric fraction (C) was calculated to be 0.31ppm. 

The non-labile fraction (E) was determined by removing the free A13+ of the 

monomeric fraction using Amberlite resin (cation desalting). This fraction 
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was below the detection limit of the pyrocatechol violet method (0.0398ppm) 

and preconcentrating it helped bring it to detectable levels. The fraction 

sample absorbance was 0.046, equivalent to a concentration of 0.027ppm. 

The labile A13+ (D) can then be obtained by subtracting (E) from (B), giving a 
concentration of 0.25ppm. 

The results for the water sample can be summarised as: 

A- total aluminium: 0.59 ± 0.049ppm 
B- total monomeric Al: 0.28 ± 0.0025ppm 
C- total polymeric Al: 0.31ppm 
D- labile free A13+: 0.25ppm 
E- non-labile monomeric Al: 0.027ppm 

The pH of the water sample (pH 4) falls within the pH range where both 

monomeric and polymeric aluminium complexes are present. The results of 
the speciation are in agreement with this fact. Furthermore, the monomeric 
fraction consists mainly of the labile free A13+ since the pH is on the lower 

end of the range. This labile free A13+ accounts for the toxicity of aluminium 
since the toxicity of a metal ion is related to the aqua ion concentration as 
proposed by the so called " free metal ion " hypothesis 119,120. It should also 
be noted that the distribution of metal species varies from sample to 

samplel2l, being very much pH dependent. 
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3.5 Conclusion 

A qualitative model to characterise a PTFE membrane as a preconcentrator 
device has been developed which describes vapour losses through the 

membrane under a variety of operating conditions. The model shows that the 
rate of loss is governed by the difference in water vapour pressure inside and 
the surrounding atmosphere, the surface resistance of the membrane to 
diffusive transport and the thickness of the boundary layer attached to the 
membrane surface. Estimation of the magnitude of these resistances is 

necessary for quantitative prediction of operating conditions and this will be 

the subject of future work. 

The PTFE membrane has been successfully applied as preconcentration 
device for the determination and speciation of aluminium in natural water 
samples. It has high potential as a universal preconcentrator, increasing the 
levels of all elements in the sample on passing through it without chemical 
modification. 

Adaptation of the preconcentration devices to FIA systems was aimed at 

producing a rugged, reproducible, rapid and sensitive device, whose main 

application would be for the determination of trace levels of elements in 

water. The reported method met with all the above aims except speed. The 

preconcentration step slowed down the whole analytical procedure and 

significantly lowered the rate of sample throughput. Investigations need to be 

undertaken to improve the throughput of the technique before it could be 

used for routine work. 

A close examination of the use of the membrane indicated that results 

obtained using it can be affected by interferences because all the sample 

constituents are concentrated. This was exemplified by the preconcentration 

of hydrochloric acid, which caused the reagents in the spectrophotometric 

method to react only partially on passing through the membrane. 

Therefore, it could be suggested that the membrane unit could only be used 

as a preconcentrator device for samples containing low levels of salts 
(potable waters). The use of the membrane unit could avoid contamination at 

very low levels that might occur during evaporation in open vessels. 
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In general, it can be concluded that the membrane preconcentration device 

enhances the detection limits and has potential as a tool in the speciation of 
aluminium. , However, it is difficult to use on a routine basis because it takes 
a long time to stabilise and has poor reproducibility between experiments. 
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CHAPTER FOUR 
A MICROPOROUS MEMBRANE DEVICE FOR GENERATING 
ANALYTES IN GASEOUS FORM 

In GD-FIA systems the gas diffusing through the membrane is usually 
transferred into a liquid acceptor stream. In cases where a gaseous acceptor 
stream is used, the method is called Dual Phase Gas Diffusion Flow Injection 
Analysis (DPGD-FIA)20. Most applications of this method is relate to its use 
in analytical methods utilising hydride generation followed by atomic 
spectroscopy. In the present investigation, a DPGD-FIA manifold was 
developed to generate and separate gaseous samples for analysis by mass 
spectrometry. The direct interfacing of a GD-FIA system to a mass 
spectrometer presents several advantages. The low detection limit of the 
mass spectrometer coupled to FIA provides a system capable of detecting 
very small amounts of volatile analytes and it would also be expected that the 
precision in any quantitative mass spectral analysis would be higher than in 
other common analytical inlet systems for mass spectrometers. 

The GD-FIA-MS technique developed here was used for the determination 

of total nitrogen and 1-5N/14N isotopic ratios in agricultural samples. The 

versatility of the method has also been demonstrated for other nitrogen 
species determination such as, nitrite and nitrate. 

4.1 Determination of nitrogen 
The determination of nitrogen content in biological and agricultural samples 
is common both in research and on a routine basis. For example, nitrogen is 
important in crop production and the fate of fertiliser nitrogen applied to soils 
is often studied. Nitrogen does not have a radioactive isotope of sufficiently 
long half life for radioactive tracer experiments, therefore the stable isotope 
15N is used, and the 15N/14N ratio is normally determined by mass or 
emission spectrometry, the nitrogen gas is generated from the sample via a 
Kjeldahl-Rittenberg method, a Dumas combustion or a combination of the 
two. Today routine analysis of biological and agricultural samples are based 

on the modified Dumas combustion technique, known as automated nitrogen 
carbon analysis mass-spectrometry - ANCA-MS. It involves converting the 
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nitrogen in the samples into N2 gas by catalytic combustion, through a 
furnace containing chromium oxide and silvered cobalt oxide. The nitrogen 
oxides, water and carbon dioxide produced, pass through to a reduction 
colun-Ln (copper filings) where the oxides of nitrogen are reduced to N2 gas, 
then through traps to remove H20 and C02 and a GC column to remove any 
interfering trace impurities. The resultant N2 gas is then swept into the mass 
spectrometer. The disadvantage of this technique is that both the combustion 
and reduction columns need replacing regularly, which involves shutting 
down the system to replace the packing which is inconvenient and 
undesirable. 

The FIA technique has much to offer in improving the efficiency and in the 
automation of various separation and preconcentration processes, and it can 
be used either for direct introduction of an analyte to a mass spectrometer or 
to convert the analyte to a suitable form for detection. 

4.1.1 Determination of total nitrogen 
The determination of total nitrogen in a complex sample involves three steps: 
a- definition of the term "total nitrogen", b- conversion of all nitrogen 
included in this definition to a single measurable form and c- measurement. 
Usually certain forms of nitrogen, such as nitrate, cyanide, are excluded from 
the estimate of "total nitrogen"122. 

In general, the different forms of nitrogen present are converted to arrunonia 
or nitrogen gas which is extracted from the matrix prior to determination. 

4.1.1.1 Convertion of total nitrogen to ammonia 
Ammonia is an easily measurable and easily extracted form of nitrogen 
compound. It can be extracted by distillation and its determination does not 
require elaborate apparatus being carried out by a large variety of methods 
such as titrimetry, spectrophotometry, potentiometry, etc. Combined nitrogen 
can be converted into ammonia by a number of methods such as Kjeldahl, Ter 
Meulen or caustic fusion. 
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KLe--ldahl method - It is the most popular method used. The majority of 
nitrogen-containing compounds are amenable to this method, but ring 
structures such as pyrazolones, diazines and triazoles are not easily converted 
into ammonia. 

In this procedure, the organic and inorganic nitrogen present in the sample 
are oxidised by digestion in sulphuric acid, in the presence of a catalyst 
(selenium, mercury(H) oxide or copper sulphate). Carbon and hydrogen are 
expelled as carbon dioxide and water whereas the convertible nitrogen 
present (aminoid nitrogen) is converted and retained in the digest as 
ammonia. Several procedures used for the quantitative determination of 
nonaminoid nitrogen (N-N; N=N; N-0; N02- and N03-) have been 

published122. Once the conversion is complete, the digest is made alkaline 
and ammonia is steam-distilled into a standard acid solution for 
determination. 

Although this digestion method has been used for about 90 years, there is still 
no universally accepted digestion method; i. e. the best compromise seems to 
be to adapt the digestion technique to the nature of the sample material. 

The Ter Meulen Method - In this procedure, the organic nitrogen present in 
the sample is combusted in a hydrogen atmosphere and all nitrogen is 

converted to ammonia over a nickel-magnesium catalyst at 320 ' C. The 

ammonia produced is absorbed in a standard acid solution as for the Kjeldahl 

method. 

Although this method can be applied to all organic compounds, it has not 
received much attention because the catalyst is easily poisoned by sulphur or 
halogens. The use of calcium oxide to absorb hydrogen sulphide and halogen 

acids can improve the lifetime of the catalyst. This method is reported to be 

more sensitive than the Kjeldahl method123. 

Causti, fusion method - This method can be applicable to both aminoid and 

nonaminoid nitrogen. It involves fusion of the matrix with caustic 
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compounds such as sodium carbonate, sodium or potassium hydroxide. This 
method has received little attention recently. 

4.1.1.2 Conversion of total nitrogen to molecular nitrogen 
The Dumas method is the most widely used and involves the pyrolysis of the 
sample with copper oxide in an atmosphere of carbon dioxide which is 
passed through a strong potassium hydroxide solution. Ideally, all the 
elements present are converted to forms which either react with copper oxide 
or are very soluble in potassium hydroxide solution, except nitrogen which 
can be collected. Although this method is reported to work very well with 
inorganic and simple organic samples, complex samples such as biological 
materials can give lower recovery due to incomplete combustion124,125. 

Several modifications has been proposed to improve the efficiency of the 
method 126,127,128,128. Simultaneous determination of carbon, hydrogen and 
nitrogen can be made by combustion of the sample in a helium atmosphere 
with silver oxide-manganese oxide as the oxygen supplier. Heated copper 
then reduces nitrogen oxides and removes the excess of oxygen. 

In the classical Kjeldahl method, ammonia is extracted from the digest and 
collected in a standard acid solution (hydrochloric or boric acid) and back 
titrated with standard alkaline solution. Among the spectrophotometric 
methods, the Nessler, indophenol and byspyrazolone methods are the most 
used. The use of an ammonium selective electrode enables the determination 

of ammonia concentration by potentiometry. 

Recently, efforts have been made to automate this determination using flow 

injection and separation of the ammonia by gas diffusion through a PTFE 

membrane followed by conductometriC43, spectrophotometric or 

potentiometric detection 61, isothermal distillation or spectrophotometric 
130,131,132 determination 

When the total nitrogen is converted to nitrogen gas, it is usually determined 
by physical means such as gas chromatography or emission spectrometry. 
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4.1.2 Nitrogen-15 - analytical importance and methods of determination. 
The use of tracer methods to investigate chemical, physical or biological 

processes in agricultural, biological and medical research, is widespread. As 

a basic prerequisite of this method, the tracer should behave in the same 
manner as does the original element, but its different isotopic composition 
makes it possible to identify the element at any stage of the process. 
Quantitative evaluation is based on the isotope dilution law. According this 
law, in a system in equilibrium, the ratio of tracer to carrier isotope is 

constant. Obviously, isotope effects and exchange reactions which would 

reduce the specific activity of the compound must be absent. 

In the majority of cases, a radioactive isotope is used as the tracer which 
facilitates its determination using radiochemical techniques. Usually the 
determination of the carrier (inactive) element is also necessary and the ratio 
of radioactive to the inactive element is referred to as the specific activity. 

Nitrogen does not have a radioactive isotope of sufficiently long half-life (as 

can be seen in Table 4.1) to enable radioactive tracer experiments of 

reasonable duration. So, any practical experiment which needs a nitrogen 
tracer should use a stable isotope. 

The 15N isotope matches all the conditions necessary to be used as tracer, i. e.; 
it does not easily exchange with nitrogenous compounds, all of its 

compounds can be produced and stored under normal conditions; many of 
its organic compounds can be produced directly from a few inorganic 

compounds. Several publications deal with its use for these purposes133,134, 
135 
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Table 4.1 Nitrogen nuclides. 

nuclide % abundance nuclide mass half life, s 
12N 12.01871 0.011 
13N 13.005739 600 
14N 99-634 14.0030744 
15N 0.3663 15-000108 
16N 16.00609 7.38 
17N 17.00845 4.14 

In agronomic research, for example, 15N is used as tracer in laboratory, 

greenhouse and field experiments. It is used to study the fate of fertiliser 

nitrogen applied to soil, transformations and movement of soil and fertiliser 

nitrogen, biological nitrogen fixation, uptake and utilisation of this element 
by crops and metabolism in plants. 

In nature, nitrogen is a mixture of two stable isotopes; 14N and 15N. The 

concentration of 15N is usually expressed as the abundance (atom%) as given 
in Eq. 4.1 

Atom%' 6N= n2 of 15 N aloms 
total W of N aloms 

100 q. 4.1 ) 

The natural abundance of the 15N isotope in atmospheric nitrogen is (0.3663 

+ 0.0004) atom% 136. Because of naturally occurring isotopic effects, not all 

nitrogen-containing compounds have the same value; some are enriched and 

some depleted by + 1.5%. 

The 15N % enrichment of a sample represents the % 15N above the natural 

abundance as given in Eq. 4.2. 

% 15N excess (enrichment)=% 15M abundance - 0.3663 (eq. 4.2) 
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Small variations in 15N abundance e. g. variation in the 15N content of 
naturally occurring sample components, are often measured in terms of parts 
per thousand differences (a 15N ) from a reference gas, usually atmospheric 
N2 

R sample -R reference 
-x 1000 (e q. 4.3) 

R reference 

where 

R= 15N / 14N (number of atoms ratio) 

with this system, one a 15N "unit" is equivalent to 3.7 x 10 -4 atom% 15N. 

Some authors 137,138 use a slightly different definition of a 15N in that they 
use 15N concentrations in their calculation rather than R. Close to natural 
abundance, the difference in a 15N values calculated using the two 

procedures is very small. Equation 4.3 can be written in the. 

a 
15 

N= 
(14N 15M +2 15N) X 100 

q. 4.4) 
214 N2 +2 141115pi + 215N2 

Generally two kind of analytical techniques are used in order to determine 
the concentration of nitrogen-15 or the 15N /14N ratio present in the sample; 
mass spectrometry or emission spectroscopy. For both methods, the 
organically and inorganically bounded nitrogen present in the sample must 
be converted to nitrogen gas as both instruments exploit a physical property 
of the nitrogen molecule, N2, to determine the relative amounts of each of the 
three possible species, 14N2,14N15N and 15N2. In optical emission 
spectrometry, N2 molecules are separated on the basis of their vibrational 

properties, whereas in mass spectrometry, charged ions are separated 
according to their mass charge (m/e) ratio. 

Nitrogen gas is preferred because it is easier to generate from different 

compounds, it is easier separated form the samples matrix, it is almost inert 
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with respect to all the materials used and the interpretation of the isotopic 
data is simple as there are no interferences from others elements. 

The 14N and 15N atoms in the nitrogen gas are paired to form nitrogen 
molecules 14N2,14NI5N or 15N2, but both methods Provide output signals 
which are proportional to the number of the three types of molecules present 
in the gas. 

Mass spectrometry is the preferred method since emission spectroscopy 
suffers lack of precision. 

4.1.2.1 Mass Spectrometry 
A mass spectrometer designed for gas analyses essentially comprises 5 units 
(Figure4.1): (1) an inlet system responsible for accepting the sample and 
converting it to a gas; (2) an ion source where the nitrogen molecules, 
bombarded with electrons, become charged and accelerated; (3) a mass 
analyser to separate the gaseous ions according to m/e. A magnetic analyser 
is normally used in nitrogen determinations in which the charged molecules 
are separated into different paths according to their momentum; (4) a 
collector placed at the end of the flight tube where the molecules are 
discharged, and the discharge currents are amplified; and (5) a recorder 
which registers the amplified discharged currents as peaks as the mass range 
is scanned. The heights of the peaks are proportional to the concentrations of 
the three atomic species in the gas mixture. By simply measuring the peak 
heights, the 15N % abundance can be determined. 

Although the principle is simple, the practice of mass spectrometry is 

complicated. The whole system must be maintained under high vacuum. 
Vacuum techniques are an integral part of the preparation of samples and 
are also involved in the operation of the spectrometer. The electric and 
electronic components must be highly stabilised. 

-112- 



Figure 4.1 Diagram of a mass spectrometer. the arrows indicate the direction in which 
the sample passes through the instrument. 

4.1.2.2 Sample preparation 
The method for the conversion of nitrogen compounds to nitrogen gas should 
be applicable to all kind of compounds, should be simple, fast and with 
minimal possibility of cross-contamination, with would alter the 15N 

abundance in the sample. 

Several procedures can be found in the literature for this step but most of 
them are based on the Kjeldahl or Dumas method. 

One of the most used methods is the Kjeldahl-Rittenbergl39. This method 
uses the Kjeldahl method to convert nitrogen to ammonia followed by 

oxidation of the ammonia to nitrogen gas by alkaline hypobromite. It involves 

the following steps: 
a) digestion of the sample with concentrated sulphuric acid in the presence of 
a catalyst; 
b) separation of the ammonia by steam distillation after addition of alkali; 
c) determination of the ammonia by back titration or colorimetrically; 
d) acidification; 
d) evaporation to a small volume; 

e) oxidation of the ammonia to nitrogen gas by using hypobromite; 

f) determination of the nitrogen content. 

Some interferences have been reported for the 15N / 14N ratio determination 

associated with the Kjeldahl digestion/ distillation steps: 
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a) dilution or contamination from outside sources such as absorption of 
ammonia or amides from the air or nitrogen impurities in the chemicals; 
b) cross-contamination from poorly cleaned laboratory equipments, specially 
the distillation apparatus; 
c) losses of nitrogen by incomplete conversion to ammonia of certain resistant 
nitrogen-containing compounds. 

It is important to reinforce the necessity to clean all the equipments with 
detergents and acids prior the use to avoid cross contamination. Distillation 
of 10-20 ml of ethanol between samples is also reported to be efficient to 
prevent this kind of contamination 140. 

Ammonia is oxidised in alkaline conditions in an evacuated container to 
nitrogen gas by means of sodium hypobromite solution (Rittenberg 

reaction)141, according to the reaction: 

2 NH3 +3 OBr- = N2 +3 H20 +3 Br- 

Usually this step is carried out in special Rittenberg vessels. 

Special care must to be taken to avoid air leak in the Rittenberg vessel, leak in 
the vacuum line or cross contamination from the vessels. In addition, 
hypobromite is a rather unstable compound and the reagent should be kept in 

a strong alkaline medium, stored in a refrigerator and used within a week 
after prepared139. 

The Dumas method, its advantages and disadvantages were previously 
described. 

As the final step, the amount of nitrogen gas produced or the 15N/14N ratio 
is determined by mass spectrometry or emission spectrometry. 

Although the principles of gas preparation are identical for both analytical 
techniques, the amount of sample required is different; mass spectrometry 
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requires 30 gg -3 mg of nitrogen whereas emission spectroscopy requires 
only 0.2 - 10 gg. 

Additional care must be taken to avoid the dilution of the 15N in the sample 
with atmospheric nitrogen (better done in vacuum) or dilution with nitrogen 
present in the chemical reagents used. 

An excellent review focusing the practical aspects of the two methods has 
been published141. 

Although 15N has been used as tracer, its routine use has been restricted. The 

reason is that the conventional methods are slow and require tedious 

extensive labour. Biological variability results in additional problems since 
using high precision instrumentation is not as important as the ability to run a 
large number of samples with adequate precision in order to make biological 

experiments more meaningful. 

As a consequence, automatic analysers have been developed. An automatic 

analyser for nitrogen isotope-ratio determinations using the Rittenberg 

technique has been reportedI42. The proposed equipment is computer 

controlled and uses a lithium hypobromide solution kept in a refrigerated 

vessel to oxidise ammonia to nitrogen gas prior to injection into the mass 

spectrometer. Air is removed by purging with Freon and the nitrogen 
liberated was allowed to flow through a liquid nitrogen trap for removal of 
Freon before the introduction into the mass spectrometer. 

Modern designs of nitrogen analysers, which are essentially a GC operated on 

the basis of the Dumas method, using helium as carrier offer some 

advantages. A continuous-flow isotopic ratio mass spectrometer (IRMS) 

which involves sample preparation integrated with a mass spectrometry is 

now available and it is known as Automated Nitrogen Carbon Analysis-Mass 

Specttrometry (ANCA-MS)143,144. 
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The main disadvantage of this system is that both the combustion and 
reduction columns need replacing regularly, which involves shutting down 
the system to replace the packing which is inconvenient and undesirable. 

One possibility of overcoming these problems is the use of flow injection 

analysis (FIA) coupled with a semi-permeable membrane as a means of 
producing gas samples for the determination of total nitrogen or for using 
isotope ratio mass spectrometry. 
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4.2 Determination of nitrogen contents in agricultural samples after 
Kjeldahl digestion by oxidation with hypobromite by DPGD-FIA system. 
Nitrogen gas can be produced by oxidation of ammonia in alkaline conditions 
by hypobromite according to the reaction: 

3BrO- + 2NH3 = N2 + Or + 3H20 

This reaction was first used as a basis for quantitative ammonia 
determination (volumetric) of inorganic and nitrogenous organic materials, 
after a Kjeldahl digestion, but it is reported to be slow so that a direct titration 
is not practical. Excess of reagent is added and back titrated either by 
iodometry or by means of naphthyl red which is decolorized by hypobromite 
in a directly proportional manner 145. As direct titration is not possible, other 
methods for quantitative determination of the evolved nitrogen were 
proposed, such as manometric measurement. 

For accurate results, the alkalinity has to be properly adjusted (from pH 7.5 to 
9.5), the hypobromite solution must be freshly prepared, the temperature 

should not rise above 18* C and exposure to sunlight should be avoided122. 
The sodium hypobromite solution should therefore be stored in amber bottles 

at low temperatures. According to the same source, errors arise from the 
instability of the reagents, the rates at which the residual nitrogen reacts and 

possibly to the presence of unsuspected catalyst. 

Solutions containing hypobromite of the alkali metals can be prepared by two 
different ways: (a) dissolving bromine in aqueous solution of the appropriate 
base or (b) adding an excess of bromide to a sample of hypochlorite at the pH 
range 9-14, according to: 

(a) Br2 + 20H - ---------- Br- + BrO- + H20 

(b) Br- + CIO - ----------- BrO- + Cl- 

The reaction (a) is rapid and must be carried out at or below O'C in order to 

minimise the disproportionation of hypobromite ions into bromide and 
bromate. This disproportionation is catalysed by traces of copper(II) ions146. 
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The reaction (b) is a second order reaction and proportional to the 

concentrations of bromide and hypochlorite. In general, bromide-free 
hypobromite solutions can be prepared by reacting equivalent amounts of 
bromide and hypochloride at pH 9-9.5 at room temperature. After 5 minutes, 
sodium hydroxide is added to bring the pH to 13 at which the formation of 
bromide and bromate is low. The reaction rate is also dependent on the pH 
and at pH lower than 10 the oxidation of bromide is very rapid. At pH values 
7-9, the formation of hypobromite is extremely rapid, but if hypochlorite is 
in excess other reactions can take place producing chlorate, bromate and 
chloride. 

The composition of these solutions as well as their oxidising capacity at 
different pH can be seen in the Figures 4.2 and 4.3 147. Figure 4.2 shows the 

composition of hypobromide solution at several pHs and at [Br-] equal to 10-3 

M. It can be seen that at low pHs (pH<4.0) the main components are bromine 

and tribromide ions and in at this region the oxidising capacity is due mainly 
to the presence of bromine. At the pH range between 5.5 and 8.5 the most 
important oxidising agent present is hypobromous acid and at pH > 8.5 

hypobromite is the main oxidising species present. In Figure 4.3 the 

composition of hypobromite and hypochlorite solutions at pH range 0- 14 

and halide [X-] concentration equal to 0.01 M is shown. 
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Figure 4.2 The composition of hypobromite solutions at pH 0-14 and [Br-] = O. o m 
(ref. 146). 
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Figure 4.3 The composition of hypobromite and of hypochlorite solutions at pH 0-14 and 
0.01 M (ref. 146). 

It can be seen that the hypochlorous acid has its maximum concentration at 
pH 4-5 as compared to pH 7-8 for the hypobromous acid. As expected, the 

range of predominance of hypobromite ions is located at higher pH values 
(pH > 10). Although hypochlorites possess higher standard potential (0.89 V) 

when compared to hypobromites (0.76 V), they tend to react rather slowly 
with reducing agents. Because of their instability, hypobromites should be 

invariably prepared in situ. 

4.2.1 Experimental 

Preliminary experiments 
The first experiment to investigate the applicability of the DPGD-FIA 

technique as a gas generation device for routine analysis in 15N mass 

spectrometry attempted to demonstrate the principle using ammonia gas 
instead nitrogen. Ammonia was chosen simply because of its ease of 
detection. The ammonia gas was generated on-line using sodium hydroxide 

solution as the alkaline donor stream, separated in a GD-separator unit to an 

acceptor gaseous stream, collected and then determined using an ammonia 

gas sensing electrode. The effects of increasing the length of membrane, using 
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stopped flow, heating and air-segmented flow, were investigated. Several 

problems were encountered with respect to the separation and collection of 
the ammonia gas. although NH4 can be quantitatively converted to NH3 gas 
above pH 10, the NH3 produced remains soluble in the aqueous phase. This 

solubility also means that NH3 is readily absorbed and lost onto the walls of 
the manifold tubing which would be a problem at low concentrations. This 

approach was therefore abandoned and it was decided to go directly to study 
the generation on-line of nitrogen gas. 

The flow injection systems used to carrier out the studies on the direct 

generation of N2 are shown in Figure 4.4. The two peristaltic pumps, Gilson 
Minipuls 2 and Minipuls 3 (whose calibration has been shown in Chapter 3) 

were used to give a suitable liquid flow rate for all three manifolds. The 

standards and sample solutions were injected using 6 port low pressure 
Teflon valve, Rheodyne model 5041, with a pneumatic actuator, Universal. 
The manifolds were made from 0.80mm Teflon tubing and different loop 

sizes were used. 

The systems were coupled to a thermal conductivity detector, Pye Unicam- 
Model 34. It was operated at 200 mA bridge current and 20 and 50 ml/min for 
both reference and sample helium flow. An integrator, Spectra-Physics- 
SP4290 and a chart recorder, Linseis- L6512, were used to register the 

response from the detector. 

Both sheet and a tubular membranes were used to separate the gas generated 

on-line. The characteristics of each membrane are shown in Table 4.2. When 

the sheet membrane was used it was pressed between two polypropylene 
plates, diameter 100mm, with two matching grooves machined out, 72mm. 
long, 2mm wide and 0-5mm deep. The liquid stream was passed into one side 
of the groove flowing on to waste, and the gas generated in the reaction 
diffused freely through the microporous PTFE- membrane and was purged 

with helium gas directly to the sample flow line of the detector. The tubular 

membrane was inserted into a glass tube, bore 2.5 cm, with connections that 

allowed the liquid stream to run through the core of the tubing and the gas 

generated to pass into the carrier gas flowing around the membrane. Three 

way connectors, OMNIFIT model 1010, were used for the connections. 
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Figure 4.4 The three manifold used to produce hypobromite on-line before generating 
nitrogen gas. a)system used for hypobromite production by reacting bromine 
with lithium hydroxide. b)system used for hypobromite production on-line 
after producing bromine also on-line. c)system used for hypobromite 
production by reacting hypochlorite with bromide 
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Table 4.2 Parameters of the sheet and tubular membrane used on the GD- 
separator unit in the system for direct generation of N2 gas. 

parameters 
PTFE-microporous membrane 

sheet tubular 

pore size gm 1 10 
total porosity % 50 50 
thickness mm 0.275 0.450 

contact area cm2l 4.37 
1 
14.7 

The acceptor He gas (sample flow to the detector) flow was controlled using 
pressure regulators, OMNIFIT, and capillary tubing flow restrictors.. A glass 
column, 10cm long and 7 mm i. d., filled with a molecular sieve was used to 
dry the gas before it reached the detector. 

A ammonia electrode, Russell model 95-5129, was used for potentiometric 
ammonia determinations. The electrode was applied and used according to 
the manufacturer's instructions, and was connected to a digital pH/mV 
meter, Philips model PW 9420. 

A Kjeldahl digester, Tecator (model 1009), with a built-in temperature 
controller and employing straight digestion tubes (model 1000-0158), was 
used to digest the samples. A distillation unit, Tecator model 1002 including 

an alkali tank, was used for the ammonia determinations. 

On-line Preparation of the hy-Pobromite solutions 
In order to avoid the problems caused by the instability of the hypobromite 

solutions, this reagent was prepared directly "on line" just before its use. 
Both methods of preparation, as described above were used and the 

performance of each was examined. 
a- Dissolution of bromine in alkali metal hydroxide solution (system Br2 + 

LiOH) 

a. 1 - Initially the hypobromite solution was produced by direct mixing of 
bromine and lithium hydroxide solutions according to: 

-122- 



Br2 + UOH = BrO -+ Br -+ H20 

Solutions containing 1.3 x 10-1M of bromine and 2.4 x 10-1M of lithium 
hydroxide were prepared and used in all experiments. A solution containing 
an excess of hypobromite 1000 times higher than that stoichiometrically 
necessary to convert the ammonium ions into nitrogen gas, was used. 
Parameters of the system such as He carrier flow rate, loop size, liquid flow 

rates and concentration of the reagent solutions were studied. 

a. 2 - Because of the difficulty of obtaining bromine solutions with exactly 
known and stable concentrations and in order to avoid direct contact with 
bromine gas, a second procedure was tried. In this case, bromine was 
produced direct on line by adding hydrochloric acid to a solution containing 
bromide and bromate ions in a proportion of 
1: 5 respectively, prior to the addition of alkali: 

5Br -+ BrOY +H+ -= 3Br2 + 3H20 
Br2 + 20H- = BrO - + Br -+ H20 

The system was very similar to that used initially with the difference of a new 
line introduced to produce the bromine before the reaction with hydroxide. A 
Solution containing 0.2M of KBr and 3.6 x 10-2M of KBr03 to produce 

approximately 0.1 M of bromine (equivalent to OAM BrO-) was prepared and 
run on the system. A study of the minimum concentration of hydrochloric 

acid necessary to produce the same amount of bromine on-line was carried 
out. The amount of bromine produced on-line was determined by iodometric 

titration145. The possibility of replacing the lithium hydroxide with sodium 
hydroxide was also studied for this system. 

Although lithium hydroxide is preferred in the preparation of hypobromite in 

the conventional Rittenberg oxidation procedure, because of its greater 

stability, sodium hydroxide (which is less expensive and ease to prepare) is 

perfectly satisfactory for on-line preparation of hypobromite. No significant 
differences in performance were found between reagents prepared by these 
different routes. 
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The manifold was optimised with respect to physical layout and and in 

particular the use of reaction coils was investigated. It was found that they 
were unnecessary in the hypobromite line and positively deleterious to 
performance when used after stream mixing had occurred. This experiment 
showed an unexpected aspect of membrane operations. When high 

concentrations of the standards were used, or when reaction coils were 
present the N2 gas tended to form bubbles in the liquid stream. These bubbles 

were not efficiently removed by the membrane probably because they break 
through the liquid boundary layer on the inner surface of the membrane. Best 

results were obtained when N2 was generated at a slower rate and allowed to 
diffuse through the membrane is it was produced. For this reason high excess 
concentration of reagents were also unhelpful because I tended to result in a 
rapid generation of N2 and the formation of bubbles. 

b- Reaction between hypochlorite and bromide (system CIO -+ Br -) 
Equivalent amounts of bromide ions were added to a hypochlorite solution at 
pH 9-9.5, at room temperature, to produce equal amount of hypobromite: 

C10 -+ Br -= BrO -+ Cl - 

The concentrations of the hypochlorite and bromide solutions were those 

necessary to produce 0.1 molar BrO-. A study of the best pH and of the best 

[CIO-] to [Br-] ratio was carried out to optimise the preparation of 
hypobromite using this method. 

The results obtained for the three different reactions to produce hypobomite 

were compared and one was chosen to be used in the manifold for 

generating nitrogen. Once the system was chosen, the effect of external 
factors affecting the gas transfer efficiency such as temperature and length of 

the tubular membrane on the analytical signal were investigated. 

The efficiency of the oxidation to produce N2 gas was initially studied using 

the system Br2 + UOH. The investigation was carried out using two types of 

PTFE membranes: sheet and tubular. The efficiency was investigated by 

determination of the amount of ammonia generated in the reagent stream 
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after 0.2 ml of 50ppm standard solution were injected. This method shows 
how much of the NH4+ has been converted to N2 and how much remains in 
solution as NH3 (g) enabling the efficiency of the reactions to be calculated. 
The ammonia containing solution was collected in an acidic solution and then 
made alkali again to enable its determination by an ammonia electrode. 
Excess of reagent on-line, Br2 and BrO-, was found to interfere in the 
potentiometric measure and a reducing agent, FeS04, was then added to the 
collector flask before the interest sample be collected.. The measure was 
compared with a calibration graph previously prepared in a range of 0.25-2.00 

ppmN. 

Agricultural sample preparation 

Samples were prepared by Kjeldahl digestion and the total nitrogen 
determined by two methods: (a) distillation of NH3 followed by titration and 
(b) using the GD interface coupled to a thermal conductivity detector (TCD). 
The results for total nitrogen content in different aliquots of same herbage 

samples were compared. 

The Kjeldahl digestion was carried out using 0.5g dried sample. The aliquots 
were weighed on a weighing boat and quantitatively transferred to digestion 

tubes. Into each digestion tube was added 1 "Kjeltab" catalyst tablet and 4 ml 
of concentrated H2SO4. The digestion tubes were placed in the pre-heated 
digester where the temperature was kept at 400'C for 1 hour. After this time, 
the digestion tubes were taken out of the digester and left to cool. Ten 

aliquots and 5 blank solutions were prepared. 
Five of the 10 aliquots digested were distilled for 10 min with NaOH and the 
distillate produced received in 25 ml of a boric acid 2% solution which was 
then back titrated with 0.1 M HCL 

Five blank solutions were also prepared under the same conditions as the 

sample aliquots. The total nitrogen was calculated using the formula: 

%N 14.01 x ml of titrant of sample - ml of titrant of blanks x mol of std acid 
g of sample x 10 
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Before injection into the DPGD-FIA system the pH of the digested solutions 
had to be adjusted to 5.0 and degassed for 2 min with helium. The contents 
of nitrogen determined in the sample aliquots for both analytical methods 
were then compared applying the t-test. 

Reagents 
All reagents run on-line were degassed for 10 minutes with helium and kept 
in sealed bottles. 
Reagents for hyl2obromite generation on-line investigations 

- bromine, 1.3 x 10-1M solution 

-Lithium hydroxide (AR), 2.4 x 10-1M solution: 

- bromate/bromide solution: 6g of potassium bromate (AR) add to 20.5g of 
sodium bromide in 1 litre of water. 

-sodium hypochlorite (FSA), OAM solution: 19.5ml hypochlorite commercial 
solution prepared with 1.9g B407(borax) salt in 500 ml. 

-sodium hydroxide pellets (FSA), different concentration solutions depending 

on the system. 

-sodium iodide (FSA) salt. 

-Sodium thiosulphate, 1N solution 

-drier agent: - molecular sieves G&W Scientific) or magnesium perchlorate 
dried(80% BDH) 

-ammonium sulphate (AR) solutions: 1000 ppm in nitrogen stock solution 
was prepared by weighing 2.36g of the salt and dissolving in 500ml water. 
The preparation of standards was done by appropriate dilution of the stock 
solution. 

Reagent for potentiometric determination of ammonia 

-Sodium hydroxide, 10M solution. 

-Ammonium chloride, O. 1M standard solution 
-buffers, pH 4.00 and pH 7.00 

-Iron(II) sulphate, 4.3 x 10-2M., prepared by dissolving 1.2g of the salt in 
500ml water. 
-Internal electrode filling solution- Russel 952021. 

Rea digestion and ammonia determination 

-sulphuric acid, (AR- grade, N-free), 
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-Kjeltabs, (FSA), each tablet contains ig (Na)2SO4 and 0.05g Se. 

-sodium hydroxide, 40% solution. 
-boric acid, 2% solution - prepared with bromocresol green indicator as 
indicated on the Tecator leaflet. 

-hydrochloric acid, OAM solution. 

Herbage sample 
The sample was provided by Macaulay Land Use Research Institute. It was 
oven dried and milled to 1mm. The calculation involved in the preparation of 
the sample solutions are in Table 4.3. 

Table 4.3 Preparation of the aliquots to be analysed by DPGD-FIA 

system. 

aliquot weight /g final weight of 
digest /g 

dilution factor 

after pH adjust 
1 0.5003 86.0086 1.0000 
2 0.5191 71.6992 1.7886 
3 0.5014 64.0882 1.4373 
4 0.5042 61.6275 1.4457 

4.2.2 Results and discussion 
The amounts of ammonia determined in the carrier stream waste for different 

reactions on-line are shown in Table 4.4. When the strong oxidising agent, 
hypobromite. was present, nitrogen gas was generated instead of ammonia 

and conversion efficiency of 85% was achieved. 

Experiments using the sheet membrane and a 48 cm long tubular membrane 

gave results with poor sensitivity. These results could be explained by the 

small effective contact area of the membranes and therefore a separation unit 

with a1 metre long piece of tubular membrane was used in all subsequent 

experiments. 
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Table 4.4 Efficiency in generating ammonia for different reactions on-line. 

chemicals 
on-line 

efficiency to 

generate ammonia % 

only water 99.9* 

water + UOH 100 
UOH + Br2 15 

* NI-13 (g) generated at time of analysis. 

The first reagent system studied with the longer membrane was Br2+LiOH. 
The water carrier and the reagent flow rates were studied separately and the 

results are shown in Figures 4.5 and 4.6. After this, the effect of the total liquid 
flow rate was investigated, keeping the ratio of the independent reagent flow 

rates constant (H20: Br2: LiOH; 0.9: 1.0: 1.0)The results are shown in Figure 4.7. 
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Figure 4.5 Effect of the aqueous carrier flow rate on the signal of 100 ltg ml-1 of N. Loop 

size, 0.2 ml; Chemicals flow rate, 2.. 12 ml min-1. 
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Figure 4.7 Effect of the total liquid flow rate on the signal of 100 Ug ml-1. Loop size 0.2 
ml; reagents flow rate H20: Br2: LiOH; 0.9: 1.0: J. O. ' 

The results shown that non of the flow rates was particularly critical 

provided that the correct stochiometry was maintained. Them was evident 
that reducing the flow rate was increasing the peak height ( perhaps due to 

increased residence time), however, a total flow rate of ca 3 ml min-1 gave 
satisfactory sensitivity combined with good peak shapes. 
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Changing the He flow rate passing around the membrane, whilst keeping the 
total flow rate passing through the TCD constant at 50 ml min-1, produced 
some variation in the signal as shown in Figure 4.8. A flow rate of 50 ml 
min-I for both reference and sample gas was recommended for a bridge 

current of 200 mA. however, it was found later that this could be reduced to 
20 ml min-1 without damage to the filaments. 

The results show that increasing the proportion of He flowing around the 
membrane increased the signal which is to be expected because of a low 

concentration of N2 in the gas around the membrane will encourage diffusion 

of N2 into the carrier stream. However, at higher flow rate, the peak shape 
become less stable and occasionally He bubbles appeared in the liquid stream. 
For these reasons a flow rate of 10 ml min-1 was chosen. 
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Figure 4.8 Effect of the He carrier (acceptor stream) gaseous flow rate (3 replicated) on 
the signal of 100 ýtg ml-1 of N. Reference and sample flow to the TCD, 50 ml 
min-1; loop size, 0.5 ml; total liquid flow rate, 3.2 ml min-1. 

The optimum injection loop size was determined by injecting the sample 

continuously into the system. The volume necessary to reach the plateau 

region, indicating that the dispersion was unity, was calculated to be 0.5 ml. 
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The effect of the size of the drier column was found to be negligible. Columns 
of 5- 20 cm long, 7 mm id. were investigated and 10 cm long column was 
chosen for subsequent use. 

Having established operating parameters for the LiOH/Br2 chemistry, the 
optimum conditions for the alternative chemistries were investigated. 

The effect of the concentration of the hydrochloric acid solution was 
investigated for the reagent system Br03-/Br-. The experiment was run 
using constant concentrations of Br03/Br- solution and lithium hydroxide. 
The amount of bromine generated was determined by titration. The results 
are shown in Table 4.5. The minimum concentration of the hydrochloric acid 
required to generate the expected amount of bromine (O. IM). was 2.5 M. 

The next step was to find the minimum concentration of UOH required to 

produce a final pH of 12 which is appropriated to the optimum generation of 
hypobromite. This was found to be 2.5 M. 

Table 4.5 Influence of the hydrochloric acid concentration on the amount 
of bromine produced in the system Br03/Br-. Concentration of 
the hydroxide was kept constant, 2.5M. 

concentration 
of HCI, M 

bromine 

produced, M 

5.0 0.097 

2.5 0.092 

1.25 0.085 

0.5 0.048 
0.25 0.037 

For the CIO-/Br- reagent system to produce Br2, the hypochlorite solution 

must be adjusted to a pH between 11.94 - 9.14. The effect of the pH of the 

individual reagents was investigated by studying the generation of N2 gas 
directly. Titration of Br2 was not appropriated in this case because of 
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potential errors from excess CIO-. The optimum pH range of the final solution 
was between 9.9 - 10.2. Subsequently, for simplicity, hypochlorite solution 
was prepared in a borax buffer at pH 11. The stoichiometric ratio for [CIO-] 
[Br-] should be unity and this is confirmed by the results shown in Table 4.7 

which shows the effect of varying [Br-] whilst maintaing [CIO-] constant. 
These findings are in accordance with the diagram shown in Figure 4.3. 

Table 4.6 Influence of the pH on the generation of nitrogen sample. The 
bromide solution pH is constant and equal to 4.47. 

pH of 0.1 M 
C10- 

pH of 0.1 M 
BrO- 

pH of final 
solution 

peak height 
/ cm 

peak area 
/counts 

12.9 12.56 12.4 1.60 53830 
11.9 11.42 10.9 2.15 69329 
11.0 10.40 10.1 2.17 70813 
9.8 10.00 9.8 2.15 70169 
9.1 9.96 9.8 2.13 71263 
7.9 9.38 9.3 2.20 65919 
6.9 8.48 8.5 1.65 51732 

Table 4.7 Influence of the concentration of the bromide solution on the 

peak height and peak area. The concentration of the hypochlorite 

solution was kept constant, 10-1M. 

[Br-] M peak height* 
/ cm 

peak area* 
/counts 

1.75 48528 

1x 10-4 1.95 53150 

1x 10-3 2.00 60228 

1x 10-2 2.05 65881 

1x 10-1 2.15 63599 

1 1.83 59441 
* figures are mean of two determinations. 

The optimised operating conditions for all three chemistries are shown in 

Table 4.8. 
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Table 4.8 Summary of the optimised variables for the three DPGD-FIA 
manifolds used for generating of N2 gas on-line. Manifold using 
loop size 0.5 ml; drier column, 10 cm; He carrier flow rate, 10 ml 
min-1. 

reagent concentration 
flow rate, 
ml min-1 

(1) LiOH/Br2 

H20 carrier - 0.9 
Br2 0.15 1.05 
UOH 0.24 1.05 
(11) Br03/Br- 

H20 carrier - 1.5 
Br03/Br- 0.036/0.2 0.5 
HCI 1 2.5 0.5 
NaHO 1 2.5 0.5 
(III) CIO-/Br- 

H20 carrier - 1.0 
CIO- 0.1 1.0 

I Br- 10.1 
12.0 

Calibration graphs were obtained using the three different methods of 
producing hypobromite and these are shown in Figure 4.9. The calibration 

graph for the CIO-/H+ chemistry showed lower sensitivity and a narrower 
linear range than the other two. Although the Br03/Br-chemistry involves 

using a more complex manifold, it offers the best sensitivity and retains the 

advantage of generating the bromine on-line. This was therefore chosen for 

nitrogen gas generation and a more detailed investigation of the operating 

parameters were carried out. 
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Figure 4.9 Comparison of the three methods of producing hypobromite on-line. All 
chemicals were prepared to produce about 0.1 M BrO-. All other parameters 
in Table 4.8. 

The total liquid flow and reagent flow was investigated as before and the 

previous optimum flow rates were confirmed (see Table 4.8). 

The relationship between the reagent concentrations and the resulting peak- 
areas was investigated and the results are shown in Figure 4.12. All reagents 
were diluted or concentrated twice thereby keeping the concentration ratio 
constant, in the proportions used previously. It can be seen from Figure 4.12 

that there was no increase in sensitivity when the higher concentrations were 
used and therefore the previous values were retained 
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M. 

The Figure 4.13 shows two calibration graphs prepared with separator units 
containing the same type of tubular membrane with different lengths. In the 

same way, the Figure 4.14 presents calibration graphs obtained when the 

separator unit is kept in a water bath under three different temperatures. The 
length of the membrane and the temperature are factors which are directly 

related to the mass transfer process. Both variables are present in the 
diffusion equation and an increase in them will improve the gas transport 

efficiency through the membrane. The increase of temperature indeed 
improved the sensitivity but temperatures higher than 50 'C are not 
recommended due to necessitating more frequent replacement of the filling 

of dryer column. 
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The herbage sample was analysed and the characteristic peaks obtained for 
the calibration standards and the aliquots injected are shown in Figure 4.15. 
The correspondent values for each peak measured in peak-height and peak- 
area are tabulated in Table 4.9. 

Table 4.9 Values in peak-height and peak-area for peaks generated when 
calibration standards and aliquots solutions were injected into the 
DPGD-FIA system. 

conc. standard 
/Ppm 

peak height 
/ cm 

peak-area 
counts 

10 0.80 7239 
20 1.45 20816 
40 3.10 51450 
60 4.40 83102 
80 6.10 112067 
100 7.30 135287 

detection limit 4.58 gg g-I 9.54 ýtg g-1 

aliquot no 
sample sol. 
conc. ppmN 

1 4.82 84278 64-82 

2 3.50 64914 46.79 

3 4.90 85037 65.84 

4 5.15 87656 69.24 
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The comparison between the content of nitrogen in the herbage sample 
found by the former Kjeldahl method (distillation of the ammonia and 
titration) and the proposed DPGD-FIA method is presented in Table 4.10. 
These analytical methods were compared with each other using the 
significance test (T-test) as described by Miller & Miller117. The results 
obtained using DPGD-FIA are little higher compared with the value from 
the Kjeldahl method but this amount is not significant. 

Table 4.10 Results for the amount of nitrogen found in the herbage sample 
analysed by two different analytical methods. 

nitrogen amount /% 
analysis Kjeldahl DPGD- FIA 

1 1.07 1.11 
2 1.06 1.15 
3 1.06 1.20 
4 1.06 1.22 
5 1.05 - 

X+SD 1.06 ± 0.01 1.17 ± 0.05 
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4.3 Determination of 1,5N/14N by isotope ratio mass spectrometry using a 
DPGD-FIA interface. 

4.3.1 Experimental 

The DPGD-FIA system developed as a nitrogen gas generator was coupled to 
a mass spectrometer (MS) for 15N / 14N isotope ratio determination. The 

connection of the FIA system to the MS was made by inserting the sample 
inlet capillary of the MS into the TCD sample flow outlet. A split ratio ( flow 
from TCD: flow to MS) of approximately 200: 1 was used. The procedure for 
the measurements with the mass spectrometer was the same for all 
experiments: the mass spectrometer was tuned to monitor masses 28,29 and 
30; the peristaltic pumps from the FIA system were switched on; the sample 
inlet capillary for the MS was connected to the TCD sample flow outlet and 
the MS inlet valve opened to ingress of the effluent gas. Reference N2 gas of 
known isotopic abundance was injected twice before and after a set of 
standards to monitor the background. Experiments were carried out injecting 

solutions containing different concentrations and different isotopic ratios of 
N2 on the system in a random order. 

A schematic of the equipment is shown in Figure 4.16. The MS used was a 
research instrument, based on the VG Optima, isotope ratio mass 
spectrometer, located at the VG Isotech factory. 

The DPGD-FIA system produced a constant background level of N2 due to 

outgassing of the reagent streams across the membrane. This was not a 

significant problem for TCD detectors, but with MS detection, the effect was 
to raise the background ion current by approximately two orders of 

magnitude compared with that obtained with pure He. Procedures were, 
therefore, adopted (described later) to reduce the background to acceptable 
levels. 
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The entire flow injection system was tested for leaks by re-tuning the MS and 
observing the background signal whilst blowing a stream of argon gas over 
the equipment. It was found that almost all of the connections leaked argon 
into the system. The worst leaks were repaired or reduced and the 
background signals due to nitrogen measured again. 

The efficiency of the membrane transport was calculated by injecting a known 
amount of nitrogen into the liquid donor stream. A sealed T-piece was 
connected on-line just before the GD-separator unit so that different amounts 
of nitrogen gas could be injected using a gas syringe. 

The concentration of total nitrogen in the herbage sample, as analysed in the 
previous section, was also determined with the MS detector. The results 
found for both TCD and MS detectors were compared. The apparatus was 
then applied to determination of the 15N/14N isotope ratios in reference 
samples. The precision of measurement was investigated. 

Reagents 
Isotopic calibration standards - Ammonium sulphate salts, 15N abundance 
previously determined (0 . 003672) and 0.2 Atom % depleted were mixed to 
make the isotopic calibration standards. The Table 4.11 present the 
calculations for standard solutions containing different range of isotopic 

ratio. 

Concentration calibration standards -A further series of standards, range 10 - 
100 ppmN, were prepared with 1000ppmN stock solution prepared with 
ammonium sulphate salt 0.003672 15N abundance. 

Isotopic reference material solutions - Four samples with known isotopic ratio 
were provided by VG-Isotech. They were digested using the Kjeldahl 
digestion and the digested solutions were diluted as necessary and adjusted 
to pH 5 prior to injection into the DPGD-FIA system. The Table 4.12 contains 
the specification for each material and Table 4.13 presents the calculations 
involved in of the relevant isotopic ratios. 
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Table 4.11 Isotopic ratio standards preparation and calculations for ratio 
and delta. 

standard 
code 

volume 
0.3672 
At% 

std / n-d 
344ppm 

std / ml 
volume 

of 
depleted 
688 ppm 

final 
volume 

mi 

conc. 
ppm N 

ratio 
15N/14N 

abundanc 
Atom % 

delta 
value 

11 10 - 100 34.4 0.0036855 0.0036720 2.466 

12 7.5 2.5 100 43.0 0.0030122 0.0030030 -182.69 
13 5 5 100 51.6 0.0025638 0.0025572 -304.34 
14 2.5 7.5 100 60.2 0.0022438 0.0022388 -391.17 
15 - 10 100 68.8 0.0020040 0.0020000 -454.91 

ml std Il 
34.4ppN 

ml std 12 
43ppmN 

16 6 2 8 36.55 0.0036585 0.0036452 -7.31 
17 4 4 8 38.70 0.0036106 0.0035976 -20.31 
18 2 6 8 40.85 0.0035018 0.0034895 -49.85 

std. At% 
0.3672 

344 ppm 

std 
depleted 
11 Ppm 

_ 

110 10 - 100 34.40 0.0036855 0.0036720 2.466 

ill 9 1 100 31.07 0.0036795 0.0036660 0.843 

112 8 2 100 27.74 0.0036721 0.0036587 -1.167 
113 7 3 100 24.41 0.0036627 0.0036493 -3.728 
114 6 4 100 21.08 0.0036503 0.0036370 -7.097 
115 5 5 100 17.75 0.0036333 0.0036201 -11.730 
116 4 6 100 14.42 0.0036084 0.0035954 -18.503 
117 3 7 100 11.09 0.0035685 0.0035558 -29.343 
118 2 8 100 7.76 0.0034945 0.0034823 -49.483 

118.5 1.5 8.5 100 6.09 0.0034271 0.0034157 -67-55 

119 1 9 100 4.43 0.0033092 0.0032983 -98.794 

120 - 10 100 1.10 0.0020040 0.0020000 
. -454.91 
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Table 4.12 Reference materials supplied by VG-Isotech to certify the 
DPGD-FIA-MS method for 15N/14N isotopic ratio 
determinations. 

Compound Assay (Carlo Erba) 

Delta Ratio At% 

nicotine -4.11 0.00366136 0.3648% 

pyrazine -1.09 0.00367244 0.3659% 

quinoxaline -3.01 0.00366539 0.3652% 

tripropylarne 6.57 0.00370064 0.3687% 
(NH4)2SO4 

-0-27 0.00367600 0.366 

Table 4.13 Preparation of the reference material solutions for 15N/14N 

isotopic ratio determination by DPGD-FIA-MS. 

reference 
material 

Mass 
weight 

sample 
size 

final 
volume 

/ ml 

dilution 
factor 

final conc. 
/ppm N 

15N/14N 

ratio 
expected 

pyrazine 1 80.09 0.1215 g 96.4556 9.92 44.40 0.00367244 

pyrazine 2 80.09 0.1752 g 95.2445 7.07 91.00 0.00367244 

quinoxal3 130 0.1470 g 97.2009 7.29 44-66 0.00366539 

quinoxal4 130 0.1725 g 97.0656 6.8646 55.76 0.00366539 

nicotine 5 162 0.2 ml 95.6350 6.4602 55.95 0.00366136 

nicotine 6 162 0.2 ml 96-9013 6.3894 55-83 0.00366136 

t-pplmin7 143 0.2 ml 97.8400 7.6383 26.91 0.00370064 

LEplmin8 143 0.2 ml 95.2490 8.1543 24.91 0.00370064 
_ 
NH4SO2 132 13.3287 500 20 71.38 0.00367600 
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4.3.3 Results and discussion 
The described peaks were considerably wider than those obtained when the 

standard GC interface ("Isochrom " system )was connected, but they were 
nevertheless successfully integrated by the data system. The results, 
tabulated in Table 4.14 show good precision and compare favourably with 
those that might be obtained from a combustion analyser. The first results 

obtained using the system described are shown in Figure 4.17. The three lines 

shown on each trace correspond to mass channels: 28,29 and 30. 
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Figure 4.17 Characteristic peaks for three injections of 60ppmN. The first and last two 
peaks are reference gas injections ...... 3ON2 

29N2 
28N2 

Table 4.14 Results found for the three injections shown in Figure 4.17. 

peak number major area ratio 
7.52 x 10-7 3.59 x 10-3 

2 7.53 x 10-7 3.59 x 10-3 

3 6.98 x 10-7 3.59 x 10-3 

average 7.34 x 10-7 3.59 x 10-3 

RSD 4.47% 0.01% 
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To increase the size of the peaks from the mass spectrometer, the total gas 
flow through the sample and reference streams of the TCD was reduced to 20 
ml min-1 from 50 mlmin-1 However, It was noticed that the background 
increased substantially and was not stable, presumably because the effect 
was greater for reduced He flow. All the connections on the manifold 
therefore were tested again for leakage and some connections improved. The 
injection valve was cleaned and serviced. Additionally, the drier column was 
taken out of the system as it was suspected that this column was either 
introducing air or retaining some of the original sample and causing a 
memory effect. 

In an attempt to further reduce the amount of observed background, the 
direction of the flow of the He through the membrane was reversed. 
However, the resulting peaks were observed to be much wider with 
shoulders on their tails. The flow of He over the membrane was therefore 

returned to its original direction as this modification did not appear to offer 
any benefits to the analysis. 

To verify that the modifications had made some improvement, replicate 
injections of the same standards were made, while continuously degassing 

the sample solution with He, with the drier column removed from the 

system. Characteristic peaks obtained for 9 injections for the same standard 

are presented in Figure 4.18 and the corresponding data tabulated in Table 

4.15. 
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Figure 4.18 Characteristic peaks for 9 injections of standard 12. ( .... 3ON 
2-2 9N7- 2 8)ý 

Table 4.16 Results found for 9 injections of standard 12. Isotopic ratio 
expected, 0.003012; delta expected, -182-69. 

injection n' 15N/14N ratio delta 

1 0.003000 -160.6 
2 0.003001 -160.2 
3 0.003521 -147.0 
4 0.002983 -165.3 
5 0.003009 -158.1 
6 0.002967 -169.6 
7 0.002946 -175.4 
8 0.002945 -175.5 
9 0.002942 -176.4 

average 0.003035 -165.3 
RSD 6.06% 5.98% 
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Although the background remains high, the set of results are quite good. The 

results show very good precision, although the ratio measured is not the one 
expected. The results for 9 replicates of the same standard gave an ratio 
average of 3.0348 x 10-3 and a relative standard deviation of 6.07% This 
figure is comparable with the precision obtained by other methods used for 
isotopic ratio determinations. Although the results have good precision, they 
differ in the ratio and delta value expected, 0.0030122 and -182.69 
respectively. the reason for this are discussed later. The removal of the drier 

column resulted in a much better peak shape, but it was not omitted in 

subsequent work because the water trap on the mass spectrometer showed 
signs of blocking after a few hours. 

The drier column was placed on-line aorain, but filled with magnesium 0 
perchlorate instead of molecular sieve. Isotopic ratio calibration standards, 
continuously degassed with He, were injected into the manifold. The peaks 
generated are shown in Figure 4.19 and the data tabulated in Table 4.16. 
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Figure 4.19 Characteristic peaks for isotopic ratio standards. Standards preparation 

shown in table 4.11. ( - 30pý-29tý-28ký 
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Table 4.16 Results found for the isotopic 15N/14Nratio standards injected 

on the system: 

15N/14N ratio 
standard code 

measured actual 
18 3.3808 x 10-3 3.5018 x 10-3 

17 3.2327 x 10-3 3.6106 x 10-3 

16 3.4550 x 10-3 3.6585 x 10-3 

3.5887 x-10-3 3.6855 x 10-3 

12 3.0737 x 10-3 3.0199 x 10-3 

16 3.4631 x 10-3 3.6585 x 10-3 

18 3.3670 x 10-3 3.5018 x 10-3 

12 3.0671 x 10-3 3.0122 x 10-3 

11 1 
3.5889 x 10-3 3.6855 x 10-3 

Once again a bias is evident in the experimented data, the origins of which is 
discussed later. 

The herbage sample previously prepared by Kjeldahl digestion, was analysed 
for total nitrogen and isotopic ratio using previously prepared concentration 

standards. The characteristic peaks are shown in Figure 4.20 and the data 

tabulated in Table 4.17. 
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Figure 4.20 Characteristic peaks obtained from injecting 0.5 ml of different concentration 
standards (with the same isotopic ratio) and the herbage sample. . 30 N2 

29N2 
28N2 

The results for the isotopic ratio show that continuous degassing of the 

sample solution brings a dramatic improvement in precision from ca 6% - 
0.03%. The improvement is evident from a visual comparison of the peak 
shapes in Figure 4.19 (sample not degassed) and Figure 4.20 (sample 

continuously degassed). These results emphasis the importance of avoiding 
external contamination with gaseous N2 from the atmosphere. additionally 
the data do not show a trend in the measured ratio which might indicate 

some discrimination from concentration effects. the resultant calibration 

graph, gives a correlation coefficient of 0.989. 
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Table 4.17 Results for different concentration standards (with the same 
isotopic ratio). 

standard injected 

ppm N 

amount injected 

ýLmol N2 

major area 
/counts 

measured ratio 
15N / 14N 

10 0.1786 3.40 x 10-7 3.5836 x 10-3 

60 1.0714 1.56 x 10-6 3.5845 x 10-3 

80 1.4286 1.96 x 10-6 3.5832 x 10-3 

20 0.3571 6.56 x 10-7 3.5851 x 10-3 

40 0.7143 1,04 x 10-6 3.5855 x 10-3 

100 1.7857 2.20 x 10-6 3.5824 x 10-3 

60 1.0714 1.48 x 10-6 3.5851 x 10-3 

100 1.7857 2.21 x 10-6 3.5824x 10-3 

20 0.3571 5.68 x 10-7 3.5857 x 10-3 

80 1.4286 1.89 x 10-6 3.584lx 10-3 

10 0.1786 2.73 x 10-7 3.5849 x 10-3 

40 0.7143 9.99 x 10-7 3.5852 x 10-3 

average - 3.5843 x 10-3 

RSD 0.032% 

Sample 1.55 x 10-6 3.5845 x1 

The sample solutions analysed during this experiment gave a value of 
65.1pprn for total N concentration and an isotope ratio of 0.003585. The blank 

produced a peak, but it was too small to be integrated by the data system 
(see Figure 4.20). The content of nitrogen in the sample was calculated to be 

1.12% N and can be considered to be the same value as obtained when using 

the TCD as a detector (1.17% N). 

The efficiency of the membrane was estimated after calibrating the detector(s) 

by injecting nitrogen gas into the helium flow directly after the GD-separator 

unit. All other parameters were kept the same. The amount in gI injected was 

converted in gmol of N2 and the results are shown in Table 4.18 and the 

signal from this amount of pure N2 injected was then compared with those 

obtained from the injection of concentration standards. The data tabulated in 

Table 4.19 and plotted in Figure 4.21 shows a comparison between the 
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calibration graph obtained for N2 gas injected directly and N2 gas was 
generated from aqueous standards. 

Table 4.18 Results for the amount of N2 gas injected after the membrane 
unit to calibrate the detector. 

amount injected, 

gl N2 
amount injected, 

gmol N2 
major area 
/ counts 

measured ratio 
15N/14N 

20 0.8928 1.54 x 10-6 3.5658 x 10-3 
5 0.2235 4.35 x 10-7 3.5692 x 10-3 
15 0.6696 1.19 x 10-6 3.5660 x 10-3 
25 1.1161 1.93 x 10-6 3.5630 x 10-3 
10 0.4464 7.65 x 10-7 3.5679x 10-3 

average - 3.5663 x 10-3 

RSD 
1 

0.066% 

Table 4.19 Data for estimating the mass transfer through the membrane for 
different amount of N2 generated from aqueous standards. 

std injected 

/ppm N 
amount injected 

/ýtmol N2 
major area amount found 

/ýLmol N2 

10 0.17731 3.40 x10-7 0.19922 
10 0.17731 2.73 x 10-7 0.16118 
20 0.35462 6.56 x 10-7 0.38824 
20 0.35462 5.68 x 10-7 0.33570 
40 0.70925 1.04 x 10-6 0.61606 
40 0.70925 9.99 x 10-7 0.59082 
60 1.06390 1.56 x 10-6 0.92158 
_ 60 1.06390 1.48 x 10-6 0.87635 
80 1.41850 1.96 x 10-6 0.11618 
80 1.41850 1.89 x 10-6 0.11910 

100 1.77310 
--- 

2.20 x 10-6 1.29970 
100 1.77310 

7 
2.21 x 10-6 1.30450 
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Figure 4.21 Calibration graphs ofpure N2 injected directly and N2 generated from 
aqueous standards. injected as a gas straight to the detector. 

The stability of isotopic ratio data is acceptable for the instrument indicating 
that the drier and the TCD were not producing any discrimination. The peak 
areas for the injections of N2 gas produced a slope of 1.689455 A mol-I and a 
correlation coefficient of 0.999. Similarly, the sensitivity for N2 generated 
from the aqueous standards was 1.88146 Amol-1. The ratio of these slopes 
yields an estimate for the membrane transport efficiency of 89.8 %. It 

appears from Figure 4.21 that the efficiency may be reducing at higher 

concentrations, but as all other calibration graphs were linear over this 

concentration range, this apparent curvature was considered to be an artefact 
of this experiment. 

Contamination with atmospheric N2 was the reason why the FIA system 

generated high background signals and also probably the bias in the 

measured isotopic ratios. Nitrogen has high solubility in aqueous solutions, 
1.83ml in 100ml. However, background level per se is not the problem rather 
the temporal variation in background as discussed later. Even with this closed 
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system , it was not sealed enough to avoid some nitrogen ingressing into the 
reagent bottles and diffusing through the Teflon tubes used to make the 
manifold. 

Figure 4.22 shows the peaks obtained for injections of water being degassed 
during replicated injections. This Figure shows that the amount of nitrogen 
dissolved in the solution decreased as the degassing progressing to a point 
where the N2 peak disappeared. When the amount of nitrogen in the sample 
solution is lower than the amount present in the other liquid streams running 
on the FIA system, negative peaks are generated. 

Many improvements of the system arrangement were tried in order to avoid 
contamination from the air. A new injection valve was bought and connected. 
The dryer column was replaced with a new glass column with different end 
connection. But, inaccurate results continued being produced. 

The presence of the dryer column was detrimental to peak shapes, the drying 

reagent needs periodic replacement and the connections are a potential source 
of leaks. As an alternative, the wet gas from the GD-separator unit was 
continuously dried by using a hygroscopic Nafion (DuPont) membrane 
(described in the chapter 1) as a dryer unit. The arrangement for this dryer 

unit was similar that used for the GD-separator unit. The outer containing 
tube was a stainless- steel tube having T-piece connectors on the ends. As the 

wet gas from the acceptor stream passes through the inner membrane, the 

moisture is removed and transferred to its outer surface. A dry flow of He 

gas flows was directed in a direction opposite to that of the wet gas thus 

removing the moisture on the outer surface of the membrane5l, 79. The peaks 

generated when isotopic ratio standards were injected with the system using 

each dryer unit are shown in Figure 4.23 and the results are tabulated and 

compared in Table 4.20. 
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Table 4.20 Comparison between two different dryer systems connected 
on-line. 

standard code 
delta value found different 

water traps delta expected 
perchlorate 

column 
Nafion 

membrane 
110 0.50 1.33 2.46 
ill 

-1.36 -1.69 0.84 
112 

-1.71 -1.28 -1.17 
113 

-4.17 -4.42 -3.73 
114 

-6.35 -6.41 -7.10 
115 

--11.34 -7.59 -11.73 
116 

-14.25 -10.55 -18.50 
117 

-25.24 - -29.34 
118 

-43.64 - -49.48 
118.5 

-52.59 -60.82 -65.61 
119 

-75.38 -87.40 -98.79 

These results were obtained on a second visit to the factory and employed 
standards that were very close to the abundance of the reference sample. 
They show that the accuracy improves as the delta value increases in 

magnitude, but they do not provide conclusive evidence for which dryer is 
best. The Nafion membrane is certainly more convenient for routine analysis. 

To further investigate the source of the nitrogen background, different 

volumes of reference gas were injected directly between the manifold and the 
TCD: (i) reagent flows stopped, but He flowing around the membrane; (ii) 

reagent flows running (no sample injection) and He flowing around the 

membrane. The results are shown in Figure 4.24 and the measured values 
tabulated in Table 4.21. The background signals are the same order of 

magnitude changing only from 4.17 x 10-10 for the liquid flow Off to 9.6 x 10- 
10 for the liquid flow on. The stopped liquid flow should be rapidly 

completely degassed and therefore the background should have been 

considerably reduced. That it was not suggest that in this experiment some 

nitrogen was present in the He flow. The results for delta values are 
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contradictory in that the stopped flow conditions produced a greater 
deviation from the expected value when the liquid flow was on. No 

explanation can be offered for this values then was some residual 
contamination from a previous positive delta sample remaining in the liquid 
flow line. . 
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Table 4.21 Comparison between the delta values found when reference 
gas was injected into the acceptor gaseous stream with and 
without running the liquid streams. Expected value for the 
15N/14N ratio in the reference gas 0.003664. 

amount 
injected 

measured ratio 15N/14N 

gl system off system on 
5 3.5832 x 10-3 3.5788 x 10-3 

2 3.5785 x 10-3 3.5790 x 10-3 

8 3.5822 x 10-3 3.5806 x 10-3 

6 3.5810 x 10-3 3.5813 x 10-3 

4 3.5811 x 10-3 3.5794 x 10-3 

8 3.5814 x 10-3 - 
4 3.5807 x 10-3 3.5762 x 10-3 

6 3.5739 x 10-3 3.5788 x 10-3 

2 3.5782 x 10-3 3.5788 x 10-3 

average 3.5790 x 10-3 3.5791 x 10-6 

RSD 0.137% 0.04% 

To show the effect of nitrogen dissolved in the aqueous sample solution, 

replicated injections of N2 saturated water was carried out. The peaks are 

shown in Figure 4.25 and the data tabulated on Table 4.22. 
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Table 4.22 Delta values found when N2 saturated water was injected. 

replicate n' ratio measured delta found 
1 3.5951 x 10-3 1.25 

2 3.5946 x 10-3 1.21 

3 3.5940 x 10-3 0.91 

4 3.5935 x 10-3 0.65 

5 3.5924 x 10-3 1.10 

6 3.5940 x 10-3 0.67 

average 3.5939 x 10-3 0.96 

RSD 0.026% 0.027% 

Clearly, dissolved nitrogen in the sample solution behaves as an additional 

sample component whose isotope ratio may bias the observed result for the 

true sample. The expected delta values for atmospheric N2 should be close to 

zero as are there shown in Table 4.22 remembering that a unit change in delta 

is only a1 part per 1000 change in the isotopic ratio. 
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The injection valve is also a potential source of N2 contamination. to 

overcome this problem, the valve was contained with in a plastic bag which 
was purged with He. 

A final refinement was to try to reduce further the levels of dissolved N by 

vacuum degassing the sample solutions. The other solutions were degassed 

continuously with flowing He. The results from this experiment are shown in 
Figure 4.26 and the data tabulated in Table 4.23 for all but the lowest delta 

value samples were closed to the expected values showing that the amount of 
nitrogen dissolved in the sample solution does indeed affect the accuracy of 
the determination. 
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Table 4.23 delta values obtained after vacuum degassing of the sample 

solution. 

standard code delta found delta expected 
(NH4)2SO4 -0.052 -0.27 
(NH4)2SO4 -0.066 -0.27 

116 
-16.15 -17.78 

116 
-16.25 -17.78 

119 
-96.24 -96.96 

119 -94.09 -96.96 

Having obtained some encouraging results, the reference materials were then 

analysed using vacuum degassing of the standards and sample solutions. A 

calibration graph was prepared and the delta values found for the reference 

materials compared with the known values. The characteristic peaks for this 

set of injections are shown in Figure 4.27 and the results are tabulated in Table 

4.24. 
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Table 4.24 Values found for isotopic standards and reference material. All 

sample solution were vacuum degassed before injection. 

solution 
injected code 

delta found delta expected 

110 2.66 2.47 

116 
-15.28 -18.50 

114 
-5.69 -7.10 

118 
-45.46 -49.48 

112 
-0.55 -0.84 

(NH4)2SO4 -0.19 -0.27 
Pi 

-1.13 -1.09 
Q3 -2.60 -3.01 
N5 

-3.15 -4.11 
T7 7.01 6.57 

119 -9,1,1r; -99.89 
N5 

-3-34 -4.11 

The Figure 4.28 presents the correlation plot for delta values found against 
delta calculated. The line has the following parameters: slope, 0.9445 and 

coefficient correlation, 0.999. The slope is slightly less than unity indicating 

that the measured level of depletion is slightly less then the true depletion. 

this would be accounted by the simultaneous measurement of dissolved 

nitrogen gas which has a more positive delta value (i. e. it is not depleted with 

respect to the reference gas). 
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Figure 4.28 Comparison between the delta found and expected. Using a vacuum line to 
degas the solutions. 

The results obtained for the determination of 15N/14N isotope ratios have 

shown that the amount of external nitrogen dissolved in the sample solutions 
is the most critical factor affecting the accuracy of the results. Contaminations 

of the sample with dissolved nitrogen cause its apparent abundance to 
become enriched or depleted depending on its original 15N abundance. 
However, a constant background level of dissolved nitrogen is not of itself a 

problem because the background count is subtracted from the total ion count 
before isotope ratios are computed. It is important that the all background 

level must be stable during the appearance time of the ion peak. Therefore, 

the sample solutions must have the same quantities of nitrogen (ideally no 

nitrogen at all) as that present in the carrier stream because if any of the 

chemical streams are different in concentration of nitrogen, the baseline will 

change during the appearance time of the peak. The software can make no 
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allowance for such changes and positive or negative deviations from the true 
abundances will occur. 

To improve the accuracy of 15N/14N isotope ratio determinations using the 
DPGD-FIA system, an efficient and simple way to degas the chemicals and 
samples in the same proportion must be devised. A GD arrangement 
containing two pieces of tubular membrane as a degassing unit was 
investigated and is described bellow. 

4.3.3 Use of a dual PTFE-microporous membrane degassing unit. 

A similar arrangement to that used in the GD-separator unit was applied for 
degassing the liquid streams in the DPGD-FIA manifold. This unit had two 
pieces of tubular membrane, through which the carrier and chemical streams 
passed before been mixed, enclosed in a single onter glass tube (see Figure 
4.29). Helium was flowed through the tube so that both streams would 
experience a similar physical environment and therefore degas to a common 
level. 

He in 
degas3er unit GD-3epamtor H20 

p drier column NaOH 
HCl 

0 
0 Br03- / Br 

TCD 
He 

U 

Figure 4.29 DPGD-FIA manifold containing a degasser unit on-line. 
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The investigation was carried out using the DPGD-FIA system with the TCD 
detector. Levels of background were monitored under different operating 
conditions. The background produced by the FIA system with and without 
the degassing unit were compared with that level measured when only He 

was flowing in both reference and sample streams of the detector. The 
investigation was carried out injecting N2 saturated and degassed water 
samples and a standard solution containing 60ppm total nitrogen. 

4.3.3.1 Results and discussion 
The first result was obtained with the FIA system coupled to the detector, but 

without the degassing unit. The results are shown in Figure 4.30a. The first 
injection of 0.5ml of N2 saturated water into a saturated reagent stream 
generated no peak ( injection 1) but when the water started to be degassed 

with a He probe (injections 3,4, and 5) negative peaks appeared. These 

negative peaks show that the sample plug contained less nitrogen than the 

carrier stream. The amount of nitrogen degassed from the water could be 

calculated by comparison of the height of the negative peak(l. 6cm) with that 

obtained by injecting a 60ppm N standard ( injection 2) that produced a peak 
8.5 cm high. The negative peak corresponds to 11.3ppmN. This result is in 

concordance with the solubility of this gas in water, i. e. 1.9ml in 100 ml H20, 

which translated to 11.7 ppm of N in the N2 saturated water. 

The results for the experiment carried out using the FIA-system with the 
degassing unit are shown in Figure 4-30b. In the same way the 

standard (injection 10) and the N2 saturated water were injected( injection 6- 

9). The level of background was reduced and no difference was observed for 
N2 saturated water and degassed water injections. 

The background level was also observed when the on-line degassing unit was 

applied with He in a counter-flow direction, Figure 4.30c, and with the unit 
heated at 40'C, Figure 4.30d. The background levels obtained were a little 

higher than those obtained when the degassing unit was at room temperature 

and the He flow was in the same direction as the liquid flow. These results 

suggest that, contrary to expectation, no benefits were gained from these 

modifications. 
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Figure 4.30 (e) shows the background level obtained when the TCD channels 
contained only He flowing through them.. 

Comparison of the background levels obtained with the degassing unit and 
with only He in the system show that the backgrounds were essentially the 

same. This indicates that the GD unit can be an efficient degassing device and 
is probably the best means of obtaining accurate 15N/14N isotope ratio 
results. 
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4.4 Determination of inorganic forms of nitrogen by DPGD-FIA system - 
preliminary results. 
The other two majors forms of inorganic nitrogen in natural samples are 
nitrate and nitrite. They are found together in soils, waters, effluents, 
biologically active materials and in some food products. Determination of the 
ratio of these species in environmental samples, is of vital importance 
because of potential toxicity even when present in micro amounts. 

Although many methods are available for the determination of nitrates or 
nitrites separately, their simultaneous determination in binary mixtures has 
not been widely studied and little attention has been given to isotope ratio 
measurements. 

It was recently demonstrated that nitrate and nitrite can be reduced to 
ammonia by passing them solutions through a column filled with metallic 
zinc. The procedure has been automated by the use of a steady-state, air- 
segmented, continuous-flow method 147. Alternative methods make use of 
the reduction of nitrate to nitrite with homogeneous 148,149 or heterogeneous 
150,151 reductants, followed by a diazotization and coupling colour reaction. 
Ammonium ion can be determined by the well known Berthelot reaction. 
Therefore to determine total nitrogen at least two separate manifolds are 
required. A recently reported computer-controlled continuous-flow analyser 
has been used for this task, but the total inorganic nitrogen could be found 
only indirectly after summing the contributions of N03-N, N02-N and NH4- 
N 152. 

Using the DPGD-FIA technique, the form of nitrogen under analysis is 

converted to ammonium and is determined as nitrogen gas. 

4.4.1 Experimental 
The DPGD-FIA system developed for nitrogen gas generation was used with 

an additional line where the inorganic forms of nitrogen (nitrite and nitrate) 
present in the sample were reduced to ammonia before the oxidation to N2 

takes place. This proposed DPGD-FIA arrangement is shown in Figure 4.29. 
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Figure 4.29 DPGD-FlA manifold used for determination of different inorganic 
forms of nitrogen. 

One approach to the determination of nitrate in the presence of nitrite 
depends on the fact that sulfamic acid decomposes nitrite rapidly and 
quantitatively to nitrogen at room temperature, but does not react with 
ammonium or nitrate or interfere with the on-line reducing step 
(N03/NO2 -- NH4)129. The convertion of nitrite to nitrogen by sulfamic acid 
is given by153: 

KN02 + HS03NH2 ---- N2 + KHS04 + H20 

This reaction could be used to generate nitrogen gas for mass spectrometry, 
but due the requirement fo isotopic ratio determination it is not a good choice 
because the nitrogen molecules produced contain I nitrogen atom from 

the sample and one from the reagent. 

The alternative is to produce nitrogen via the intermediate of ammonium ion 

as described before. 

Preliminary investigations were carried out using two different sizes of 

reducing columns filled with metallic zinc. One was made with 50 cm Tygon 

tube of 2mm i. d. containing a zinc wire of I mm diameter; the other was 

made with a glass tube, 5.5 mm i. d. and 10 cm long, filled with 20 mesh zinc 

granules. Glass-wool was employed to retain the zinc inside the column. 

Before using the column, OAM aqueous CuS04 solution was injected once or 

-170- 



twice, using water as both carrier and reagent stream, to activate the zinc 
surface147. The sample volume was fixed at 500gl for all investigations. 

The efficiency of the reduction was investigated comparing the results 
obtained when standards prepared from different nitrogen species, but with 
same concentration of total nitrogen, were injected into the system. The 

reaction of nitrite with sulfamic acid was also studied. 

Reagents 
The reagents used for nitrogen generation are described in section 4.2.2.1 

-standard nitrite stock solution containing 1000ppmN (or 3287ppm 
N02)was prepared from analytical reagent grade potassium nitrite; 3.037g 

into 500ml water. Calibration standards were prepared daily. 

-standard nitrate stock solution containing 1000ppmN (or 4430ppmNO3) 

was prepared from analytical reagent grade potassium nitrate. Calibration 

standards were prepared daily. 

-metallic zinc (20-mesh), supplied by Aldrich. 

-zinc wire, 99.99% pure, 1mm diameter 

-copper sulphate solution, O. 1M 

-sulfamic acid solution, 8% (w/v) 

4.4.2 Results and discussion 

The experiments carried out using the Zn wire as a reductor showed good 

efficiency for the nitrite, but poor results were obtained for nitrate. Figure 

4.30 shows the calibration graphs prepared when standards containing the 

same amount of nitrogen, but prepared from different salts were injected into 

the system with this reductor present. 
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The reduction colunin containing zinc granules was then placed on-line and 
standards of N03-N and NH4-N injected. The Figure 4.31 shows the 

calibration graphs obtained. 

The zinc granules allow a larger contact area and showed greater efficiency 
than the zinc wire. Due the low sensitivity of the TCD detector, a high 

concentration range was used that saturated the reducing column and it had 
to be re-activated with CuS04 solution after each run. 
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Figure 4.31 Calibration graphs obtained from injecting different forms of 
nitrogen using a reducing column prepared from zinc granules. 
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The use of sulfamic acid to reduce the nitrite to nitrogen was also investigated 

and was found to be simple and effective reaction. The characteristic peaks 
obtained when nitrite was mixed with this acid on-line are shown in Figure 
4.32 and are compared with peaks obtained when NH4-N was injected on- 
line. Higher peaks were found for the determination carried out with sulfamic 
acid due the stoichiometry of the reaction. This result is an amplification 
factor of 2 because of the additional nitrogen from the reducing acid. 

The preliminary results show that the DPGD-FIA system used for nitrogen 
gas generation can be successfully explored for inorganic nitrogen speciation. 
However, the concentration of these species present in environmental 
samples is in the range of 0.2-1.5 ýtg ml-1 for NOY and N02-. This is about 10 

times smaller than the detection limit of the TCD detector, but such 
determinations would be feasible with mass spectrometric detection. 
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Figure 4.32 Characte 
, 
ristic peaks obtained when nitrogen gas is generated 

by (a) reducing N02-N first to ammonia and then oxidation and 
(b) reckLing N02-N with sulfamic acid. 
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4.5 Conclusion 
The DPGD-FIA system was found to be an efficient method for generating 
gaseous sample for nitrogen determinations with TCD or mass spectrometry 
detection. 
The DPGD-FIA system has a simple configuration and was inexpensive and 
commonly available reagents used. The on-line generation of Br2 which is a 
pre-cursor to hypobromite avoided handling of this unpleasant and unstable 
reagent and enable exact stoichiometric ratios to be obtained. Additionally, 
sodium hydroxide could be used as an effective and cheap alternative to 
lithium hydroxide. 

It was found that mass transport across the membrane was most efficient 
when diffusion occurred and that bulk flow pre-formed bubbles was unstable 
and not quantitative. The transport efficiency obtained was approximately 
90%. 

The two dryer units were investigated and showed to be effective but the 
Nafion membrane dryer offered best precision and does not need frequent 

replacement. 

The results found for the determination of nitrogen content in herbage 

samples, TCD detection, showed that the method is accurate, fast and 
practical alternative to the Kjeldahl ammonia distillation method. Sample 

throughput rates of 20 h-1 can be achieved. 

Initial studies using the DPGD-GFIA system as an interface for isotope ratio 

mass spectrometry showed that the technique has potential as an alternative 
to the conventional batch Rittenberg/Kjeldahl techniques. It solves most of 
the problems of nitrogen generation that have limited applications of the wet 

oxidation procedure and would offer much higher sample throughput rates. 

The technique also offers a low cost alternative to the Dumas combustion type 

system and incorporates the possibility of speciation. However, it does not yet 

achieve the same levels of accuracy although precision compares favourably. 

There is no evidence of mass discrimination occurring in the membrane as 

might be expected since the pore size is large (10ýtm) compared with 
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molecular dimensions. Inaccuracy appears to derive from residual differences 
in the dissolved N2 gas status of the different liquid streams. A dual 

membrane degassing unit has been developed that appears to overcome this 

problem, at least using TCD detection, and future work will involve testing its 

use with mass spectrometry. 
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CHAPTER FIVE 
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK. 

5.1 Conclusions. 

It has been shown that the mass transport through a microporous membrane 
is a process involving diffusive and convective forces. The rate of transport is 
dependent on diffusive resistances caused by the size and distribution of the 
membrane pores (effective area) and by the external atmospheric conditions. 
Convective forces caused by the air movement surrounding porous media 
can break up the boundary layer between the membrane surface and the 
external atmosphere. These convective forces are critical because they control 
the concentration gradient which is the driving force for the transport 

process. 

The tubular membrane studied was demonstrated to have potential as a 
universal preconcentration device for samples in aqueous solutions. This 
type of preconcentrator can be successfully applied when the fewest number 
of sample manipulations and chemical additions are desirable such as in trace 

analysis. 

The tubular membrane exhibits substantial dispersion effects associated with 
its length and internal volume. However, due its concentrating action and 
using appropriate sample loop size, liquid flow rate and temperature, this 

effect can be reduced and high preconcentration factors achieved. 

Although the membrane preconcentrator unit improved detection limits, it 

had the disadvantage of low stability that resulted in poor reproducibility 

when it was used in flow injection analysis. 

The DPGD-FIA system developed showed a considerable potential for 

generating N2 gas for routine analysis. It facilitated the on-line preparation of 

reagents, introduction and change of samples and solved problems of 

separating the analyte from other species allowing the use of a non-selective 
detector for nitrogen determination. The on-line oxidation reaction was 

shown to be efficient, 85%, and the 1m piece of the tubular membrane 

provided a contact area that allowed efficient separation of N2 generated 
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from up to 50ggN in the sample solution. The separation efficiency was 92%. 
The method was precise and accurate for the determination of total nitrogen 
with both detectors (MS and TCD). The precision was good for 15N/14N 
isotope ratio determinations but the accuracy of the results was affected by 
contamination from atmospheric N2. 

A membrane degassing unit has been described as a means of avoiding 
such contamination. Its use drastically decreased the background N2 levels 
detected from the FIA system. 

It was also shown that the DPGD-FIA system is versatile and can be readily 
adapted to enable different forms of nitrogen eg NOY, N02-, NH4+ to be 
determined using the same manifold as that for total nitrogen. 

The DPGD-FIA interface for isotopic ratio mass spectrometry has advantages 
over the conventional Kjeldahl/Rittemberg method. These include speed of 
analysis, ease automation and interfacing to the MS and the ability to 
determine other forms of nitrogen. Similar advantages exist with respect to 

continuous flow combustion isotope ratio analysis, but the accuracy is not yet 
as high as that obtained with these systems. 

5.2 Suggestions for further work. 

5.2.1 Study of the resistances involved in the mass transport through a 

microporous membrane. 
To be able to predict the mass loss through microporous membranes at 
known conditions it is necessary to investigate the resistances produced by 

the boundary layer and the surrounding atmosphere. The factors influencing 

these resistances are complex involving many variables including turbulence 
levels in the atmosphere and surface roughness. A practical means of 

estimating the magnitude of the resistance contribution could be to develop a 

parametric model similar to the atmospheric deposition model described by 

Fowler85. This would involves replacing the unknown parameters (e. g. A and 
L) in the diffusion equation by measured values of the resistance. 
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5.2.2 Application of the DPGD-FIA system using the dual PTFE- 

microporous membrane degassing unit. 
The results obtained for the experiment carried out using a GD unit as a 
degassing system showed that the background levels associated with 
dissolved N2 decreased. The TCD was used as the detector. The next step is to 

prove the capability of this unit for degassing samples prior to isotopic ratio 
measurements. 

Further improvements in accuracy for isotope ratio measurements might be 

obtained by replacing the Teflon tubes and connectors, after the degassing 

unit, with devices made from stainless steel. This way, diffusion of 
atmospheric nitrogen through the Teflon material could be avoid. 

5.2.3 DPGD-FIA system for speciation and total nitrogen determination. 
Nitrite and nitrate can be transformed into ammonia by reduction with zinc 
and this can be oxidised to nitrogen gas. Some investigations were carried 
out and the results showed (in section 4.4 ) that the same manifold could be 

used for both speciation and the determination of total nitrogen. 

The possibility for speciation of NOY in presence of N02- has also been 

discussed based on the reaction of N02- with sulfamic acid. The manifold 

shown in Figure 5.1 allows for N02- to be removed as N2 after reaction with 

sulfamic acid before the reduction to ammonium ion takes place. 

5.2.4 Use of the DPGD-FIA system for generating different gaseous 

analytes. 
The DPGD-FIA technique could also be used for generating other gaseous 
analytes. As discussed in Chapter 2, gaseous species such as: H2S, HCN, C02 

etc. could also be generated on-line for IRMS determinations. If the TCD 

detection is used, it might be necessary to incorporate a circulating loop 

preconcentration step into the manifold in order to increase the sensitivity of 
the determination. 
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