
Genetic diversity of wild populations of the grey
short-tailed opossum, Monodelphis domestica
(Didelphimorphia: Didelphidae), in Brazilian landscapes

FABIANA P. CARAMASCHI1,2, FABRÍCIA F. NASCIMENTO2, RUI CERQUEIRA1 and
CIBELE R. BONVICINO2,3*

1Laboratório de Vertebrados, Departamento de Ecologia, IB, CCS, Universidade Federal do Rio de
Janeiro, Rua Prof Dr Rodolpho Paulo Rocco, Caixa Postal 68020, Ilha do Fundão, 21941-901 Rio de
Janeiro, RJ, Brazil
2Genetics Division, Instituto Nacional de Câncer, Rua André Cavalcante, 37, 4° andar, 20231-050 Rio
de Janeiro, RJ, Brazil
3Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo
Cruz, Fiocruz, Av. Brasil, 4365, 21045-900 Rio de Janeiro, RJ, Brazil

Received 22 December 2010; revised 2 May 2011; accepted for publication 2 May 2011bij_1724 251..263

The characterization of the different taxa of the highly diverse genus Monodelphis is poorly understood, as is the
case of their distribution. Historically, taxonomic studies of Monodelphis have been restricted to a few or single
species, whereas molecular approaches have been used for estimating phylogenetic relationships between species.
We carried out phylogenetic analyses of 14 Monodelphis species, including Monodelphis domestica, based on
cytochrome b mitochondrial DNA sequences. Forty-five complete (1149 bp) sequences of this gene were obtained
from 39 specimens of M. domestica collected in 23 localities of the Brazilian Cerrado, Pantanal, and Caatinga
morphoclimatic domains; one of Monodelphis umbristriata, two of Monodelphis americana, and two of Monodelphis
dimidiata. A total of 72 haplotypes were analyzed, 48 only in M. domestica. Analyses were carried out in
conjunction with 46 other sequences retrieved from GenBank, including M. domestica, Monodelphis brevicaudata,
Monodelphis glirina, Monodelphis emiliae, Monodelphis peruviana, Monodelphis osgoodi, Monodelphis handleyi,
Monodelphis kunsi, Monodelphis americana, Monodelphis dimidiata, Monodelphis iheringi, Monodelphis reigi, and
Monodelphis adusta, with six other different didelphid species used as outgroups. Maximum likelihood and
Bayesian inference were similar in depicting phylogenetic relationships of different Monodelphis taxa. Two clades
of M. domestica were defined on the basis of these results. Genetic distance estimates ranged from 3.2% to 6.2%
between these clades of M. domestica. Population analyses were carried out to infer the likely demographic
scenarios and the relationship between M. domestica haplotypes. Median-joining and spatial analyses showed two
populations related to different morphoclimatic domains (Cerrado/Pantanal and Caatinga). These results indicate
a population structure in M. domestica and the possibility that this taxon might represent a species complex.
© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104, 251–263.
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INTRODUCTION

Monodelphis Burnett, 1830 is the most diverse genus
of the family Didelphidae, comprising 21 recognized
species of relatively small terrestrial opossums, with
short tail, small ears, and variable pelage pattern

(Gardner, 2005; Pine & Handley, 2008; Voss & Jansa,
2009; Solari, 2010; Vilela, Russo & Oliveira, 2010).
Monodelphis species occur in different environments,
including humid forests, and dry and wet lands, from
Panama to Argentina (Costa & Patton, 2006). This
genus is poorly understood, both with respect to the
delimitation of taxa and species distribution (Brown,
2004; Costa & Patton, 2006). Historically, taxonomic*Corresponding author. E-mail: cibelerb@inca.gov.br

Biological Journal of the Linnean Society, 2011, 104, 251–263. With 4 figures

© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104, 251–263 251



studies of Monodelphis are restricted to few or single
species, and descriptions have been based on the
external morphology of a small number of specimens
(Pine, 1975, 1976, 1977, 1979; Pine & Abravaya, 1978;
Pine & Handley, 1984; Pine, Dalby & Matson, 1985;
Lemos, Weksler & Bonvicino, 2000; Voss, Lunde &
Simmons, 2001; Solari, 2004, 2007). Recently, mole-
cular approaches have been used for estimating
the phylogenetic relationship between species of
this genus (Voss & Jansa, 2009; Lim et al., 2010;
Solari, 2010; Vilela et al., 2010; Carvalho et al.,
2011).

Monodelphis domestica (Wagner, 1842) was initially
described as Didelphys domestica based on samples
collected by Natterer in Brazil between 1817 and
1835. Wagner (1842) indicated ‘Cuyaba’ (currently
Cuiabá, State of Mato Grosso) as the collecting local-
ity of M. domestica and provided a short description of
external morphology and pelage pattern. Monodelphis
specimens with uniform greyish pelage are included
in this species, distributed from the north-east of
Brazil to the North of Argentina, across Paraguay and
Bolivia (Emmons & Feer, 1997; Eisenberg & Redford,
1999; Brown, 2004).

Studies on reproduction and growth of M. domes-
tica were carried out in specimens of the Museu
Nacional – UFRJ, Brazil (Bergallo & Cerqueira,
1994), whereas genetic studies showed polymor-
phisms in two different captive Brazilian populations
(states of Pernambuco and Paraíba), indicating the
need to implement a careful strategy in captive breed-
ing (van Oorschot, Williams-Blangero & VandeBerg,
1992). Divergence in allelic frequencies between
M. domestica from Brazil and Bolivia have also been
observed (VandeBerg & Robinson, 1997; Gouin et al.,
2005). However, despite such evidence suggesting
diversification, studies involving intraspecific varia-
tion have not been carried out to date. In this context,
a phylogeographical analysis of M. domestica popula-
tions may contribute to an understanding of didelphid
evolution since their origin in the Lower Paleocene
(Oliveira & Goin, 2006).

The wide distribution of M. domestica in South
America, as reported in different morphocli-
matic domains (Amazon, Cerrado, Chaco, Pantanal,
Campos, Caatinga; for definitions, see Ab’Sáber,
1977), is indicative of geographical variation. To test
this hypothesis and to improve the understanding of
phylogeographical patterns of M. domestica in Brazil,
mitochondrial DNA was used to evaluate the popula-
tion genetic structure of this species. mtDNA has
been widely used in phylogeographical studies, pro-
viding a robust indicator of evolutionary history as a
result of its rapid coalescence and fast evolution
(Patton, Reis & Silva, 1996). Intra-population and
spatial analyses were also performed to determine the

relationships among samples from different morpho-
climatic domains.

MATERIAL AND METHODS
SAMPLES AND DNA EXTRACTION

We analyzed 44 Monodelphis from 23 localities of the
Atlantic Forest, Pantanal, Cerrado, and Caatinga, as
well as transitions between these latter two morpho-
climatic domains (Fig. 1, Table 1). All specimens were
identified based on external and skull characters in
accordance with previous standards reported in the
literature (Costa & Patton, 2006; Lemos, Weksler &
Bonvicino, 2000; Pine, 1976, 1979; Pine, Dalby &
Matson, 1985; Pine & Handley, 2008; Voss & Jansa,
2009; Voss, Lunde & Simmons, 2001). Museum cata-
logue number (or collector’s field number) and collect-
ing localities were provided for vouchers and tissues
(Table 1). Voucher specimens were deposited in Museu
Nacional, Rio de Janeiro, Brazil (MN, MN-UFRJ,
Brazil) and Laboratório de Biologia e Parasitologia de
Mamíferos Silvestres Reservatórios, Instituto Oswaldo
Cruz – Fiocruz, Rio de Janeiro, Brazil (LBCE). Field
numbers refer to the researchers: LG and
CD = L. Geise (Departamento de Zoologia, Instituto de
Biologia, Universidade Estadual do Rio de Janeiro-
UERJ, Brazil); LMP = L. M. Pessoa (Departamento de
Zoologia, Instituto de Biologia, Universidade Federal
do Rio de Janeiro – UFRJ, Brazil); JAO = J. A. Oliveira
(Setor de Mamíferos, Departamento de Vertebrados,
Museu Nacional–UFRJ, Brazil); CEG = C. E. Grelle
(Departamento de Ecologia, Instituto de Biologia–
UFRJ, Brazil); MSL = J. P. Garcia (Departamento de
Zoologia, Instituto de Biologia–UFRJ, Brazil);
CRB = C. R. Bonvicino (LBCE, Instituto Oswaldo Cruz
– Fiocruz, Rio de Janeiro, Brazil). DNA was isolated
from livers preserved in ethanol by standard proce-
dures (Sambrook, Fritsch & Maniatis, 1989).

AMPLIFICATION AND SEQUENCING

The complete mitochondrial gene cytochrome b
(1149 bp, mt-Cytb) was amplified using primers
L14724 (5′-CGAAGCTTGATATGAAAAACCATCGT
TG-3′; Irwin, Kocher & Wilson, 1991) and CIT-REV
(5′-GAATATCAGCTTTGG-3′; Casado et al., 2010).
Amplicons were purified using the GFX PCR DNA
and Gel Band Purification Kit (GE Healthcare) and
sequenced using the same primers plus the internal
primers MVZ16 (5′-AAATAGGAARTATCATTCTGG
TTTRAT-3′; Smith & Patton, 1993) and CB-in2 (5′-
TGAGGACAAATATCATTYTGAG-3′; Cassens et al.,
2000). Electropherograms were manually checked
using CHROMAS, version 1.45 (MacCarthy, 1998)
and CHROMAS PRO, version 1.41 (Technelysium Pty
Ltd). Sequences were manually aligned in MEGA,
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version 4 (Tamura et al., 2007). Haplotypes were
checked using DNASP, version 5.10.01 (Librado &
Rozas, 2009).

ANALYSES, PHYLOGENETIC RECONSTRUCTIONS,
AND DIVERGENCE TIME ESTIMATES

Forty-six GenBank sequences were included in phy-
logenetic analyses, 13 of which were from Monodel-
phis species and from six didelphid species used as
outgroups (see Appendix, Table A1).

An index of DNA substitution saturation, Iss (Xia
et al., 2003), was calculated using DAMBE, version
5.2.5 (Xia & Xie, 2001) to identify phylogenetic
signals. This analysis was performed with the com-
plete dataset and with all outgroups and for first,
second, and third codon positions. Results were com-
pared to a critical Iss value (Iss.c) sensu Xia & Lemey
(2009).

Pairwise genetic distances were estimated with
Kimura’s two-parameters and p-distance with MEGA,
version 4, for estimating reliable distances for closely-
related taxa. Because both analyses produced similar
results, the Kimura’s two-parameter DNA substitution

model of evolution was preferred because it allowed
direct comparisons with previous studies of short-
tailed opossums (Patton & Costa, 2003; Solari, 2007,
2010; Carvalho et al., 2011). For phylogenetic recon-
structions, the DNA substitution model was selected
using MODELGENERATOR, version 0.85 (Keane
et al., 2006) and the Bayesian information criterion.

A phylogeny using the maximum likelihood (ML)
approach was reconstructed with PHYML, version 3.0
(Guindon & Gascuel, 2003). The tree topology space
was searched using the best of nearest neighbour
interchange and subtree pruning and regrafting algo-
rithms starting from five random trees generated by
BioNJ (Guindon & Gascuel, 2003; Guindon et al.,
2010). Branch support was calculated using the
approximate likelihood ratio test with Shimodaira–
Hasegawa-like interpretation because it is as con-
servative and accurate as bootstrapping but less
computationally intensive (Anisimova & Gascuel,
2006; Guindon et al., 2010).

Bayesian inference (BI) using the Markov chain
Monte Carlo (MCMC) method was used for phy-
logenetic analyses of the mt-Cytb gene using
MrBayes, version 3.1.2 (Huelsenbeck & Ronquist,
2001; Ronquist & Huelsenbeck, 2003). Two chains

Figure 1. Map showing the localities referring to the sequenced samples of Monodelphis domestica. A list of the assigned
localities is provided in Table 1. An open triangle indicates the type locality of the species (Cuiabá, MT state). Black
triangles represent the localities referring to Clade A, black squares represents localities referring to Clade B. Line A
corresponds to the first barrier and line B is the second barrier calculated by Monmonier’s algorithm.
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were run for 8 000 000 generations and one tree per
1000 generations was collected. Convergence and
mixing were evaluated using TRACER, version 1.5
(Rambaut & Drummond, 2007), and the initial 10% of
runs was discarded (burn-in). A majority-rule consen-
sus phylogram was subsequently constructed.

Intraspecific analysis
All population analyses were carried out with the
complete mt-Cytb sequence (1149 bp). NETWORK,
version 4.5.1.6 (http://www.fluxus-engineering.com)
was used for reconstructing a median-joining (MJ)
network (Bandelt, Forster & Rohl, 1999) using only
variable sites to evaluate population structure and
patterns of geographical distribution.

Analysis of mismatch distributions (distribution of
pairwise differences; Slatkin & Hudson, 1991; Rogers
& Harpending, 1992) were calculated with ARLE-
QUIN, version 3.5.1.2 (Excoffier & Lischer, 2010) to
estimate demographic events such as population
growth and/or range expansion. Percentile confidence
intervals were based on 1000 bootstrap replicates and
a level of significance at a = 0.05 (Schneider &
Excoffier, 1999). The sudden and spatial demographic
expansion models were tested using bootstrap and the
sum of square deviations (SSD) between the observed
mismatch distribution and its simulated data as a
test statistic (i.e. test of goodness-of-fit) (Schneider &
Excoffier, 1999; Excoffier, 2004). ARLEQUIN was also
used to calculate indices of nucleotide (p) and haplo-
type (h) diversity (Nei, 1987).

To distinguish models of population growth from
the null hypothesis of constant population size, Fu’s
Fs (Fu, 1997) and R2 (Ramos-Onsins & Rozas, 2002)
neutrality tests were calculated with ARLEQUIN and
DNASP, respectively. The probability (P) of neutrality
tests was calculated based on 1000 replicates. Fu’s Fs

and the R2 were used because they have been shown
to be the most powerful tests for detecting sudden
population growth or contractions (Ramos-Onsins &
Rozas, 2002; Ramirez-Soriano et al., 2008); with Fu’s
Fs being recommended for large population sizes and
R2 for small ones (Ramos-Onsins & Rozas, 2002).

Spatial analysis
All demographic analyses were carried out with the
complete mt-Cytb sequence (1149 bp). GENELAND,
version 3.2.2 (Guillot et al., 2005; Guillot, Mortier
& Estoup, 2005) was used to analyze population
genetic structure with a Bayesian model based on the
MCMC computational technique. The number of clus-
ters was determined by independently running the
MCMC ten times, allowing K (the number of popula-
tions) to vary from 1 to 10. The number of MCMC
interactions was set to 100 000 per run with a thin-
ning of 100. The uncorrelated frequency model setting

the uncertainty on coordinates to 0 km were used,
and the maximum number of nuclei in the Poisson–
Voronoi tessellation was fixed at 300 (default option).
Analyses were performed using variable sites only.

BARRIER 2.2 (Manni, Guerard & Heyer, 2004)
was used to compute the Monmonier’s maximum-
difference algorithm (Monmonier, 1973) to identify
biogeographical boundaries, or zones where genetic
differences between pairs of populations were largest
(Manni & Guérard, 2004). The implementation of
Monmonier’s algorithm in BARRIER was supervised
by specifying the number of biogeographical bound-
aries to be computed in advance. We used a similar
approach to Patten & Smith-Patten (2008) in choos-
ing a priori a maximum pairwise genetic distance
allowable between haplotypes. This cut-off was deter-
mined by the mean of the maximum and minimum
pairwise genetic distance between haplotypes.

RESULTS
SEQUENCE VARIATION, GENETIC DIVERSITY,

AND POPULATION DIVERGENCE

The complete mt-Cytb (1149 bp) was sequenced in
44 samples of four Monodelphis species, totalling
39 M. domestica, two Monodelphis dimidiata (Wagner,
1847), two Monodelphis americana (Müller, 1776),
and one Monodelphis umbristriata (Miranda-Ribeiro,
1936) and analyzed in conjunction with 46 GenBank
sequences.

Monodelphis domestica showed 48 haplotypes with
116 variations in 106 variable sites (96 transitions
and 20 transversions). Pairwise genetic distance
estimates ranged from 0% to 6.2%; nucleotide and
haplotype diversity are shown in Table 2. Three hap-
lotypes were shared by specimens from different
localities (Table 1). A low level of saturation was
observed in the dataset containing all sequences
and all outgroups, with Iss significantly smaller than
Iss.c (P < 0.000) for a symmetrical tree topology (Xia &
Lemey, 2009). Analyses of the first, second, and third
codon positions also showed a low level of saturation.

PHYLOGENETIC RECONSTRUCTIONS

ML and BI trees were constructed with HKY (Hase-
gawa, Kishino & Yano, 1985) plus a proportion of
invariable sites and gamma distributed substitution
rates (HKY+I + G) as the DNA substitution model
selected by MODELGENERATOR.

ML and BI (Fig. 2) showed the same topology, with
a high support for the monophyly of Monodelphis and
for all species, except for Monodelphis emiliae and
M. dimidiata species (Fig. 2). These analyses grouped
Monodelphis in four clusters: (1) ((Monodelphis reigi,
Monodelphis adusta) ((Monodelphis handleyi, Mono-
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delphis osgoodi) Monodelphis peruviana)); (2) (Mono-
delphis americana, Monodelphis umbristriata);
(3) (Monodelphis iheringi, (Monodelphis brevicaudata,
(Monodelphis glirina, M. domestica))); (4) (Monodel-
phis brevicaudata, (M. glirina, M. domestica)). A high
branch support was observed for (M. domestica, M. gli-
rina) (Fig. 2). ML and BI subdivided M. domestica in
two highly supported clades designated A and B. Clade
A grouped 27 haplotypes from 14 localities from the
Brazilian states of Minas Gerais (MG), Mato Grosso
(MT), Mato Grosso do Sul (MS), and Goiás (GO), three
localities in Bolivia, and one in Paraguay. Clade B
grouped 22 haplotypes from 17 localities in the Brazil-
ian states of Minas Gerais (MG), Piauí (PI), Ceará
(CE), Alagoas (AL), Bahia (BA), and Pernambuco (PE).

A MJ network (Fig. 3) recovered two well-defined
groups separated by 34 nucleotide substitutions, cor-
responding to clades A and B that were previously
observed in phylogenetic reconstructions (Fig. 2).
These similarities were also found in their respective
internal arrangements. In clade A, the group from MS
state was geographically structured, supported by 15
nucleotide substitutions and five exclusive haplo-
types. In clade B, HP33, reported in the complete
genome of M. domestica by Mikkelsen et al. (2007),
was connected to haplotypes from BA and AL states in
agreement with ML and BI analyses, indicating a
likely origin of this specimen in the north-east of
Brazil.

DEMOGRAPHIC HISTORY

Mismatch distribution in M. domestica showed curves
with similar SSD P-value estimates for both sudden
and spatial expansion models (only the results of the
sudden expansion model are shown in Fig. 4). Clade A
showed a unimodal curve and clade B showed a
bimodal curve, both with a high SSD P-value for
sudden expansion (Fig. 4).

The Fu’s Fs statistical neutrality test for clade
A and for clade B showed an estimate of -3.745
(P = 0.031) and -6.46 (P = 0.004), respectively, sug-

gesting population growth for both clades. On the
other hand, the R2 statistical neutrality test showed
different results for clades A and B; 0.124 (P = 0.318)
and 0.12 (P = 0.377), respectively, indicating the
constant size of both populations.

Using the mean of pairwise genetic distance, the
cut-off for stipulating the number of boundaries esti-
mated by the Monmonier’s algorithm was set to 0.03.
This allowed the identification of two barriers sepa-
rating M. domestica haplotypes (Fig. 1). The first one
separated haplotypes from the Caatinga from the
remaining samples from Cerrado and Pantanal. The
second barrier was internal to clade B, isolating HP01
and HP02 (CE State), HP09 (Northern BA State), and
HP10 (AL State) from the others. Haplotypes from
Piauí State were divided by the barrier, which coin-
cides with the results found in the phylogenetic analy-
ses (Fig. 2). Furthermore, all ten runs performed with
GENELAND provided a K of two clusters, where
all ten runs partitioned populations identically, as
observed in Figure 1, and also separated haplotypes of
Caatinga from Cerrado and Pantanal.

DISCUSSION

All phylogenetic analyses confirmed the monophyly
of the genus Monodelphis and showed a straight
relationship between M. domestica, an inhabitant of
nonforested habitats, and M. glirina and M. brevicau-
data, typical Amazon Forest taxons. Monodelphis
brevicaudata showed an evident genetic structure,
despite the small number of samples analyzed in the
present study. Similar findings have been recently
reported by Solari (2010) in the brevicaudata species
group.

Our phylogenetic reconstructions were similar
to those previously reported (Lim et al., 2010; Vilela
et al., 2010; Carvalho et al., 2011), except for the
M. adusta complex, comprising species from western
Amazonia and the Andean region. In the present
study, the M. adusta complex was divided into

Table 2. Genetic distance estimates and number of variable sites (V), transitions (Ts), transversions (Tv), and nucleotide
(p) and haplotype (h) diversity for Monodelphis domestica sequences

Clade

Genetic distances
(minimum –
maximum) V Ts Tv p h

A 0.000–0.039 76 54 10 0.024 ± 0.001 0.991 ± 0.013
B 0.000–0.044 58 52 8 0.018 ± 0.002 0.981 ± 0.023
A versus B 0.032–0.062 NA NA NA NA NA
All 0.000–0.062 106 96 20 0.033 ± 0.001 0.994 ± 0.006

NA, not applicable.
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two clades ((M. adusta, M. reigi) (M. peruviana
(M. handleyi, M. osgoodi))), whereas Lim et al. (2010)
found M. adusta as a sister lineage of (M. reigi (M. pe-
ruviana (M. handleyi, M. osgoodi))). These different
arrangements within the M. adusta complex might be
a consequence of the different species included in each
study, as well as differences in sample size. Solari
(2010) reported a different phylogenetic arrangement
based on 17 of the 22 or 23 recognized species of
Monodelphis and rejected the proposition of Monodel-
phis monophyly (Solari, 2007; Pine & Handley, 2008).

The present study, although using the same molecu-
lar marker and almost the same species dataset, was
based on the complete mt-Cytb sequence (1149 bp) in
contrast to the partial sequence (810 bp) used by
Solari (2010).

Monodelphis domestica was consistently subdivided
into two clades (A and B) in all analyses, in agree-
ment with the morphoclimatic patterns of their
respective distributions. Brazil encloses a large
variety of climates, soils, vegetations, drainage
basins, rocky outcrops, and mountains, contributing

Figure 2. Maximum likelihood tree for cytochrome b gene of several Monodelphis species. Support values correspond to
an approximate likelihood ratio test and Bayesian posterior probability, respectively.
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to habit diversity and, eventually, to the dispersal and
isolation of organisms. Clade A included specimens
from two domains, Pantanal and Cerrado. Pantanal
goes through a definite wet season when lowlands
are flooded by the waters of the Paraguay river basin,
whereas Cerrado is a mosaic of open woodlands,
savannas (arboreal grasslands), and open grasslands
that are highly variable in vegetational composition,
seasonal precipitation, soil fertility, drainage, and
fire exposure, showing a west boundary with the
Pantanal domain (Furley, 1999; Oliveira-Filho &
Ratter, 2002). Similarities between the vegetational
composition of Cerrado and Pantanal (Ab’Sáber, 1988;
Zeilhofer & Schessl, 2000) might explain why clade
A contains M. domestica from these two different
morphoclimatic domains.

Clade B included specimens from Caatinga, a
typical semi-arid habitat with well-defined rainy and
dry seasons. The Caatinga encompasses all states of
the Brazilian north-eastern region, with boundaries
with the Atlantic Forest in the south, the Amazon
Forest in the north, and the Cerrado in the west.

These clades (Fig. 1) were well separated from one
another in all analyses, suggesting a likely vicariant
event, although speciation without clear barriers
cannot be discarded (Aguiar et al., 2009). This sepa-
ration was detected by GENELAND (Fig. 1), as well
as by Monmonier’s algorithm (barrier A; Fig. 1). The
second barrier found by the Monmonier’s algorithm
does not exhibit a clear geographical explanation.

Neutrality tests did not show congruent results
because mismatch distribution and Fu’s Fs indicated
population expansions in clades A and B in contrast to
R2 that recorded a stable population size in both
clades. This latter possibility is more likely because

the sample size of each clade was small (15 haplo-
types in A and 18 haplotypes in B), and because the
R2 test provides a better assessment for small rather
than large samples (Ramos-Onsins & Rozas, 2002).
This scenario is in agreement with the MJ pattern
(Fig. 3) that indicated a clear distinction between
clades A and B but lacked a star-like pattern charac-
teristic of a recent diversification.

Our data showed that these populations belong to
two evolutionary lineages. The median genetic dis-
tance between clades (5%) suggested that, during this
time span, these lineages became independent evolu-
tionary units. Solari (2007) found a genetic distance
estimate of 9% between M. osgoodi and M. handleyi,
which are two sister species to the evolutionary
lineages of M. domestica.

The influence of past climatic oscillations in the
current distribution of several species and their
genetic diversity has been well documented for the
Quaternary (Novaes et al., 2010). Nevertheless, the
geomorphological status of current, open landscapes
of Brazil during the period involving the Late
Miocene and Pliocene is unclear (Hoorn et al., 2010).
In the Middle Pliocene, the warm equable climates
were replaced by recurring ice ages (Molnar & Cane,
2002), and it is likely that, during the Pliocene, these
steady climates went through wet periods, leading to
the isolation of M. domestica populations in different
regions.

Other studies found the same pattern of population
structure of M. domestica (Solari, 2010; Carvalho
et al., 2011), although the results were inconclusive
with respect to considering this taxon as a species
complex. Speciation involves disparate and discordant
points of view (Coyne & Orr, 2004), mainly when one

Figure 3. Median-joining of Monodelphis domestica. Circle sizes correspond to number of individuals carrying a given
haplotype (Table 1). Haplotype (HP) numbers are followed by the state abbreviation (Table 1). Black circles are median
vectors. Numbers in the middle of each connecting branch denote the number of nucleotide substitutions. Branches are
not shown to scale. A black arrow indicates the GenBank sample of M. domestica with the complete genome.
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or few markers are used for decision-making. We
agree with Solari (2010) that the mt-Cytb gene is not
the best marker for inferring distant phylogenetic
relationships; however, we consider it valid for
intrageneric analyses.

The results obtained in the present study indicated
that mt-Cytb was evolutionary conserved, with low
saturation, suggesting a potentially useful marker for
population analyses of didelphids. It is likely that, in
these marsupials, mt-Cytb evolution has been slower
than in Eutherian mammals.

The separation of the two populations of M. domes-
tica must be taken into account in studies involving
this species. Because it is widely used as an animal
model, its genetic background should not be ignored.

Captive bred colonies available in several countries
are likely to contain descendants of specimens from
one or both lineages, a possibility that should not be
overlooked. Additional studies, using other molecular
markers and morphological traits, are needed to vali-
date our proposition of two different evolutionary
lineages.
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APPENDIX
Table 1. List of specimens analyzed, including species name, GenBank accession, size of the mt-Cytb gene (bp), and
literature reference of each of the 41 sequences obtained from GenBank

Taxon GenBank Size (bp) Reference

Monodelphis domestica
AJ508398 1149 Nilsson et al., 2003
EU750746 640 Carvalho et al. (2011)
EU750749 640 Carvalho et al. (2011)
EU750751 640 Carvalho et al. (2011)
EF154194 728 Carvalho et al. (2011)
EF154196 770 Carvalho et al. (2011)
EF154205 1149 Carvalho et al. (2011)
EF154210 753 Carvalho et al. (2011)
HM998570-77 801 Solari, 2010

Monodelphis brevicaudata
AJ606455-58 800 Steiner & Catzeflis (2004)
AJ606461-62 800 Steiner & Catzeflis (2004)
HM106338 1146 Gutierrez et al. (2010)

Monodelphis dimidiata
EF154221 1122 Carvalho et al. (2011)
HM998569 822 Solari (2010)

Monodelphis emiliae
DQ385832 830 Solari (2007)

Monodelphis americana
GU112925 801 Agrizzi et al. (unpubl. data)

Monodelphis iheringi
GU112934 801 Agrizzi et al. (unpubl. data)

Monodelphis glirina
HM998559 830 Solari (2010)

Monodelphis peruviana
DQ385836 772 Solari (2007)

Monodelphis osgoodi
HM998587 807 Solari (2010)

Monodelphis handleyi
DQ386632 1149 Solari (2007)

Monodelphis reigi
FJ810210 1149 Lim et al. (2010)

Monodelphis adusta
HM998564 801 Solari (2010)

Monodelphis kunsi
EF154225 737 Carvalho et al. (2011)

Didelphis virginiana
NC001610 1149 Janke et al. (1994)

Thylamys elegans
AJ508401 1149 Nilsson et al. (2003)

Marmosa lepida
U34668 1149 Patton et al. (1996)

Marmosa (Micoureus) demerarae
U34673 1149 Patton et al. (1996)

Marmosa (Micoureus) regina
U34675 1149 Patton et al. (1996)

Caluromys philander
AJ628362 828 Steiner et al. (2005)
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