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Over 200 million people worldwide suffer from malaria every year, a disease that causes 584,000 deaths annually. In recent years,
significant improvements have been achieved on the treatment of severe malaria, with intravenous artesunate proving superior
to quinine. However, mortality remains high, at 8% in children and 15% in adults in clinical trials, and even worse in the case of
cerebral malaria (18% and 30%, respectively). Moreover, some individuals who do not succumb to severe malaria present long-
term cognitive deficits. These observations indicate that strategies focused only on parasite killing fail to prevent neurological
complications and deaths associated with severe malaria, possibly because clinical complications are associated in part with a
cerebrovascular dysfunction. Consequently, different adjunctive therapies aimed at modulating malaria pathophysiological pro-
cesses are currently being tested. However, none of these therapies has shown unequivocal evidence in improving patient clinical
status. Recently, key studies have shown that gaseous therapies based mainly on nitric oxide (NO), carbon monoxide (CO), and
hyperbaric (pressurized) oxygen (HBO) alter vascular endothelium dysfunction and modulate the host immune response to in-
fection. Considering gaseous administration as a promising adjunctive treatment against severe malaria cases, we review here
the pathophysiological mechanisms and the immunological aspects of such therapies.

M alaria exerts a heavy burden over human populations, with
an estimated 124 to 283 million cases and 584,000 deaths in
2013 (1). Currently, intravenous (i.v.) artesunate is the treatment
of choice in severe malaria cases in children and adults (2, 3).
However, despite the efficacy of intravenous artesunate, mortality
from severe malaria in general and from cerebral malaria (CM) in
particular remains high, at 18% for African children and 30% for
adults in Southeast Asia (2, 3). In addition, 11% of children who
survive CM show severe neurological deficits, and up to 25% can
maintain long-term cognitive deficits (4-8). Therefore, strategies
focusing only on parasite killing may not be sufficient to prevent
neurological complications and deaths related to severe malaria.

Accordingly, adjunctive therapies— defined as therapies ad-
ministered in combination with antiparasitic drugs that mod-
ify pathophysiological processes caused by malaria—are being
sought in order to mitigate complications caused by severe ma-
laria (9). Considering the fact that currently administered antima-
larial drugs often take 12 to 18 h to kill parasites, adjunctive ther-
apies could reduce the risk of neurocognitive sequelae and
mortality, particularly in patients with CM (10).

Different adjunctive therapies have been or are being tested,
including treatments aimed at modulation of the immune re-
sponse to infection (dexamethasone, intravenous immunoglobu-
lin), reduction of iron burden, reduction of oxidative stress, mod-
ulation of the prothrombotic state, and reduction of parasitemia
(blood transfusion), among others (reviewed in references 10 and
11). However, none of these adjunctive treatments has shown un-
equivocal evidence of improvement for patients in clinical trials,
and therefore none of them can be definitely recommended as a
treatment strategy (10, 11). Thus, pursuing new adjunctive ther-
apies for malaria remains a research priority.

It is in this scenario that the gas-based therapies for malaria
arise. The study of administration of gas therapies has advanced in
some areas, such as hyperbaric (pressurized) oxygen (HBO) for
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complicated wound healing (12-14) and nitric oxide (NO) for
acute respiratory distress syndrome (15), although not without
controversy (16, 17). Nevertheless, the use of gaseous therapy for
malaria is incipient. At the moment, only two phase II clinical
trials have been completed, both examining the effect of NO ad-
ministration for children with severe malaria (18, 19). Neverthe-
less, some in vitro and in vivo studies—using the experimental
cerebral malaria (ECM) murine model— have shed light on the
topic and opened perspectives for adjunctive therapies in malaria.
ECM is the result of the infection of susceptible mouse strains,
such as C57BL/6 and CBA, with Plasmodium berghei strain ANKA
(20). The relevance of this model is a matter of heated debate and
has been discussed in depth elsewhere (21-24). Of critical impor-
tance is the fact that in both human and murine severe malaria,
ischemia and hypoxia resulting from hypoperfusion play a key
role in pathogenesis, and in both cases hypoperfusion results from
vascular occlusion and dysfunction. Human severe malaria find-
ings, such as retinal hypoperfusion (25), impaired reactive hyper-
emia-peripheral arterial tonometry index (RH-PAT index; a mea-
surement of reactive vasodilation) (26), low NO bioavailability
(26), increased levels of plasma cell-free hemoglobin (27), ele-
vated asymmetric dimethylarginine-to-arginine plasma ratios
(28, 29), and low levels of plasma angiopoietin-1 (30), are closely
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mimicked in P. berghei ANKA-infected mice displaying severe
malaria (31-34). Since ischemia and vascular dysfunction are the
prime targets of gaseous therapies, the murine model of severe
malaria may work as a reliable surrogate to address these issues.
However, the limitations of any experimental model need to be
considered, with findings requiring subsequent confirmation in
human studies. Having these considerations in mind, and due to
the obvious restrictions imposed on studies in humans, experi-
mental models may represent valuable sources of insights and
establishing proof of concepts for the discovery of mechanisms of
pathogenesis and novel therapeutic targets. Herein, we review the
state of the art of the study of carbon monoxide (CO), NO, and
HBO as adjunctive therapies for malaria.

CARBON MONOXIDE

CO is physiologically produced as a by-product of the degradation
of heme, in a reaction catalyzed by heme oxygenase 1 (HO-1) and
which also produces Fe** and biliverdin (35). Although widely
known for its toxicity due to its high-affinity binding to hemoglo-
bin, CO has drawn scientific attention for its role as a signaling
molecule in the gastrointestinal tract, a paracrine mediator of
smooth muscle hyperpolarization, and an immunomodulatory
effector (35-37). The immune actions of CO take part in the “im-
munological web” of HO-1, the inducible form of heme oxygen-
ase, whose expression is upregulated in situations of cellular ex-
posure to oxidant agents, pathogens, and other stressors (35). The
colocalization of HO-1 expression and vascular lesions in brains
of patients that died from CM provides evidence of HO-1 induc-
tion (38), albeit not necessarily indicating increased or sufficient
enzymatic activity (39). In ECM, P. berghei ANKA-infected
BALB/c mice exhibited a higher expression of the heme oxygen-
ase-1 gene (Hmox-1) and HO-1 than did C57BL/6 mice and were
less likely to die of ECM (40). Furthermore, deletion of Hmox-1
rendered BALB/c mice susceptible to death by ECM (40). The
protective action of the augmented expression of HO-1 is believed
to take place through CO production and its binding of cell-free
hemoglobin (40-42). In malaria, cell-free hemoglobin is pro-
duced due to hemolysis, and its degradation leads to the formation
of free heme, a highly oxidant molecule proposed to be a key
mediator of blood-brain barrier (BBB) dysfunction, a hallmark of
CM (43, 44). In this regard, Pena et al. (41) developed a CO-
releasing molecule (CO-RM) that fully protected mice from death
due to ECM when administered before the onset of symptoms,
preventing inflammation and BBB disruption. The use of the
CO-RM in combination with artesunate improved survival for
83%, compared to artesunate alone, indicating the potential of
this molecule as an adjunctive therapy.

Nevertheless, the effect of CO and HO-1 in CM is a matter of
debate. Studies from Myanmar, Angola, and Gambia have found
an association between shorter (GT),, dinucleotide repeat poly-
morphisms in the Hmox-1 promoter region—correlated with
higher expression of the gene and higher levels of HO-1 in periph-
eral blood—and the incidence of severe malaria (45-47). The au-
thors of the Gambian study argued that while this observation
may simply reflect an adequate but insufficient response, the
higher induction of HO-1 in patients with shorter (GT),, repeat
alleles indicates that levels of HO-1 above a certain threshold
might directly participate in the disease pathogenesis (48). Such
deleterious effects might involve oxidative pathways via activation
of the neutrophil oxidative burst (46) and release of iron (48).

April 2016 Volume 84 Number 4

Infection and Immunity

Minireview

These findings highlight a problem in experimental models deal-
ing with CO and HO-1 in malaria, as inbred mice lack the vari-
ability of HO-1 (GT),, repeat polymorphisms (49).

Considering that in ECM the liver phase of malarial infection is
skipped (40, 41, 50), discrepancies in HO-1 levels between the
mouse model and human infections might occur (51). For exam-
ple, Epiphanio et al. found that when Hrmox-1"'" mice were in-
fected with sporozoites, instead of being directly inoculated with
blood-stage parasites, infection failed to develop, and inhalation
of CO by Hmox-1""* mice in this setting led to a 4-fold increase in
P. berghei liver infection (51). Given that malaria is diagnosed
during the blood phase of infection, HO-1/CO-based therapeutic
approaches possibly would not face the dilemma of increasing
parasite load in Plasmodium falciparum infection, but the same is
not warranted for species that produce hypnozoites, such as Plas-
modium vivax.

A major concern, however, for the application of CO-based
therapies is the gas intrinsic toxicity. CO poisoning is a leading
cause of unintentional poisoning (52), and carboxyhemoglobin
(COHD) levels as low as 3% are indicative of exposition in non-
smokers. Toxicity from free hemoglobin released during malaria
may be prevented by CO’s ability to bind hemoglobin, which is the
exact same mechanism that drives its toxicity. Yeo et al. (53) de-
scribed an association between COHDb levels and severity of ma-
laria disease in Indonesian adults; however, no such association
was found for Kenyan children (39). While in the former study
COHb might have been generally overestimated, there was a sig-
nificant increase in COHb levels from healthy controls with mod-
erately severe and severe malaria. While the smaller but significant
increase in COHDb in patients with moderately severe malaria
might indeed reflect a protective effect from an adequate increase
in HO-1 activity, further increases in COHb seem insufficient or
harmful (46, 53). Besides a possible harmful effect of HO-1 super-
activation, induction of COHb leads to a decrease in blood oxy-
gen-carrying capacity. In severe malaria patients, hemoglobin lev-
els are already reduced, imposing serious risks and limitations for
the use of CO as an adjunctive therapy (53).

NITRIC OXIDE

NO plays physiological roles in neuronal and vascular cells, regu-
lating vasodilation and blood pressure, among other biological
effects. It is produced by the activity of enzymes known as NO
synthases (NOSs), whose substrates are the amino acid L-arginine
and O,. Three NOS isoforms have been identified: neuronal
(NOS1), inducible (NOS2), and endothelial (NOS3). Both NOS1
and NOS3 are calcium-dependent enzymes expressed constitu-
tively, whereas NOS2 is expressed in response to acute inflamma-
tory stimuli (54). NO has been related to numerous pathological
conditions, including artery disease (55), cerebrovascular stroke
(56), sepsis (57), and ischemic injury (58).

Reduced NO bioavailability has been reported in human ma-
laria (59) and ECM (33), and this phenomenon could contribute
to the development of disease by impairment of endothelial func-
tion and vascular perfusion, as reviewed elsewhere (60). NO de-
creases the expression of endothelium activation markers and re-
duces the expression of adhesion molecules, such as ICAM-1 and
P-selectin, resulting in decreased vascular permeability (61) and
leukocyte and platelet adhesion (62).

Autopsy of CM patients revealed the sequestration of infected
red blood cells (iRBC) in the capillaries and postcapillary venules
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of multiple organs, suggesting a role for iRBC cytoadherence in
the pathogenesis of severe malaria (61, 63, 64). NO exposure led to
reduced iRBC adherence to endothelium under flow conditions in
vitro (65) as well as a decreased biomass of infected erythrocytes
on cerebral tissue in ECM (66). Thus, NO may play a role against
CM via antiadhesive effects.

Mice with ECM show widespread cerebrovascular constric-
tion, leading to marked ischemic hypoxia (67) and decreased
blood flow (31). In addition, pial vessels of mice with ECM show
impaired NOS1- and NOS3-mediated vasodilatory responses to
pharmacological stimulation (32). Evidence of vascular dysfunc-
tion has been documented also in human CM, with the observa-
tions of retinal vascular occlusion, hypoperfusion, and hemor-
rhage (25) and impaired vasodilation, along with low exhaled NO
levels (26). Several factors are thought to contribute to low NO
bioavailability, such as hypoargininemia (low plasma L-arginine
concentration) (68), increased concentration of NOS inhibitor,
and reduced expression of NOS (28, 59, 69).

Therefore, adjunctive therapies aimed at restoring NO levels
were developed. In P. berghei ANKA-infected mice, treatment
with the NO donor dipropylenetriamine NONOate (DPTA-NO)
prevented the neurological syndrome, with increased endothelial
barrier integrity and protection of the brain tissue from extrava-
sation and petechial hemorrhaging, but it led to hypotension in
mice (70). Treatment with S-nitrosylated glutathione (GSNO), an
endogenous, physiological NO donor, prevented ECM develop-
ment while having milder effects on blood pressure (71). Glyceryl
trinitrate (nitroglycerin; GTN) not only prevented ECM but also
worked as adjunctive therapy with artemether, markedly increas-
ing survival of mice with late-stage ECM compared to artemether
alone (72). The benefit in survival was associated with reversal of
cerebrovascular constriction, suggesting that the effect was due to
improved brain perfusion. Finally, novel hybrid drugs combining
dihydroartemisinin with NO donors were shown to be more ef-
fective than artemether in rescuing mice with ECM (73). The ben-
efits of NO donors, such as the ones described above, have not yet
been shown in human CM.

An alternative form of NO treatment is the inhalation of NO
(iNO), which is approved by the FDA for the treatment of respi-
ratory failure, hypoxia, and pulmonary hypertension (74). During
ECM, iNO treatment reduced the activation of endothelial cells,
decreased the number of parasites in the brain, and maintained
BBB integrity, and when combined with artesunate improved
mouse survival rates compared to artesunate alone (66). However,
it must be emphasized that mice were treated before the neuro-
logical syndrome was established. Given that iNO is used in the
treatment of other diseases, with a well-established safety profile
and low cost, along with positive results in animal models, it is an
attractive option for clinical tests in malaria patients. Based on
these advantages, two randomized phase II clinical trials in pa-
tients with severe malaria have been recently reported in Uganda
(18, 19, 75). The first study compared 88 children who received
iNO at 80 ppm with 92 children who received placebo (all subjects
received artesunate i.v.) and showed that iNO failed to reduce
angiopoietin-2 (Ang-2; a marker of endothelial dysfunction) lev-
els and had no effect on mortality (18). Methemoglobinemia did
develop in 25% of children in the treated group, but without se-
quelae. The second study compared 46 children receiving iNO at
80 ppm with 46 children in the placebo group, with similar results.
Plasma levels of Ang-2 and inflammatory cytokines remained
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similar between groups, and there was no difference in mortality
(19). Treatment with iNO resulted in increased levels of plasma
nitrate, and methemoglobinemia developed, but without se-
quelae. The fact that iNO combined with artesunate did not result
in a greater reduction of Ang-2 levels compared to artesunate
alone in these trials indicates that a measurable biological effect on
the endothelium was not achieved with this NO dose and route of
administration (69, 70). A major potential limitation with iNO is
that NO may not exert its expected effects systemically, rather
being restricted to the lung endothelium. In such a scenario, rapid
conversion of iNO to nitrate and other stable adducts may result
in decreased levels of bioavailable NO, although pharmacological
effects beyond the pulmonary vasculature have been reported in
other studies in humans (76). The use of better, more reliable
readouts of NO action in the systemic vasculature in these trials is
imperative to ensure that it is being properly delivered.

Infusion of L-arginine is another candidate for adjunctive
treatment based on increased NO levels. Patients with severe fal-
ciparum malaria treated with antimalarial drugs showed a corre-
lation between increased levels of L-arginine and the improvement
of endothelial function (77). Infusion of L-arginine improved NO
bioavailability without significant adverse effects on vital signs
(26). Despite these encouraging results, in patients with severe
falciparum malaria infusion of L-arginine at low doses over 8 h
failed to change lactate clearance time and RH-PAT (78). How-
ever, this was a small pilot study, and as such lacked sufficient
power to show beneficial effects.

Despite advances reported with NO therapy studies, the mo-
lecular mechanisms involved in induction of protection have not
been completely elucidated. Data from animal studies suggest its
main effect takes place by restoring vascular tonus and hence re-
versing cerebral ischemia/hypoxia (32, 70). Recent research dem-
onstrated in ECM that NO regulates Hmox-1 expression by a
mechanism involving the transcription factor Nfr-2 and conse-
quently CO production. The proposed mechanism is that CO pre-
vents Hb oxidation and heme release, while NO exerts a pro-
oxidant effect, preventing activation, proliferation, and expansion
of T cells and thus inhibiting a deleterious response to malaria
infection (50) (Fig. 1a and b). However, this remains to be further
confirmed for human disease.

HYPERBARIC OXYGEN

The inhalation of oxygen (95%) under normobaric (1 atmo-
sphere) conditions was found to be ineffective for the treatment of
malaria (79); therefore, an alternative form of O, delivery, as hy-
perbaric (pressurized) oxygen (HBO), has been developed. HBO
is defined as a treatment of exposure to oxygen (100%) at a pres-
sure greater than 1 atmosphere absolute (ATA) (80). It is the only
treatment for decompression sickness (80) and is recommended
for complicated wound healing (14). In addition, HBO is widely
used as an adjunctive therapy for many conditions, such as dia-
betic ulcer healing, traumatic brain injury, and ischemic stroke.
However, a recent meta-analysis of clinical trials for the latter
three conditions found no conclusive evidence for benefit to the
patient after HBO therapy (13, 81, 82).

HBO treatment is relatively safe (83, 84), and some studies
have shown it has anti-inflammatory activity (85-87). These fea-
tures support further research into HBO treatment as an adjunc-
tive therapy candidate for a wide range of diseases (88). Observa-
tions drawn from human studies suggest that HBO might be
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FIG 1 Effects of NO, CO, HBO, and H,S on cerebral malaria. (a) NO and CO inhibit endothelial activation, decreasing expression of adhesive receptors and
secretion of proinflammatory molecules. Consequently, sequestration of leukocytes and mature iRBC is blocked, as well as BBB disruption triggered by perforin
and granzyme released by CD8 ™ T cells. Proinflammatory molecules secreted by leukocytes may promote activation of platelets, which adhere to the endothelium
and initiate the coagulation process, a relevant event in cerebral malaria. Free heme, a toxic agent generated from free Hb oxidation during hemolysis, reacts with
NO and CO, producing metha- and carboxy-Hb, respectively. Besides promoting vasodilation, NO also induces HO-1 expression with the involvement of the
transcription factor nrf-2, and HO-1 breaks free heme, forming endogenous CO. (b) Some experimental results indicate that NO and CO lead to an immuno-
logical tolerance to parasites, inhibiting activation, proliferation, and differentiation of T cells. (c) Hyperbaric oxygen protects mice from CM by decreasing
proinflammatory cytokine levels and leukocyte sequestration in the brains of infected mice, which in turn could increase microvascular blood flow, decreasing
tissue hypoxia and thus preventing BBB disruption. (d) H,S is harmful to parasites. Thiolation of parasite proteins alters cellular metabolism, resulting in
generation of reactive oxygen species (ROS), which impair glycolysis and parasite respiration. EPCR, endothelial protein C receptor.

useful in the treatment of some bacterial and fungal infections, HYDROGEN SULFIDE

like purpura fulminans (89) and necrotizing fasciitis (90). How- 1,3 is a gas produced endogenously as a by-product of the me-

ever, only a few studies have investigated the application of HBO  (;0lism of the amino acid L-cysteine, which occurs via at least
to protozoan infections (91, 92), including ECM (93, 94).

Blanco and colleagues (93) demonstrated that HBO therapy
was neuroprotective in ECM. In that study, HBO treatment pre-
vented clinical signs and improved mortality for up to half of
treated mice. HBO treatment decreased mRNA levels of gamma
interferon, tumor necrosis factor alpha, and interleukin-10 and
reduced sequestration of v and af§ CD4* and CD8* T lympho-
cytes in the brain; these findings support its neuroprotective ef-

three enzymes: cystathionine (3-synthase, cystathione y-lyase, and
3-mercaptopyruvate sulfurtransferase. Considered a toxic gas,
H,S has emerged as an important signaling molecule, a gas trans-
mittor, influencing physiological and pathological processes (95—
97). Its pleiotropic effect has been reported in inflammation, neu-
romodulation, and apoptosis (98). Protective effects of H,S were
observed in animal models of atherosclerosis (99), shock (100),

fect. In addition, HBO therapy prevented BBB dysfunction and cardiac arrest (101), and cerebral ischemia (.102). Fast and slow
hypothermia and significantly decreased parasite burden of P. ber- donors of H,S (NaHS and GYY4137, respectively) were tested in
ghei ANKA-infected mice as well as in mice infected with P. berghei vitro against P. falciparum (strains 3D7, PA and HB3) and were
NK65 (a non-ECM strain) (93). These data pointed to the possi- ~ shown to inhibit parasitemia in a dose-dependent manner (103).
bility for HBO as an adjunctive therapy for CM. However, abetter ~ H,S acted against the parasite by directly altering its cellular me-
understanding of the mechanisms involved in the protection of tabolism. However, in vivo treatment did not prevent develop-
ECM by HBO is needed. Figure 1c summarizes current knowledge ~ ment of ECM or death of infected mice. This study indicated that
of mechanisms of pressurized O, treatment. H,S could contribute to protein thiolation and interfere with cel-
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TABLE 1 Gaseous treatments for cerebral malaria

Gaseous
molecule  Therapeutic delivery method ECM outcome Clinical trial outcome
CcO Inhaled CO Increased parasite load in liver (51); prevented ECM —
syndrome and BBB disruption (40)
Molecules releasing CO (CO-RM) Prevented ECM syndrome and death; protected —
mice from acute lung injury (41)
NO Donor of NO: dipropylenetriamine Increased survival and protected BBB disruption in —
NONOate ECM (70)
Donor of NO: GSNO Prevented ECM syndrome and death; decreased —
inflammation and edema in ECM (71)
Donor of NO: GTN Protected mice from ECM; when combined with —
artemether increased survival (72)
Artemisinin-NO donor hybrid Antiplasmodial activity; rescued mice from ECM —
(73)
Inhaled NO Increased survival and reduced systemic Safe but with no effect on mortality in children
inflammation in mice infected with P. berghei with severe malaria (iNO at 80 ppm) (18,
ANKA (66) 19, 75)
L-Arginine infusion o In severe falciparum malaria, it showed no
increase of NO endothelial production (78)
0, Hyperbaric oxygen Protected mice from CM, decreasing clinical —
symptoms and mortality rate (93)
H,S H,S donors Antiplasmodial activity; no effect on ECM at dose —

tested (103)

% —, no clinical trial data available.

lular redox balance, but the mechanisms were not elucidated (Fig.
1d). Although preliminary results with H,S have not shown excit-
ing results against malaria in vivo, a reformulation of the H,S
delivery system that allows a prolonged half-life may generate
promising results, opening perspectives for its use as an antima-
larial therapy.

Table 1 provides a summary of findings from both ECM and
clinical trials.

CONCLUSION

In spite of advances in malaria therapeutics, the morbidity and
mortality rates attributable to CM are still high. Therefore, an
adjunctive therapy preventing the complications, sequelae, and
deaths of CM patients is urgent. Gas-based therapies are an attrac-
tive complement for CM treatment, although the emphasis on the
toxic properties of some of the gases discussed in this review may
have limited their study. However, as more information about the
physiological roles of these gases emerges, greater scientific inter-
est builds on their research. NO is the most investigated among
the gas-based therapies; nevertheless, its beneficial effect is yet to
be validated in human CM. The investigation of the pleiotropic
activities of these molecules, which regulate a large number of
biologic processes, is needed, considering that cerebral malariaisa
multifactorial process. More intense research with these and other
molecules with therapeutic potential is necessary to open perspec-
tives to combat a disease that costs hundreds of thousands of lives
every year.
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