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Abstract

Macrophages are terminally differentiated cells of the mononuclear phagocytic system, which play an
indispensable role in the maintenance of homeostasis and defense. Macrophages can be phenotypically polarized
by the microenvironment to mount specific functional responses. Polarized macrophages can be broadly classified
into two main groups: classically activated macrophages (M1), whose prototypical activating stimuli are IFN-γ and
LPS, and alternatively activated macrophages (M2), further subdivided in M2a (after exposure to IL-4 or IL-13), M2b
(immune complexes in combination with IL-1β or LPS) and M2c (IL-10, TGF-β or glucocorticoids). M1 exhibit potent
microbicidal properties and promote strong IL-12-mediated Th1 responses, while M2 macrophages support Th2-
associated effector functions. Here we review the main functions of polarized macrophages in Chagas disease and
discuss their potential value in evaluating disease severity.
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Introduction
Chagas disease is caused by the protozoan Trypanosoma cruzi,

which affects approximately eight million individuals in Latin
America, out of which 30-40% either already have or will develop
cardiomyopathy, digestive mega syndromes, or both [1]. More
recently, another major concern has been the emergence of Chagas
disease in non-endemic areas such as North America, Europe and the
Western Pacific Region, due to immigration of infected individuals
[2,3]. The disease is characterized by two clinical phases: a short, acute
phase defined by patent parasitemia, and a long, progressive, chronic
phase.

The parasite load in the acute phase of T. cruzi infection influences
the activation of host immune system and the development of Chagas
disease pathology in the late chronic phase [4]. Although the exact
mechanisms that mediate control of parasites in humans, have not
been elucidated [5], it is believed that parasites rely greatly on the
function of innate immune cells such as natural killer (NK) cells,
neutrophils, and macrophages [6]. T. cruzi induces monocytes and
macrophages to produce various endogenous mediators, including
cytokines, nitric oxide (NO), and prostaglandin E2 (PGE2) [7-9].

Monocyte populations are heterogeneous and can polarize
depending on the micro-environmental stimuli. Classically activated
monocytes differentiate into M1 macrophages after stimulation by
microbial agents such as lipopolysaccharides (LPS) and Th1 pro-
inflammatory cytokines such as IFN-γ, whereas alternatively activated
or M2 macrophages are induced by other stimuli, including
transforming growth factor beta (TGF-β), interleukin-4 (IL-4),
interleukin-10 (IL-10), and interleukin-13 [10,11].

The two polarized macrophage populations are also functionally
different: M1 cells have inflammatory functions, produce high levels of
pro-inflammatory cytokines, produce reactive nitrogen and oxygen

intermediates, and have bactericidal activity [12]. M2 cells have
immunoregulatory functions, help in clearance of parasite, have
increased phagocytic activity, and are involved in matrix remodeling,
angiogenesis, wound healing [13], synovitis, and cartilage damage
following hemarthrosis [14]. M2 macrophages are further
characterized by the functional expression of their alternative
activation markers. M2 macrophages have at least three subsets: M2a,
induced by IL-4 or IL-13; M2b, induced by immune complexes and
agonists of TLRs or IL-1 receptors; and M2c, induced by IL-10 and
glucocorticoid hormones [15]. However, the distinct expression
patterns of surface markers that clearly define macrophage subsets are
still unclear, particularly in the case of human macrophages [16].
Recently, nomenclature and experimental guidelines were proposed to
attain consensus between researchers regarding macrophage
immunobiology [17].

The role of macrophage polarization in parasitic diseases is far from
being well defined. Several pathogens exploit regulatory responses to
facilitate immune escape and enhance their own survival in the host.
For example, Leishmania binds and triggers FcγR signaling during
entry into the host, resulting in the development of macrophages,
which are permissive for its intracellular growth [18]. It is noteworthy
that cell activation is critical for the induction of an effective immune
response against pathogens or tumors, as inappropriate and sustained
activation/polarization of macrophages can lead to tissue damage,
immune dysfunction, and disease [18]. Given their capacity to
suppress adaptive immune responses, it is important to understand
how M1-M2 macrophages contribute to dysfunctional immune
responses in infections such as Chagas disease. This review highlights
the current understanding of the interplay between T. cruzi infection
and macrophage polarization.

Macrophage polarization
M1-M2 nomenclature derives from the Th1 and Th2 cytokines: In

1986 Mosmann, Coffman et al. reported that murine T-lymphocytes
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could be divided into Th1 and Th2 cells, based on their respective
cytokine production profiles: IFN-γ and IL-4 [19]. The concept of
macrophage polarization was first introduced in 1992 with the
discovery that IL-4 inhibits the respiratory burst of macrophages while
enhancing expression of MHC-II and mannose receptors (CD206) on

their cell surface [20]. Since then, two opposite and competing
macrophages phenotypes were defined, often referred to as classically
activated macrophages (M1 macrophages) and alternatively activated
macrophages (M2 macrophages) [21,22].

Figure 1: Macrophage polarization. Macrophage micro-environment stimuli define differential macrophage polarization via classical
activation (M1) or alternative activation (M2). Pathogen-derived LPS alone or in combination with IFN-γ leads to classical activation of M1
macrophages, which improves microbicidal activity and secretion of pro-inflammatory mediators. According to the host-parasite
microenvironment, alternative macrophage activation could be subdivided into three subpopulations. M2a differentiation is promoted by
IL-4 or IL-3, and this subpopulation is associated with Th2 response, allergy process, internalization, and parasite killing. M2b is related to the
presence of immune complexes, TLR or IL-1R agonists, and promotion of immunoregulation. Glucocorticoids and IL-10 secretion lead to
differentiation into M2c, which also induces immunoregulation, tissue remodeling, and repair.

In fact, macrophages can secrete either IL-12 or IL-10, cross
regulatory cytokines crucial for the elicitation of IFN-γ production
and development of Th1 cells or IL-4/IL-13 secretion and
development of Th2 cells proliferation, respectively [22,23].

This classification was further extended by Mantovani and
collaborators [24], M1 polarization included, the classical activation,
obtained by stimulation with pathogen-derived LPS alone or in
combination with IFN-γ, which improve microbicidal activity and
pro-inflammatory mediator secretion, while M2 polarization, mainly
associated with tissue repair, was further subdivided in M2a or
alternatively activated macrophages; M2b, corresponding to type II
activated macrophages; and M2c, which includes heterogeneous
macrophage deactivation stimuli (Figure 1). Polarization states and

functional properties of macrophages largely depend on
environmental conditions, such as hypoxia, cytokines, pathogen-
derived TLR-ligands, and lipid mediators [21].

Some molecular factors underlying macrophage polarization have
been identified [25,26]. These include members of the IRF/Stat
families, Myc, NF-κB hetero-and homo-dimers, KLF4, PPARγ, as well
as miRNA, and epigenetic modifications [25-27].

The observation that macrophage functional phenotypes can be
manipulated has drawn attention towards macrophages as a potential
therapeutic target for cancer therapy [28-30]. Thus, elucidation of the
signaling pathways that regulate functional polarization of
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macrophage in T. cruzi infection will aid in the designing of strategies
for the modification of macrophage behavior.

Macrophage Polarization in T. cruzi infection
M1-M2 signatures: During the early stages of infection, T. cruzi

induces an intense inflammatory response, which plays a crucial role

in the pathogenesis of the disease [31]. During this stage the
macrophages induce a cascade of cytokines: initially they produce
IL-12, which act on NK cells to induce IFN-γ production, which in
turn increases the production of IL-12, TNF-α and NO in
macrophages, thus contributing to the killing of the parasite [32,33].

Figure 2: Macrophage polarization in the acute phase of Trypanosoma cruzi infection. M1 polarization is associated with Th1 cytokine
secretion and increased expression of iNOS, NADPH, MHC-class II, CD86, AP-1, and NK-κB, in addition to that of inflammatory mediators
such as TNF-α, IL-6, NO, ROS, IL-12, and IL-1β, resulting in tissue damage and parasite killing (Left panel). M2 macrophages are related to
tissue remodeling, encapsulation of parasite, Th2 cytokine secretion, which improves the expression of CD36, CD163, MR (mannose
receptor), AMPK, Arg1, PPARs, and STAT6, in addition to improving IL-10 and TGF-β expression and polyamine secretion (Right panel). T.
cruzi macrophage infection increases the expression of CD64, CD80, NADPH, COX2, iNOS, NF-κB, STAT6, CD200, CD206, CD16, and
CD32, as well as the secretion of TNF-α, IL-12, IL-1β, IL-6, NO, and ROS, which promotes parasite elimination, and secretion of IL-10, TGF-
β, and PGE2, critical for immunoregulation and reduction of tissue damage resulting from excessive stimuli (Lower panel).

In fact, spleen or peritoneal macrophages harvested from mice in
the acute phase of T. cruzi infection release large amounts of NO in
the absence of any other stimuli and accumulate high levels of
inducible nitric oxide synthase (iNOS) mRNA with secretion of TNF-
α, IL-6 and IL-1-β in cultured macrophages [34,35]. This initial
inflammatory response leads to M1 polarization.

The protective role of M1 macrophage has been exemplified in mice
deficient for components of the IL-12 pathway [36]. Moreover,
peritoneal macrophages from IL-12p40 gene knockout mice have a
bias toward the M2 profile, spontaneously secreting large amounts of
TGF-β and responding to rIFN-γ with weak NO production in T.
cruzi infected peritoneal macrophages [37]. This host response is
associated with the control of acute infection.
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At the same time, macrophages and NK cells synthesize regulatory
cytokines such as IL-10 and IL-4 to reduce the harmful effects
associated with excessive stimulation of the immune system [38]. IL-4
in association with IL-10, modulates IFN-γ production and provides
resistance against T. cruzi infection [39]. This new environmental
change leads to M2 polarization. Thus, T. cruzi infection stimulates
the activation of both M1 and M2 type macrophages during the early
phases (Figure 2).

The persistence of inflammatory responses associated with tissue
fibrosis and cell death is a hallmark of chronic Chagas disease.
Macrophages present in chagasic hearts as well as those exposed in
vitro to sera from T. cruzi-infected mice polarized toward a pro-
inflammatory phenotype (CD64hi CD80hi) with extensive production
of TNF-α/IFN-γ [40].

Interestingly, the multi-component DNA-prime/protein-boost
vaccine (TcVac2) conferred protection against persistence of parasite
and inflammation [41]. The vaccine induced a significant decline in
the positive TNF-α/macrophage population in the heart and it was
reflected by M2 polarization (CD200+, CD206+, CD16+, CD32+, IL-4,
and IL-10 producing) upon in vitro incubation with sera from
TcVac2-vaccinated infected mice [40].

PPARα and PPARγ ligands in M2 polarization
Peroxisome proliferator-activated receptors (PPARs) are ligand-

dependent nuclear transcription factors. PPARγ is a member of the
nuclear hormone receptor family that has been implicated in
inflammation and macrophage activation [42]. The importance of
PPARγ in regulating the M1/M2 phenotypic switch has been
confirmed by Amine Bouhlel and collaborators (2007). These authors
demonstrated that activation of PPARγ potentiates the polarization of
circulating monocytes into M2 macrophages [38]. 15-Deoxy-Δ12, 14
prostaglandin J2 81 (15dPGJ2), has high affinity for PPARγ and can
exert its effects by either binding to PPARγ or through interaction
with intracellular targets such as the NF-κB-signaling pathway or Erk
MAP kinase cascade [38].

The role of PPARγ ligands in T. cruzi infection is poorly
understood. Hovsepian and collaborators (2011) reported the first
evidence that treatment with 15dPGJ2 increases the number of
intracellular parasites and inhibits the expression and activity of
different inflammatory enzymes such as NOS2, matrix
metalloproteinase as well as the mRNA expression of pro-
inflammatory cytokines (TNF-α and IL-6) in neonatal mouse
cardiomyocytes after T. cruzi infection [43].

Different investigations using PPARα isoform ligands have shown a
reduction in the symptoms of inflammation and disease in several
models, including allergic airway disease, arthritis, and inflammatory
bowel disease [38]. Penas et al. (2011) showed that treatment with
either PPARα or PPARγ ligands drive M1-to-M2 polarization of
macrophages in T. cruzi-infected mice [30].

Interestingly, PPAR agonists induce M1 macrophage polarization
via cytosolic phospholipase A2 (cPLA2) and cyclooxygenase-2 (COX-2
inhibition, against Leishmania mexicana [44]. The potential use of
PPAR agonists as modulators of overt inflammatory response during
the course of Chagas disease can open a new avenue in the
pharmacological approach to improve host health.

Manipulating macrophage metabolism is an attractive
approach to controlling T. cruzi infection

When interacting with the host cell, T. cruzi stimulates the
phosphorylation of several tyrosine residues, and this could be
involved in the survival, multiplication, and pathogenicity of the
parasite. Depending on the strain and developmental form of the
parasite, distinct signaling pathways might be induced [42].

A recent study revealed for the first time the participation of
mammalian target of mTOR in T. cruzi cell invasion [45]. Using an
elegant study design, the authors demonstrated that the treatment of
HeLa cells with the mTOR inhibitor, rapamycin, reduced lysosomal
exocytosis and T. cruzi metacyclic trypomastigotes (MT) invasion.
Downregulation of phosphatidylinositol 3-kinase and protein kinase C
also impaired exocytosis and MT internalization. Thus, mammalian
PI3/TOR kinase inhibitors can be a productive start point for anti-
trypanosomatid drug discovery. The only problem was that T. cruzi
was relatively insensitive to rapamycin inhibitor compared with some
other trypanosomatid pathogens, such as T. brucei [43].

However, we know that the AMP-activated protein kinase (AMPK)
regulates energy homeostasis and metabolic stress, acting like a cellular
energy sensor. AMPK is activated by high AMP and low ATP via a
complex mechanism, which involves allosteric regulation, promotion
of phosphorylation, and inhibition of dephosphorylation. When
AMP/ATP ratio is high, AMPK is activated, it protects the cell by
switching off the ATP-consuming pathways (e.g. fatty acid synthesis
and sterol synthesis) and switching on alternative pathways for ATP
generation (e.g. fatty acid oxidation) [46]. AMPK activation in
macrophages is associated with M2 polarization, which suppresses
pro-inflammatory responses and promotes anti-inflammatory
functional phenotype [30]. Interestingly, when macrophages were
stimulated with IL-10 and TGF-β, it resulted in the rapid activation of
AMPK, whereas stimulation of macrophages with LPS-induced
cytokines resulted in AMPK inactivation. In addition, inhibition of
AMPK increased the mRNA levels of TNF-α, IL-6, and COX-2 [30].
AMPK has also shown to inactivate the mammalian target of
rapamycin (mTOR) pathway via phosphorylation and activation of the
mTOR inhibitor, tuberous sclerosis complex-2 TSC2 [47].

AMPK and mTOR are critical regulators of host cell metabolism
making them logical targets for manipulation by invading pathogens
such as T. cruzi. It would be interesting to determine if T. cruzi
induces AMPK to generate energy and nutrients for its growth in the
host cell. We must remember that inhibiting AMPK or inducing
mTOR can provide essential conditions for T. cruzi replication [48].

Conclusion
Control of the T. cruzi infections is critically dependent on

cytokine-mediated macrophage activation leading to intracellular
killing of the parasite. M1 polarization is closely linked to the
elimination of parasites, and M2 polarization could be effective in
preventing the progression of oxidative and inflammatory pathology
in Chagas disease. AMPK and mTOR are rational targets for
manipulation by invading pathogens such as T. cruzi. Manipulation of
host metabolism using PPAR agonists seems an attractive approach to
controlling T. cruzi infection as targeting the host rather than the
pathogen can considerably reduce the ability of pathogens to develop
drug resistance.
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