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Abstract

Post-transcriptional regulation of stem cell differentiation is far from being completely understood. Changes in protein
levels are not fully correlated with corresponding changes in mRNAs; the observed differences might be partially explained
by post-transcriptional regulation mechanisms, such as alternative polyadenylation. This would involve changes in protein
binding, transcript usage, miRNAs and other non-coding RNAs. In the present work we analyzed the distribution of
alternative transcripts during adipogenic differentiation and the potential role of miRNAs in post-transcriptional regulation.
Our in silico analysis suggests a modest, consistent, bias in 39UTR lengths during differentiation enabling a fine-tuned
transcript regulation via small non-coding RNAs. Including these effects in the analyses partially accounts for the observed
discrepancies in relative abundance of protein and mRNA.
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Introduction

Mesenchymal stem cells (MSCs) are able to differentiate to

mutiple cell types including those in bone, ligament, muscle and

connective tissue [1] among others and are thus the focus of stem

cell-based therapies. Tissue engineering [2], therapy for degener-

ative and autoimmune diseases [3,4] and cardiac tissue repair [5,6]

are some of the areas of focus in adult stem cell research. Although

much progress has been made, the regulatory processes controlling

MSC differentiation remains poorly understood. Adipose derived

human MSCs are easily isolated from pools of cells resident in

vascular stroma of adipose tissue. Since adipose tissue is ubiquitous

and easily accessible with minimally invasive procedures [7], it is

an ideal resource for research and development of cell-based

therapy. Understanding MSC commitment to differentiation to a

specific cell type is essential for the successfully repair or

regeneration of injured tissues. The switch from self-renewal to

differentiation is regulated by many factors including cytokines,

growth factors and extracellular matrix components present in a

given microenvironment [8]. Nevertheless, the transcriptional and

post-transcriptional regulatory processes remain not fully under-

stood.

Gene expression analysis has provided great insights into the

regulatory networks determining self-renewal and differentiation

processes [9,10]. Deep sequencing techniques have also played a

key role in clarifying the complex mechanisms involved. Regula-

tion is at both the transcriptional [11] and post-transcriptional

[12,13] levels. Also non-coding elements are involved [14] in the

regulatory machinery [15]. In order to address post-transcriptional

regulation, many groups are focusing on sequencing mRNAs

associated to translating polysomes and comparing them with total

RNA [12,13,16].

Expression analysis with deep sequencing methods enables the

distinction of alternative transcripts of the same gene. In this

context, the focus is shifted from analyzing genes as an entity

(represented by a single canonical transcript) towards an alterna-

tive transcript usage model, non-coding RNAs (e.g., miRNAs),

alternative splicing, 39UTR switching, polyadenylation [17,18],

etc. Alternative polyadenylation (APA) results in subpopulations of

transcripts differing in 39UTR length, which makes them more or

less susceptible to the regulation by miRNAs (shorter 39UTR

might have fewer miRNA binding sites) [19,20]. A recent study

has shown a role for APA in muscle stem cell development. The

Pax3 protein represses differentiation in that transcripts can be

targeted by mir-206. Boutet et al. [18] showed that different muscle

tissues process Pax3 transcripts differently through APA, in which

transcripts were differentially targeted by miR-206 based on

39UTR length. In turn, different Pax3 protein levels result in

functional changes in muscle stem cell behavior. Other groups

assessed this type of mechanism in a global way, analyzing

39UTRs length patterns of all genes in different scenarios.

Sandberg et al. showed a global shortening of 39UTRs in

proliferating murine CD4+ T lymphocytes [21], and Kolle et al

showed human embryonic stem cells to have extended 39UTRs.

The latter study also found alternative gene model usage [13]. In

addition, Ji and collaborators reported that mouse genes tend to

express longer 39UTRs during the progression of embryonic

development [22].

In the present work, we focus on post-transcriptional regulation

during adipogenesis, specifically analyzing transcript usage differ-
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ences based on 39UTR length. We analyze data previously

obtained using RNAseq [12] to study the initial phases of

adipocyte differentiation of adipose-derived human mesenchymal

stem cells (hASCs). Total mRNA (total) and mRNAs associated

with translating ribosomes (polysomal fraction) were sequenced at

two time points: 0 and 3 days after induction. We found that

39UTRs tended to be longer after cells were induced, thereby

potentially providing more miRNA binding sites. A mean

difference of 18 bases in transcript length was found in induced

versus control conditions. In our previous study, based on a subset

of the proteomic data of Molina et al. [23], we found a low

correlation between protein and corresponding mRNA changes.

Standard linear models predicting changes in protein levels based

only on mRNA changes were inaccurate. Here, we propose linear

models that incorporate the effect of miRNAs on protein changes,

which substantially improve the correlation between protein and

mRNA change. Furthermore, our linear models indicate several

miRNAs that could potentially be involved in post-transcriptional

regulation of genes relevant for adipogenesis. Moreover, we also

observed that genes previously described as involved in the

differentiation process (Plurinet genes [24]) are enriched in longer

39UTR in the induced condition.

Results

1 Global analysis of differential transcript usage
Previous studies have shown that the use of alternative

polyadenylation sites, which generates transcripts with varying

39UTR length (shorter or longer), are associated with cells having

higher proliferation rates [21,22] (those generally having shorter

39UTR), with cells undergoing differentiation [13] (longer 39UTR)

and with post-transcriptional regulation events in general. We

determined alternative transcript usage by comparing the propor-

tions of FPKM of each transcript for IN (induced samples,

differentiating cells) vs. CT (control samples, undifferentiated

cells). Analysis was done with total and polysomal fractions (see 2),

however, total RNA was analyzed in greater detail to more

accurately recover all alternative transcripts. Transcripts destabi-

lized by miRNA are not expected to be associated with polysomes.

A preliminary global analysis of our data showed that the

average 39UTR length, weighted by the proportion of transcripts

used for each gene, differed under IN compared with CT

conditions. The mean difference was 18 bases, and 11 bases when

outliers were excluded. In this context, we defined outliers as

39UTRs with an average difference between conditions (IN–CT)

longer than 1 kb. We excluded extreme values to avoid a bias in

the determination of the mean (only for these calculations). Both

lengths (18 and 11) are sufficient for generation of an additional

miRNA binding site (see Discussion). Extension of 39UTR regions

was found in 6608 genes (IN{CTw0, weighted by the

proportion of transcripts), whereas 5931 had shorter 39UTRs

(IN{CTv0). As such, we observed a tendency for longer 39UTR

under IN conditions compared with CT (pv1 � 10{8, Wilcoxon

test). We tested our data using the Cochran-Mantel-Haenszel

(CMH) statistic, as in Fu et al. [25] to assess the significant of the

differences observed. Since several genes have more than two

transcripts and the length of the 39UTR is a quantitative variable,

the linear trend alternative to independence test [26] is more

accurate than a standard x2 test. CMH determines a trend value

for each gene, based on a Pearson correlation, with a

corresponding p-value. In our setup, a positive correlation is

observed if there is a tendency for longer 39UTRs under IN

conditions and a negative correlation for longer 39UTR in CT.

From the 16832 genes tested, 5952 displayed a negative trend,

6675 a positive trend and 4205 showed no trend. Tendencies are

based on the calculated correlation values needed for the CMH

test. Furthermore, 182 genes were significant at an FDRv0:01.

Of the significant 182 genes, 114 had a positive correlation value

and 68 a negative one. This difference is again significant

(pv1 � 10{3, Wilcoxon test). In summary, we found that there

is a modest but consistent tendency to use alternative transcripts

with longer 39UTR under IN conditions compared with CT in our

dataset.

Trends observed in polysomal fractions were similar to those in

total RNA fractions, however, the number of genes were smaller:

5340 genes had a negative trend (length CTwIN), 6152, a

positive trend (length IN.CT) and 4210 no trend

(pv3:6 � 10{14). These trend results are also based on the

correlation values used for the CMH test. Differences in the

distribution of gene trends for total and polysomal fractions were

significant (pv5 � 10{4), but were relatively small considering the

large numbers compared. Of 92 significant genes at FDRv0:01,

51 had positive correlation values and 41 negative values. A

number of significant genes, each having at least 20 nucleotides of

39UTR length difference between conditions, were found in both

total and polysomal fractions (positives and negatives). The overlap

list of negative genes includes: ARL6IP5, COL1A2, RPL23,

CD59, THBS1, TMED9, SPARC and MFAP5, and the positive

list includes: DCN, BRK1, OSTC, PEBP1, BNIP3L, SAR1A and

LSM6.

The observed mean difference in whole transcript lengths

between conditions was 20 bases, considering all 39UTRs, and 12
bases without outliers (defined as before). Interestingly, the

correlation between trend statistic for total and polysomal fractions

was very low, r~0:06 (pv1:6 � 10{13), pointing towards impor-

tant differences in post-transcriptional regulation.

2 Large fold change differences between mRNA and
proteins

Large differences can be observed between mRNA and protein

products in eukaryotic cells. This is due to various types of post-

transcriptional regulation including tRNA and ribosome avail-

ability, regulation by small non-conding RNAs and transcripts

nucleotide composition. However, in general a reasonably good

agreement (in logarithmic base) is expected [27,28]. We previously

correlated protein fold changes (in mouse) determined by SILAC

(Molina et al. [23]) and our human RNAseq data [12]. We found a

relatively high correlation between our RNAseq data and a subset

of Molinas data, consisting of a group of secreted proteins.

However, we were unable to find a high correlation with the entire

dataset, which also included nuclear proteins. Using the same data

set, we addressed the reasons behind the low correlations observed

between mRNA and protein fold changes. In brief, our RNAseq

dataset consists of two sets: RNAseq of total RNA (total) and of

polysome associated RNA (polysomal). The samples were hADS

cells taken at time point 0 (control; CT) and three days after

adipogenesis induction (induced; IN). Molina et al. measured 3T3-

L1 murine stem cell protein levels at different time points during

adipogenesis: day 0, 1, 3, 5 and 7. Ideally, such comparisons would

be more appropriate comparing experiments from the same

species, however, Molina’s dataset was the most suitable available

for comparison with our RNAseq analysis (see Materials and

Methods). To the best of our knowledge, studies on adipogenesis

comparing different species have not been reported. However,

embryonic stem cell pluripotency is established and maintained by

a largely conserved regulatory network in eutherian mammals

[29]. Other studies have shown conserved genes and pathways
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involved in mammary gland development in human and mouse

similarly governing cell-fate decisions and differentiation processes

[30].

A linear model for logFCprotein values (log fold change of

protein, e.g. log( day5
day0

)) versus our logFCmRNA values (log fold

change values of mRNA, log( IN
CT

)) was fit for each time point in

the experiment of Molina et al., and residuals analyzed. Such

differences (residuals of the corresponding linear model) were very

large for several genes. Fig. 1 shows the differences in logFC for

each time point (day 1, 3, 5 and 7) in the secretome dataset

(nuclear in Fig. S1). Only those genes with the greatest differences

are shown, and both RNA fractions are considered (A polysomal

and B total). Genes clustered into two groups: negative differences

(logFCproteinƒlogFCmRNA) are shown at the bottom of Fig. 1

(green) and positive differences above (red). The large differences

suggest post-transcriptional regulation of several genes potentially

by small non-coding RNAs, especially miRNAs. Linear models

were constructed taking into account alternative transcript usage

between conditions and characterizing miRNA binding sites

involved. We discuss these results in the next subsections.

3 Alternative transcripts and miRNAs help explain protein
fold changes

We analyzed the effect of miRNAs targeting 39UTR of

alternative transcripts in the fold change of proteins by linear

models. The base model included only logFCmRNA (and the

intercept) as predictor variable for the logFCprotein. miRNA target

sites were then included in order to increase the variance

explained by the model. Of the 147 secreted proteins analyzed

by Molina et al., 111 genes were represented in our expression

dataset (total and polysomal RNA), and of the 280 nuclear

proteins, 214 were found in our set. In addition, we determined

the relative transcript abundance per gene in our dataset (using

cuffdiff, see 5). Once we established the miRNAs targeting those

transcripts (weighting by transcript usage) and the logFC values for

each gene, we predicted the effect of each miRNA on protein level.

Hereinafter, when we mention models ‘‘including/considering

miRNAs’’, we are referring to models, which incorporate the effect

of the differences in miRNA target sites. First, models including

each miRNA individually were constructed (694 miRNAs in total),

then all combinations of two to five miRNAs were included in

models. The best models were selected based on BIC (Bayesian

Information Criterion).

Table 1 shows linear model results for secreted and nuclear

proteins with polysomal and total RNA fractions. The base model

(the effect of logFCmRNA on protein change without considering

any miRNAs) is shown, as well as two single miRNA models (per

comparison: polysomal/total and secreted/nuclear) and the best

model by BIC (including one or two miRNAs).

The variance explained by the models increases substantially

when the effect of specific miRNAs is incorporated. For example,

for polysomal secreted proteins, the base model explains 15:5% of

the variance, while 32:1% is explained by the two-miRNA model.

The effect of miR-130b and miR-558 on the logFCmRNA more

accurately reflects the observed protein logFC. These miRNAs

may have an important regulatory role in adipogenesis. Similar

results were obtained with the remaining datasets. In addition, we

also found that variances explained by polysomal fraction models

(secretome and nuclear) were in general higher than those using

total RNA (Table 1). This can be explained by the reduced effect

on mRNA destabilization in polysomal mRNAs (they are already

associated with polysomes). Finally, Table 2 shows all miRNAs

that were significant at an FDRv0:05 in single miRNA models at

day 5, in the different datasets. Several of these miRNAs

(underlined in the table) were previously found to be involved in

adipogenesis [31]. To assess the possibility that our results were

due to random sampling on the miRNA matrix, we performed a

Figure 1. Heatmap of the residuals of the model logFCprotein*logFCmRNA. Protein levels (logFC) of the set of secreted proteins are compared
against the logFC of our data set and the residuals of the linear model analyzed; polysomal fraction (A) and total fraction (B). All time points are
considered: day 1, 3, 5 and 7 (dendrogram on the top). Genes are on the rows (dendrogram on the left). Only data for genes with large absolute
residuals are shown.
doi:10.1371/journal.pone.0075578.g001
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bootstrap analysis as described in section 6. Our results ruled out

this possibility, since for all significant miRNAs, much less than

5% of random models had explained variances comparable to

BIC-selected ‘‘true’’ models. Fig. 2 shows an analysis indicating

how many times each miRNA wins, comparing explained

variances using ‘‘true’’ over random models (R2 values are color

coded). The miRNAs that win at least 95% of the times generate

the best fitting models (more variance explained), and are shown in

red. These miRNAs (red) could be distinguished from those

winning in random models (w5%). Explained variances for both

miRNA groups were compared and the differences were found to

be statistically significant (pv1 � 10{20, Kruskal-Wallis test);

miRNAs winning in true models (w95% of the times) usually

explain much more variance than miRNAs winning in random

models (see Fig. S2).

4 Consequences of including miRNAs and alternative
transcripts

While the effect of logFCmRNA is significant for the secretome

set (both fractions), it is not for the nuclear set (both RNA

fractions), as shown in Table 1. Significant logFCmRNA coefficients

are higher for polysomal than for total RNA, which is expected

since polysomal RNA reflects protein levels more accurately. Fig. 3

summarizes results for the best BIC models for the log-fold change

in secreted proteins on day 5 with respect to day 0, for polysomal

and total RNA. Fig. 3, (A) and (C) show the distribution of genes

when comparing logFCmRNA with logFCprotein not including the

miRNA effect (base model). Fig. 3, (B) and (D) show the model

including the effect of miR130b and miR-558 (polysomal) and

miR-150* (total). While the base model performs poorly in

predicting behavior of several genes (colored dots), in that they

deviate from the predicted model line, our model shifts them

towards a more expected position. In addition, among the shifted

genes several established adipogenesis genes were found: FABP4,

FABP5, LPL and ADIPOQ.

The coefficient for logFCmRNA is low in the base model for both

RNA fractions, ca. 0:377 (polysomal) and 0:209 (total). This

coefficient decreases even more in our models. This indicates a

range compression comparing protein fold-change with mRNA

fold-changes (in log-log scale). This might be unexpected,

however, translational efficiency (the number of protein molecules

produced per mRNA molecule) may decay with the number of

transcripts (see Appendix S1 (B) for more details). In fact, several

studies have shown a decrease in translational efficiency

[27,28,32], observed as a linear trend in the dot plot of absolute

protein quantity vs mRNA quantity. Furthermore, as we show in

Appendix S1 (A), the slope of this relation (1 indicating no

decreasing translational efficiency with mRNA quantity, and 0 a

complete decrease) is identical to the coefficient of logFCmRNA in

the linear models we have fit here.

Regulatory features we found help to explain protein level

changes seen during adipogenesis, even though we used a

limited data set. For this reason, in addition to analyzing

significant miRNAs acting as predictor variables in protein-

mRNA logFC relationships, we also analyzed the distribution of

all miRNAs in all genes (with RNAseq data) having alternative

transcripts.

5 Multiple miRNA functioning together in regulation
Evidence shows that multiple miRNAs may act together to co-

regulate specific genes for normal function [33–36]. We investi-

gated co-occurrence of miRNAs in our data set, and found

established as well as novel regulatory correlations between them.
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In addition to the co-occurrence in the linear models described

before, we now explored the correlation of miRNA occurrences

in the different transcripts analyzing the presence/absence

matrix of miRNAs by transcript, weighted by transcript usage

differences between IN and CT inside genes (see subsection 7).

Based on the total RNA fraction (reflects status of all

transcripts, e.g. before degradation) we observed some miRNA

pairs with significant correlations. We describe four of the cases

found in our study. In all cases, we restricted our analysis to

transcripts (rows in the matrix) in which at least one miRNA

(of the two per comparison) is present and we compared the

correlations obtained with the presence/absence matrix (1 and

0) with the values obtained with the matrix weighted by

transcripts usage. First, the presence/absence matrix for miR-

204 and miR-211 target sites was considered and a correlation

was determined r~0:044 (pw0:15). When using the weighted

matrix, we obtained a correlation value of r~0:76

(pv1 � 10{15). Similarly, for transcripts targeted by miR-17

and miR-93, the correlation using the presence/absence matrix

was r~0:24 (pv1 � 10{15), whereas the correlation with the

weighted matrix wasr~0:91 (pv1 � 10{15). For transcripts

targeted by miR-17 and miR-20a a negative correlation is

observed using the presence/absence matrix (r~{0:79, p-

valuev1 � 10{15), however considering weighted data a

significant positive correlation is observed (r~0:57,

pv1 � 10{15). Pair miR-34 and miR-449 presents a negative

correlation in both cases (r~{0:23, pv1 � 10{15 and

r~{0:79 presence/absence matrix, pv1 � 10{15 for our

weighted data).

6 Alternative transcripts in relevant genes from other
sources: PluriNet genes

The PluriNet is a protein-protein network with 299 members

common to pluripotent stem cells based on gene expression

profiles of 150 human cell samples. Such molecular network is

believed to be involved in the differentiation and self-renewal of

pluripotent stem cells [24].

We investigated 39UTR length distribution of PluriNet tran-

scripts for IN vs CT conditions. Similar trends were observed for

the total and polysomal fraction. We found that positive

differences correspond to longer 39UTR under IN conditions,

and negatives the converse situation (zero indicates no differences),

when considering the weighted differences in length (as deter-

mined in 4). We first ranked all genes by 39UTR length

differences, and identified PluriNet genes within the ranking. As

shown in Fig. 4, PluriNet genes accumulated near small negative

differences but distributed evenly for all positive values. Of the 299
Plurinet genes, 216 were found in our dataset. 123 had positive

differences in length (39UTR longer in IN) and 88 negative

(39UTR longer in CT) with 5 having no differences. GO analysis

of the 88 negative genes resulted in the following over-represented

terms: metabolism of non-coding RNA (pv1:1 � 10{2), snRNP

assembly (pv1:1 � 10{2), loading and methylation of Sm proteins

onto SMN complexes (pv1:1 � 10{2), RC complex during G2/

M-phase of cell cycle (pv1:55 � 10{2). In the set of positive

correlated genes, one enriched term was found: nuclear part

(pv2:08 � 10{3).

Interestingly, according to the Cochran-Mantel-Haenszel sta-

tistic (with FDR,0.01) the following PluriNet genes showed

Table 2. Significant miRNAs at day 5 as obtained from the linear univariate model.

Polysomal RNA Total RNA

secreted miR-103,miR-107,miR-130a,miR-130b miR-103,miR-107,miR-130a

miR-142-3p,miR-144,miR-148a miR-130b,miR-142-3p,miR-144

miR-148b,miR-150*,miR-152,miR-15a miR-150*,miR-152,miR-15a

miR-15b,miR-16,miR-190b,miR-195 miR-190b,miR-19a,miR-19b

miR-19a,miR-220c,miR-28-3p,miR-29a miR-210,miR-220c,miR-26a

miR-29b,miR-29b-2*,miR-29c,miR-301a miR-26b,miR-27a*,miR-28-3p

miR-301b,miR-302a,miR-302d,miR-338-5p miR-29a,miR-29b,miR-29b-2*

miR-33a,miR-33a*,miR-33b,miR-340 miR-29c,miR-301a,miR-301b

miR-486-5p,miR-509-5p,miR-510,miR-551b* miR-338-5p,miR-33a,miR-33a*

miR-553,miR-558,miR-569,miR-574-5p miR-340,miR-361-5p

miR-589*,miR-628-5p,miR-633,miR-672 miR-486-5p,miR-509-5p

miR-768-3p,miR-768-5p,miR-891b miR-510,miR-551b*,miR-553

miR-558,miR-569,miR-574-5p

miR-575,miR-582-3p,miR-587

miR-589*,miR-604,miR-607

miR-628-5p,miR-672

miR-768-3p,miR-768-5p,miR-891b

nuclear miR-143*,miR-16-2*,miR-185*,miR-20b* miR-100,miR-106b,miR-10b*,miR-185*

miR-346,miR-372,miR-378*,miR-587 miR-193a-5p,miR-222*,miR-28-5p

miR-372,miR-433,miR-507

miR-523,miR-548b-3p,miR-551b

miR-576-5p,miR-621,miR-885-5p

Set of significant miRNAs in each data set. Underlined miRNAs correspond to those found in Zhang et al. (revision on miRNAs involved in adipogenesis) [31].
doi:10.1371/journal.pone.0075578.t002
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significant 39UTR length differences between IN vs CT: PSMA3,

PSMA4, PSME3, proteasome assembly (subunits and activator),

HSPA8 (heat shock 70 kDa protein 8), SNRPF (small nuclear

ribonucleoprotein polypeptide F), SUMO1 (small ubiquitin-like

modifier which promotes SUMOylation), TMEM258 (transmem-

brane protein 258) and SNRPE (small nuclear ribonucleoprotein

polypeptide E). Only SNRPE had a positive correlation, while the

others had a negative correlation.

Discussion

We previously showed important differences in mRNAs

changes comparing polysomal and total fractions during adipo-

genesis [12]. Furthermore, mRNA changes were poorly correlated

with observed protein changes during differentiation [23].

Altogether, these results point to a very important role for post-

transcriptional regulation in adipogenesis. To gain deeper insight

into the mechanisms involved, we explored the differences

observed in alternative transcript usage focusing on differences

in the 39UTR regions. These are relevant since they have well-

known regulatory features, particularly involving small non-coding

RNAs. An example showing how different miRNA binding sites

can be generated in the 39UTR of alternative transcripts is shown

in Fig. 5. The gene illustrated is RER1, which is one of the

significant genes in the polysome fraction in this study having

alternative transcripts during adipogenesis. As indicated longer

39UTRs may have additional miRNA binding sites.

Our results show that significant differences in transcript

isoforms arise by APA during adipogenesis. A trend towards

longer 39UTR was observed in both RNA fractions, total (18/11

bases) and polysomal (20/12 bases). We proposed that this small

differences in length were still sufficient for the generation of new

miRNA binding sites. We tested this, by analyzing the pairwise

differences between the 39UTR length of transcripts and the

corresponding differences in miRNA binding sites, for each gene.

Our preliminary analysis showed that for the differences of interest

(20, 18, 12 and 11 bases), out of the 16937 genes analyzed, 1235,

1204, 1132 and 1112 genes, respectively, differed in at least one

miRNAs binding site.

The difference in the total RNA fraction is also consistent with

the number of genes displaying a positive trend (39UTR length

IN.CT), which is significantly higher than those showing a

negative trend. Regarding trend-length differences comparing IN

and CT conditions, 182 genes showed statistically significant

trends (FDRv0:01): 114 had a positive correlation value and 68 a

negative value. Very similar trends were also observed for

correlation values in the polysomal fraction. Two adipogenesis

relevant genes, FABP4 and WNT2, appeared to exhibit APA and

differential 39UTR length during differentiation in our previous

study [12] by visually inspection. Here we confirmed these results

by analytical methods. In our earlier work, the FABP4 gene

exhibited a much longer 39UTR under IN compared with CT

conditions. The WNT2 gene in contrast showed the opposite

behavior having a longer 39UTR under CT conditions. Results

obtained in this study showed a (positive) difference of 103 bases

and a significant correlation value of *0:10 for the FABP4 gene,

and for WNT2, a (negative) difference of {407 bases and a

significance correlation value of *{0:48.

A protein-protein network was previously described for

pluripotent stem cells (Plurinet) [24]. Construction of the network

was based on gene expression profiles for 299 human proteins. We

analyzed the distribution of differences in 39UTR length for

Plurinet genes having expression values in our dataset (216 in 299).

As shown in Fig. 4, the distribution of length differences

Figure 2. Bootstrap to asses our results for each RNA fraction and each protein set. Bootstrap results for total RNA fractions are shown in A
(nuclear) and B (secretome). Polysomal fraction is shown in C (nuclear) and D (secretome). For each such pair of conditions, we performed a bootstrap
analysis as explained in 0.6. For each miRNA we permute the values of the genes and calculate the explained variance from the resulting linear model.
This procedure is repeated 1000 times. The y-axis represents how many times the ‘‘true’’ miRNA wins over the random model. The x-axis represents all
miRNAs. The colors, from red to green, represent the explained variance from the current ‘‘true’’ model. It can be observed that the miRNAs win
almost all times (the larger bars, almost reaching 1), explain the larger variance, and hence produce the best models (red).
doi:10.1371/journal.pone.0075578.g002
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substantially deviates from the behavior of all genes. In particular,

genes with much longer 39UTRs in control cells compared with

induced cells were under represented. Additionally, we found an

enrichment of the term ‘‘metabolism of non-coding RNA’’ among

genes with 39UTR length CT.IN, which could be associated with

post-transcriptional regulation.

The dataset of Molina et al., was analyzed to understand the

potential role for APA in protein changes [23]. Even though the

cell line used by these authors was murine, this dataset was the

most suitable available to compare with our RNAseq experi-

ment. Several studies indicated a reasonable conservation in

regulatory networks between human and mouse [29,30].

Comparing differences between logFCprotein and the predicted

protein quantity according to the logFCmRNA (logFCpredicted ),

some large residuals (gene differences) were observed using this

dataset (Fig. 1). Adipogenic relevant genes FABP4, GNS,

TPM1, TPM3, KRT34, TMSB10 and ZYX were among genes

with larger negative differences, i.e, logFCproteinvlogFCpredicted .

On the other hand, residuals with positive differences

(logFCproteinwlogFCpredicted ), include LUM, PSAP, QSOX1,

COL15A1, POSTN, ENPP2 and LPL (total RNA fraction). In

addition, we have found that the observed differences (residuals)

do not correlate significantly with the absolute magnitude of

change in mRNA. As such the differences can’t be explained by

the expected compression of range (see section Appendix S1

(A)).

Clear differences were observed in APA isoform usage

comparing IN and CT conditions, as well as differences between

predicted fold change (by mRNA) and observed protein fold

change for some genes. To further investigate this discrepancy we

compared explained variances of base models just including

logFCmRNA as predictive variable, against different models that

incorporate miRNAs target site differences between transcripts as

co-variables. The rationale behind including these miRNAs is to

account for their potential effect on destabilizing or inhibiting

translation resulting in discordance between the observed proteins

and the mRNA levels. We have shown that hMSCs use their

transcripts differentially during adipogenesis. We were able to test

whether presence of miRNA binding sites is associated with

change in the fate of specific transcripts by incorporating

preferences for alternative transcripts (with alternative 39UTR

length) in our analyses. As summarized in Table 1, differences in

explained variance were striking (even after adjusting for model

complexity) when the effects of different miRNAs were introduced

in the models. As expected, polysomal logFCmRNA was higher

correlated with logFCprotein than the corresponding correlation in

total RNA. This can be seen in the explained variances of both

datasets, i.e., secreted and nuclear proteins. More surprising,

Figure 3. Linear models for day 5 secreted proteins represented graphically. (A, B) Polysomal fraction, (C, D) total RNA. (A) and (C): plot
representing logFCmRNA against logFCprotein. The dashed blue line is the best fitting line of the base model, logFCprotein against logFCmRNA. The
straight black line is the identity line (so you get an idea of the real coefficient of the model). The colored full dots are genes, which are moved after
applying the model with miRNAs. Hence, they represent genes that are better explained by our model. The arrows indicate the direction of the
movement. (B) and (D): plot representing our linear model including miRNA effect. In this case, the best (multivariate) model is shown: miR-130b and
miR-558 (polysomal) and miR-150* (total). Full dots are the genes that were corrected by our model, being now closer to the protein prediction line of
the model (red full line). Black identity line concurs with the red line. Note that the abscissas of (A) and (C) seem to have a compression of range with
respect to the plots below, (B) and (D). This is not a compression, since they are different x-axis: (A) and (C) hold logFCmRNA values, while (B) and (D)
logFCprotein.
doi:10.1371/journal.pone.0075578.g003
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however, is that changes in nuclear proteins were very poorly

correlated with changes in mRNAs (the coefficient for logFCmRNA

was never significant, even in absence of other co-variables). While

several reasons might account for this, mechanisms involving

protein translocation could be collaborating to this lack of

correlation.

A range compression of logFCprotein compared with logFCmRNA

can be seen in the slope of Fig. 3 (A and C) and in coefficients for

logFCmRNA in Table 1. If translational efficiency decreases with

increased mRNA levels (competition for scarce resources, e.g.,

ribosomes) in such a way that a linear trend is observed in log-log

scale when plotting amounts of protein vs mRNA, the observed

range compression would be expected (see section Appendix S1

(B)). In fact, this trend was observed in several studies [27,27,32]

and a coefficient of *0:50 for Saccharomyces cerevisiae was

determined [32]. We calculated a coefficient of *0:35 for

comparisons with the secretome dataset, a reasonable estimate.

We may be underestimating this coefficient since our comparisons

and analyses are between species (mouse and human). Moreover,

as we are only considering up to 214 genes, our coefficient may not

correspond to a global scenario in the cell. Finally, even though a

significant improvement in explained variances is found by

incorporating miRNAs in models, the small changes in

logFCmRNA coefficients indicate that the improvement in perfor-

mance is basically obtained by adjusting the prediction of ‘‘poorly-

behaved’’ genes. In addition, the linear models presented here also

reveal several genes whose regulation might be explained by

specific miRNAs included in the models. In particular, we

observed that the following genes were better fit by miRNA-

models than the base model: ENPP2, LPL, FABP4, KRT14,

TPM1, COL15A1 (polysomal RNA) and ENPP2, LPL, ADIPOQ,

FABP5, FABP4, NID1, GSTM2, COL15A1, POSTN, KRT14

(total RNA). In the case of polysomal RNA, miR-130b and miR-

558 were the miRNAs included in the model, whereas miR-150*

was the co-variable in the model considering total RNA. It is

worth mentioning, that we are only considering presence of

miRNA binding sites, the expression levels of the miRNAs

themselves is not included in our work.

Table 2 lists all significant miRNAs for which one-miRNA

models were constructed, and also indicates which are previously

mentioned as relevant for adipogenesis according to the revision of

Zhang et al. [31]. In particular, we found 8 significant miRNAs of

the 23 previously identified. Additionally, we found several

miRNAs involved in other differentiation processes not described

by Zhang et al. These include miR-142-3p, miR-16 and miR-15a

which are associated with (TPA)-induced differentiation of human

leukemia cells (HL-60) to monocyte/macrophage-like cells [37].

Also, miR-144 was implicated in erythroid differentiation [38] and

miR-148a, miR-26, miR-378, miR-486 and miR-29 were

identified in skeletal myogenic differentiation [39], and miR-10

Figure 4. 39UTR differences for PluriNet genes. On the x-axis one observes the ranking of 39UTR lengths as determined in section 1 of all genes
used for logFC calculations in the total RNA fraction. The ranking of genes belonging to the PluriNet are shown as densities (y-axis on the left).
Negative lengths (CT.IN) lie to the left of the red dashed line. Positive values are to the right of the green dashed line. The wide space between
those lines correspond to genes with no differences in 39UTR length. The median of the rankings is represented as a doted black line. Tick marks in
blue represent the ranking positions of the PluriNet genes. On top of the density plot the cumulative distribution of rankings is shown. The straight
blue line has slope 1 and intersect 0. Gray dots represent the cumulative ranking of the PluriNet genes. The y-axis to the right indicates the meassure
of this cumulative ranking. An under-representation of PluriNet genes with high negative values and a slight over-representation of positive values is
observed. Moreover, only marginal PluriNet genes are presenting values of 0.
doi:10.1371/journal.pone.0075578.g004

Alternative Polyadenylation during Adipogenesis

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e75578



was involved in endodermal differentiation [40]. Hence, miRNAs

identified using our in silico analysis were previously found to be

involved in several differentiation processes (including adipogen-

esis) by experimental methods.

Co-occurrence of miRNAs is not unusual; several miRNAs have

been found to work together in gene regulation. Based on

differences observed in alternative transcript usage, we explored

miRNA co-occurrence in adipogenesis. We have found several

strong associations in our presence/absence matrix weighted by

differences in transcripts usage. Here we discuss some examples.

Our primary analysis shows a statistically significant, but relatively

trivial (since they are homologous) co-ocurrence of miR-204 and

miR-211, whose common target is the Runx2 gene. miR-204/211

inhibits expression of Runx2, which inhibits osteogenesis and

promotes adipogenesis of mesenchymal progenitor cells and bone

marrow stromal cells [33]. We also observed a highly significant

association of miRNA pair miR-17 and miR-93. They belong to

the family including miR-17-5p, miR-20a, miR-93, and miR-

106a, are differentially expressed in developing mouse embryos

and have a controlling function in stem cell differentiation [41].

They are also key regulators of induced pluripotent stem cells and

play a role in reprogramming efficiency of such cells [34]. On the

other hand, miR-34 and miR-449 are negatively correlated in our

data set implying that the presence of one results in the absence of

the other. Both miRNAs belong to the same family; miR-449a, b

and c are strong inducers of cell death, cell cycle arrest and cell

differentiation; miR-34 is activated with expression of p53 protein

and miR-449 is induced by E2F1, a cell cycle regulatory

transcription factor. They are responsible for an asymmetric

feedback loop that keeps the balance between E2F and p53

functions. miR-449 helps to ensure normal cell function but is also

involved in maintaining a close interaction between cell differen-

tiation and tumor suppression [35].

In summary, in the present work we found interesting and

consistent differences in transcript isoforms used during adipo-

genesis. We found that, in general, induced cells had longer

39UTRs compared with undifferentiated hMSCs. Furthermore,

we characterized these differences by identifying genes whose

transcripts had important differences in miRNAs target sites.

Additionally, we demonstrated that by incorporating the effect of

several miRNAs and alternative transcript usage in linear models,

we were able to substantially improve prediction of logFCprotein

over the base model that only includes logFCmRNA. We need to

expand our dataset by obtaining more accurate proteomic data to

further corroborate our findings. Our results indicate that post-

transcriptional regulation plays a key role in differentiation.

Materials and Methods

1 Ethics statement
Samples were isolated and collected after obtention of written

informed consent, agreeing with guidelines for research involving

human subjects, and with the approval of the Ethics Committee of

Fundação Oswaldo Cruz, Brazil (approval number 419/07), as

previously mentioned in [12].

2 Sample description
We used samples described by Spangenberg et al. [12]. Raw

data is available under the accession number E-MTAB-1366 in

the ArrayExpress repository. Stem cells were obtained from

Figure 5. An example of how different microRNAs binding sites arise from alternative transcripts. The table shows the presence of the
miRNAs in the transcripts. The longer the 39UTR the more binding sites are seen.
doi:10.1371/journal.pone.0075578.g005
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adipose tissue of three obese human donors. hASCs were isolated,

cultured and characterized as previously described [42]. Briefly,

adipogenesis was induced with 6 day-cycles of induction/

maintenance over 21 days. Induction medium contained the

adipogenic inducers insulin, dexamethasone, indomethacin and

IBMX; maintenance medium contained insulin. Medium was

changed every 3 days. The degree of adipogenic differentiation

was determined by assessing cytoplasmic accumulation of triglyc-

erides by staining with Oil Red O or Nile Red (Sigma-Aldrich).

Samples were taken at time point 0 (control samples, CT) and then

after three days (induced samples, IN).

A total of 13 samples were sequenced with SOLiD4 System

(Applied Biosystems), 7 CT (2 polysomal-associated RNA and 6

total RNA samples) and 6 IN (3 polysomal-associated RNA and 3

total RNA). Table 3 shows an overview of samples. The proteomic

data used in this study is from Molina et al. [23]. They quantified

two sets of 3T3-L1 murine proteins with SILAC: 280 nuclear and

147 secreted proteins, with a total of 427 proteins. These were

analyzed during adipogenesis (at day 0, 1, 3, 5 and 7).

While our RNA-seq data is from human donors, nevertheless

we decided to compare it against murine proteomic data. Of

course, this assumes a high conservation at protein level between

this two organisms in the involved networks, a fact relatively

supported by recent studies [29,30]. Furthermore, at transcrip-

tional level, some studies have shown that a conservation is also

seen for several genes [43].

3 Primary analysis of SOLiD RNA-seq samples
Table 3 summarizes results of the mapping procedure with

tophat2 and cuffdiff. We obtained a median of 52% mapped reads in

the 13 samples. Information on transcript usage for 62134 ensembl

gene ids was obtained from cuffdiff for total and polysomal RNA

samples. These were filtered according to the quality status of

transcripts, because the low number of reads might compromise

determination of FPKM. After filtering we obtained 61381 for

both sets, polysomal and total RNA. From those genes, 21647
have annotated 39UTRs according to ensembl annotation,

corresponding to 74803 transcripts.

4 Summarizing transcript differences
We calculated the relative frequency of each transcript for each

condition (IN and CT), and weighted the transcript 39UTR length

by the differences in frequency (we did this for each gene). To

assess the significance of the differences observed above, we tested

our data using the Cochran-Mantel-Haenszel statistic, a test of

linear trend alternative to independence [26], which is more

sensitive than a standard x2 test if a linear trend holds.

Additionally, for each gene we calculated and analyzed the

Pearson-r distribution between 39UTR length and condition

(CT~0, IN~1) [26].

5 Mapping and annotation
13 samples were mapped onto the reference genome (hg19

GR37p2) using tophat2 [44]. cufflinks [45] v2.1.1 was then used for

transcript assembly. Determination of isoform abundance was

done with cuffdiff v2.1.1. The annotation file used for counting was

based on the genome version Hg19 Gr37p10 (August 2012),

downloaded from the ensembl. The 39UTR annotation file was

also created from the ensembl (version Hg19Gr37p10, 15 August

2012) human gff annotation file. The miRNA target information

considered is the one included in the R package microRNA, from

Gentleman and Falcon [46], which is also based on ensembl.

Currently, it contains a total of 694 miRNAs targeting a total of

34507 transcripts.

Mapping, gene expression assessment and differential expres-

sion determination in our earlier work was performed using the

Rsubread and edgeR R packages.

6 Linear model for correlation of microRNAs with protein
levels

We developed a linear model approach to show the influence of

miRNAs targeting 39UTR regions of transcripts on respective

protein expression levels.

Our starting point is data generated from cuffdiff software. An

abundance normalized measure, FPKM, is first obtained for each

transcript isoform which represents the number of fragments per

kilobase per million fragments falling on each feature (e.g.,

Table 3. Mapping statistics of RNA-seq.

donor condition raw data
reads for
mapping mapped unmapped junctions %

61 CT_poly 15105571 15041140 8026275 8462131 38127 53:6

61 IN_poly 18367050 18280311 10057455 10359395 32762 55:2

67 CT_poly 40032577 39862820 19398037 23642317 40995 48:8

67 IN_poly 148700586 147993700 55932659 103696209 37807 37:8

67 CT_total 8883206 8845973 4436690 5185133 39802 50:6

70 CT_poly 17473812 17403946 9415117 9862766 39336 54:3

70 IN_poly 32280923 32151368 16831536 19327229 32614 52:5

70 CT_total 121079661 120741759 58016204 71585612 39275 48:1

61 IN_total 31667090 31573343 16498438 18437894 57296 52:4

67 IN_total 27685080 27615016 13794780 16630549 53312 50:1

70 IN_total 60059063 59886179 31756854 34628161 47819 53:1

61 CT_total 22644356 22584805 11745550 12531817 54097 52:2

67 CT_total 34358013 34267292 19408351 19849852 32832 56:7

Mapping data of SOLiD runs. Following data is shown: donor number, condition considered (CT or IN, and polysomal or total RNA), number of raw reads obtained from
the sequencing process, number of reads considered for mapping, number of mapped reads, unmapped reads, and the percentage of mapped reads.
doi:10.1371/journal.pone.0075578.t003
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transcript). A FPKM value is calculated for each condition and

each transcript, which allows determination of differential

isoform usage. The proportion of each transcript isoform for

each gene was determined under all conditions based on the

FPKM values. Proportions in control samples are subtracted

from the proportions in induced samples (IN) to determine the

differences in isoform usage. Differences in proportions of each

isoform for each gene (PropIN{CT ) and the presence of miRNA

binding sites in transcript 39UTRs (represented as 1 s in Fig. 6)

were determined. The PropIN{CT value is multiplied by the

corresponding miRNA binding site present and the resulting

vector is summed for a given gene (Fig. 6). This results in one

value for each miRNA binding site for each gene, which

represents a weighted mean for usage of that miRNA for that

gene. Large positive values (closer to 1) are miRNAs highly used

in IN samples, large negative values (closer to 21) are those

most used in CT. In other words, values closer to 1 correspond

to miRNAs targeting transcripts preferentially used in IN

samples, and those with values closer to 21 are preferentially

used in CT. Note that a given miRNA might have several

binding sites in a given 39UTR, nevertheless we considered one

or more sites as either present or absent with no multiplicity

value assigned. This is still a matter open for discussion, since

several studies have shown cooperative effects in the past [47–

50], while others suggested the opposite behavior in large and

comprehensive human and mouse datasets [18,51]. We have

also run our analysis considering the cooperative effect,

obtaining conceptually similar results (data not shown).

However, for simplicity reasons, we decided to consider the

simplest model accepted and used the present/absent values.

Since such values are determined for each gene and for each

miRNA, results can be presented in a table with

#of genes|#of microRNAs. For each day d (1, 3, 5 and

7), miRNA i and assuming e*N(0,1), we applied following

model:

logFCprotd
~logFCmRNAzmicroRNAized,i,

so we can determine the effect of each microRNA on protein

level.

The possibility that significant miRNAs coefficients arise by

chance was assessed by bootstrap analysis. We randomly assigned

the existing values to genes for each miRNA, and calculated the

explained variance from the linear model. We repeated this

procedure 1000 times. The proportion of times the variance

explained by the random model was larger than the ‘‘true’’ model

was determined for each miRNA for the four datasets (nuclear,

secreted vs total, polysomal). We arbitrarily set a threshold of 5%
(times the random wins over the ‘‘true’’) for each dataset and

compared the explained variances of the two groups (random vs.

‘‘true’’) using the Kruskal-Wallis test.

7 Determining significative correlation for co-occurring
microRNAs

Co-occurrence of miRNAs was investigated to demonstrate

regulatory effects. We analyzed the complete presence/

absence table of miRNAs in human (downloaded from the

microRNA R package). This table contains all transcripts

analyzed (34507) in which 1 is assigned if microRNAi is

present in that transcript, and a 0 if not, for all miRNAs

considered (694). We compared pairwise correlations for all

miRNAs based on that information and the same in our

weighted data set. This means, we also determined the

correlation of miRNAs, but weighted by proportion of the

transcripts used. If a transcript with a given miRNA is used

Figure 6. Representative table for constructing the model. For each gene we determined the proportion of FPKM in each sample and
calculated the differences (PropIN{PropCT ). Furthermore, we determined the miRNAs targeting transcripts (inside 39UTRs). A total of 694 were
considered. The isoform has a 1 in miRNA1 if that miRNA is present in that transcript, a 0 otherwise. For each miRNA (eg. miRNA1) corresponding to
one gene (e.g. geneX ), the PropIN{CT vector is multiplied by the presence/absence vector of miRNA1 (with assigned 1 s and 0 s). The intermediate
result is, thus, a vector having the respective PropIN{CT value if miRNAi was present in the isoform and 0 otherwise (~vv~f{0:3,0:3,0,0:1g). The
resulting vector~vv is summed giving a total value for miRNA1 for geneX (sum(~vv)~0:1). This represents the mean weighted usage of the miRNA in that
specific gene. Larger positive values indicate that the miRNA is used more (appears more often) in IN than in CT. Larger negative values represent a
higher usage in CT (values around 0 indicate same usage in both). The same procedure is done for each miRNA (so a vector of 694 values is assigned
to geneX ) and for each gene. The gene wise table below in addition to showing the resulting values calculated above, also shows the other data
needed for the model; the logFCprotein values (at day 3, 5 and 7, from Molina et al.) and the respective logFCmRNA values (our data).
doi:10.1371/journal.pone.0075578.g006
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only 40% of the time by the gene, the miRNA value assigned

would be 0:4, and not a simple 1.

Not all entries were used for each pairwise correlation; we

eliminate all entries in which both miRNAs had values of 0, i.e.,

pairwise-zero entries. Several of such entries exists, since not every

transcript has either one of the miRNAs considered (in most cases,

they have neither). With such strategy we have compared the

correlations found by the presence/absence table, and the ones

obtained by our weighted filtered data.

Supporting Information

Figure S1 Heatmap of the residuals of the model
logFCprotein*logFCmRNA of nuclear proteins. Protein levels

(logFC) of the set of nuclear proteins are compared against the

logFC of our data set and the residuals of the linear model

analyzed; polysomal fraction (A) and total fraction (B). All time

points are considered: day 1, 3, 5 and 7 (dendrogram on the top).

Genes are on the rows (dendrogram on the left). Only data for

genes with large absolute residuals are shown.

(TIFF)

Figure S2 Box plot to show the distribution of random
and ‘‘true’’ models in the bootstrap. All comparisons are

shown (polysomal-secreted, polysomal-nuclear, total-secreted,

total-nuclear). For each such dataset, bootstrap was performed,

and two groups were determined. Low-Random group holds

models in which ‘‘true’’ miRNAs data won over random sampling

of the miRNA values at least 95% of the time. The High-Random

group corresponds to miRNAs in which random sampling of

miRNA values produce models that are better than the ‘‘true’’

more than 5% of the time.

(TIFF)

Appendix S1 (A) Range compression is observed in protein log

fold-change (in our data), when logFCmRNA is considered as

predictor. The size of this effect is the translational efficiency (in

log-log scale) as a function of the quantity of mRNA. (B)

Messenger exponential decay with alternative target miRNA sites.

We show that the basic assumption underlying the way in which

we modeled the effect of miRNAs is an exponential decay of

mRNA as a function of differential target sites.

(PDF)
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