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INSTITUTO OSWALDO CRUZ 
 

PLANEJAMENTO RACIONAL DE FÁRMACOS APLICADOS À BUSCA E OTIMIZAÇÃO DE 
INBIDORES DO HIV-1 E DOENÇA DE CHAGAS 

 
RESUMO 

 
TESE DE DOUTORADO EM BIOLOGIA COMPUTACIONAL E SISTEMAS 

 
LUCIANNA HELENE SILVA DOS SANTOS 

O sucesso no planejamento de fármacos de novas moléculas bioativas está 
relacionado com o entendimento do alvo molecular e seu valor para com a doença 
que deseja ser combatida. Entender as interações importantes serve como guia para 
planejar e testar potenciais ligantes, e consequentemente, para selecionar 
características estruturais que serão incluídas na síntese combinatória de bibliotecas 
de compostos. Tendo isso em vista, nós propomos este trabalho em duas partes onde 
os usos de abordagens computacionais de modelagem molecular são aplicados em 
distintos alvos moleculares.  Na primeira parte, triagem virtual para a descoberta de 
novos compostos no sítio alostérico da transcriptase reversa do HIV-1 foi aplicado. 
Uma combinação de técnicas computacionais, envolvendo docking molecular, 
métodos de avaliação de desempenho, e métodos baseados na similaridade de 
ligantes, tornou possível a identificação de compostos candidatos extraídos de uma 
biblioteca de mais de dois milhões de compostos comercialmente adquiríveis. 
Propomos nesse trabalho vinte compostos que alcançaram boa pontuação de docking 
e possuem baixa similaridade entre si, tornando os distintos, para subsequentes 
avaliações. As interações desses compostos com o sítio de ligação mostraram-se 
similares com as ligações já determinadas em ligantes conhecidos, sugerindo que o 
método utilizado neste trabalho é apropriado na escolha de potenciais candidatos. Na 
segunda parte, é feita a investigação do comportamento dinâmico e das energias de 
um conjunto de inibidores não covalentes das enzimas cruzaína e rodesaína. Estados 
de protonação diferentes tanto dos resíduos catalíticos das enzimas (His162 e Cys25) 
quanto do ligante foram investigados por meio de dinâmica molecular de modo a 
elucidar o possível modo de ligação do inibidor não-covalente B95 e de uma série de 
análogos desse inibidor. As análises de dinâmica molecular apontam para a 
protonação de ambos resíduos catalíticos, conhecida como par iônico, junto com a 
protonação do ligante como o sistema mais favorável em um possível modo de 
ligação. Para os compostos análogos cálculo de energia livre foram realizados 
mostrando boa concordância entre os dados calculados e dados experimentais para 
uma das enzimas, a cruzaína.    
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INSTITUTO OSWALDO CRUZ 
 

COMPUTER-AIDED RATIONAL DRUG DESIGN APPLIED TO THE DISCOVERY AND 
OPTIMIZATION OF HIV-1 AND CHAGAS DISEASE INHIBITORS 

 
ABSTRACT 

 
PHD THESIS IN COMPUTATIONAL BIOLOGY AND SYSTEMS 

 
LUCIANNA HELENE SILVA DOS SANTOS 

A successful drug design of new bioactive molecules is related to the understanding 
of the molecular target and its value to the studied disease. The knowledge of important 
interactions might serve as a guide to plan and test potential ligands, and 
consequently, to select structural features to be included in the combinatorial synthesis 
of compound libraries. With this in mind, we propose this work divided in two parts 
where the use of computational drug design strategies was applied to distinct 
molecular targets. In the first part, we performed virtual screening of a large library of 
commercially-available compounds to discover new lead candidates of the HIV-1 
reverse transcriptase enzyme into the allosteric binding site. A combination of 
computational approaches, involving molecular docking, enrichment metrics, and 
compound similarity methods, made possible the identification of a set of candidates 
from a library of over two million commercially-available compounds. We propose in 
this work twenty compounds that have achieved good docking score and have low 
similarity to each other, making them all distinct for subsequent evaluations. The 
compounds’ ligand-receptor interactions were similar to the ones found in known 
inhibitors of reverse transcriptase which suggests that the method used in this work is 
suitable in choosing potential candidates. In the second part, we investigate the 
dynamic and energy behavior of a set noncovalent inhibitors of the enzymes cruzain 
and rhodesain. Different protonation states of the enzymes’ catalytic residues (His 162 
and Cys 25) and the ligand were tested by molecular dynamics simulations, to 
elucidate a possible binding mode of the noncovalent inhibitor B95 and a series of 
analogues of this ligand. The molecular dynamic analysis indicated that the protonation 
of both catalytic residues, known as ion pair, together with the protonation of the ligand 
was the most favorable in a possible binding mode. For the analogues compounds, 
free energy calculations were done, and the cruzain systems showed good agreement 
between calculated relative free energy of binding and experimental relative free 
energy of binding.  
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1 PART I 

1.1 INTRODUCTION 

1.1.1 Human immunodeficiency virus type 1 (HIV-1) 
The human immunodeficiency virus (HIV) was established in 1983 as the 

causative agent of the acquired immune deficiency syndrome (AIDS) (Barre-Sinoussi 
et al. 1983), which remains as a global health care issue. HIV has two known variants: 
HIV-1, which causes HIV infections worldwide; and HIV-2, mostly confined to the West 
Africa (Reeves and Doms 2002). In the natural course of HIV-1 infection, CD4+ T cells, 
essential for adaptive immunity, are severely deteriorated (Laskey and Siliciano 2014). 
When the number of these vital cells in the human immune system declines below a 
critical level, cell-mediated immunity is lost, and the body becomes progressively more 
susceptible to life-threatening opportunistic infections and cancers to prosper. 

The HIV-1 life cycle starts with the infection of CD4+ T cells by the virus. Viral 
entry is facilitated by the binding of the viral Env glycoprotein to two cell surface 
proteins: CD4 and a co-receptor (Laskey and Siliciano 2014). The co-receptor for HIV-
1 entry is either CC-chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 
(CXCR4) (Choe et al. 1996). Since HIV-1 is a retrovirus, its virions contain two copies 
of a single-stranded RNA (ssRNA) genome, which is reverse transcribed to double-
stranded DNA (dsDNA) by the viral enzyme reverse transcriptase and is integrated 
into the host genome by the viral enzyme integrase (Esposito et al. 2012). The 
integrated viral genome, the so-called provirus, functions as a cellular gene: in 
activated CD4+ T cells, the provirus is transcribed and translated to produce viral 
proteins, which combine with the viral genomic RNA to procedure new virions. After 
the production and release of new virions from the cell surface, the viral enzyme 
protease enables virion maturation by cleaving viral polyproteins into functional 
subunits to produce infectious particles (Laskey and Siliciano 2014). 

Thirty years of research and technological innovation have allowed validation of 
several steps of the HIV life cycle as intervention points for antiretroviral therapies. The 
highly active antiretroviral therapy (HAART) is the standard treatment for HIV-infected 
patients and consists in the combination of three or more HIV drugs to achieve maximal 
virological response and reduce the potential development of antiviral resistance 
(Asahchop et al. 2012). Currently, twenty-six antiretroviral drugs have been approved 
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by the United States Food and Drug Administration (FDA) (FDA 2013). These 
compounds are classified into six categories according to their target: nucleoside 
reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase 
inhibitors (NNRTIs), protease inhibitors (PIs), cell entry inhibitors or fusion inhibitors 
(FIs), co-receptor inhibitors (CRIs), and integrase inhibitors (INIs). 

Although the presently available antiretroviral therapy proved that HIV infection 
is treatable, some challenges remain (Broder 2010). One important factor is the 
constant occurrence of new infections in many regions of the world. According to the 
Joint United Nations Programme on HIV/Acquired Immune Deficiency Syndrome 
(UNAIDS), approximately 35 million people were living with HIV and an estimated 2.3 
million new HIV infections happened globally in 2012 (UNAIDS 2013). The life-long 
treatment brings another challenge. It can lead to long-term cardiac and metabolic 
complications such as dyslipidemias, insulin resistance, lipodystrophy, heart diseases 
and other related disorders (Filardi et al. 2008, Group et al. 2008, Silverberg et al. 
2009). Also, treatment can be impaired by the development of drug resistance strains 
when viral suppression is not maintained (Scarth et al. 2011). A vast number of viruses 
are produced daily in an infected individual and genetic variation within individuals has 
contributed to the emergence of diverse HIV-1 subtypes, complicating extensively the 
development of active drugs (Sarafianos et al. 2004). Therefore, current antiretroviral 
research efforts have been aiming at refining current therapies and discovering new 
drugs with lower toxicity and favorable resistance profile (Ghosh et al. 2008, Ghosh et 
al. 2011, Cao et al. 2014, Maga et al. 2010, Michailidis et al. 2014, Quashie et al. 
2012). 

1.1.2 HIV-1 RT enzyme 
The HIV-1 enzyme Reverse Transcriptase (RT) is a primary target for 

antiretroviral drugs. Today, a total of thirteen inhibitors act against it, including the very 
first drug used in HIV treatment, the NNRTI zidovudine (AZT) (Esposito et al. 2012). 
RT is the enzyme that converts the ssRNA into dsDNA provirus, which is afterwards 
imported into the cell nucleus to be integrated into the host chromosome (Esposito et 
al. 2012) with the help of integrase, another HIV enzyme. The catalytic steps are 
performed in the following order: (i) RNA-dependent DNA polymerization to synthesize 
an antisense (-) DNA strand, complementing the viral sense (+) RNA strand; (ii) RNase 
H cleavage of the RNA strand from the RNA-DNA complex; and  (iii) the DNA-
dependent DNA polymerization to synthesize dsDNA using the remaining antisense   
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(-) DNA strand as the template (Das et al. 2012). Other crucial activities of the 
retrotranscription process can be attributed to this highly effective enzyme: an 
endonucleolytic ribonuclease H (RNase H) activity and strand transfer (Liu et al. 2008).  

The mechanism of viral DNA synthesis is quite similar to other DNA 
polymerases (Steitz 1999), but not as accurate, since viral RTs lack the 3’ → 5’ 
exonucleolytic proofreading activity (Menendez-Arias 2009). Proofreading DNA 
polymerases, such as DNA polymerases δ, γ, and/or ε, are characterized by an 
average error rates about 10-6 to 10-7 (Matsuda et al. 2003), whereas those of RT lean 
towards to 10-100 times higher (Menendez-Arias 2009). It is believed that the error-
prone nature of RT, alongside mutations introduced by the host RNA polymerase, 
results in retroviral variation (Das and Arnold 2013). These factors might allow HIV to 
mutate rapidly, producing drug resistance strains in weeks after the treatment begins 
(Frankel and Young 1998). 

RT is a heterodimer (Figure 1) composed of two subunits of 560 and 440 amino 
acid residues, referred to as p66 and p51, respectively (Menendez-Arias 2013). These 
subunits share almost the same amino acid sequences. However, p51 lacks the 
catalytic activity and the RNase H domain, performing a structural support role and 
assisting p66 loading onto nucleic acid (Kohlstaedt et al. 1992). Unlike p51, p66 has a 
more flexible structure and contains the polymerase and RNase H active sites (Steitz 
et al. 1993). The polymerase domain resembles the shape of the human right hand 
(Steitz 1999) where the p66 subdomains are designated as “fingers” (residues 1-85 
and 118-155), “palm” (residues 86-117 and 156-236) and “thumb” (residues 237-318), 
as well as a “connection” subdomain (residues 319-426) that joins the DNA 
polymerase and the RNase H domains (Menendez-Arias 2013). The polymerase 
active site is located in the middle of the palm, fingers, and thumb subdomains. In 
addition, the p66 subunit contains a nucleic acid binding cleft, as well as active-site 
carboxylates (residues Asp110, Asp185, and Asp186), that bind the divalent 
magnesium ion (Mg2+) required for catalysis (Mendieta et al. 2008). Nonetheless, all 
the commercially available RT-targeting drugs affect the polymerase activity inhibiting 
its function, some RNase H inhibitors have recently been designed and studied 
(Tramontano and Di Santo 2010, Distinto et al. 2013). 

RT has been the focus of extensive research, including several structural 
biology studies that led to the determination of numerous crystallographic structures. 
Currently, over one hundred RT crystal structures are available in the RCSB Protein 
Data Bank repository (Berman et al. 2000). The available RT crystal structures provide 
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insight into the conformational flexibility of the protein, including the conformational 
changes induced by inhibitors and DNA binding (Titmuss et al. 1999). For instance, 
the formation of the non-nucleoside binding pocket (NNBP) is induced by the presence 
of an NNRTI, i.e. it only exists in RT structures complexed with this kind of inhibitors. 
The “open” (when the fingers and thumb subdomains are far apart) and “closed” (when 
the fingers and thumb subdomains are closer to the palm subdomain) conformations 
can be found in crystal structures with bound and unbound DNA, respectively.  

1.1.2.1 HIV-1 RT inhibitors 
The two classes of RT inhibitors include nucleoside analogs RT inhibitors 

(NRTIs) and non-nucleoside analogs RT inhibitors (NNRTIs). The NRTIs are 
composed of modified nucleosides that mimic and compete with natural substrates for  

Figure 1: Structure of HIV-1 RT in complex with DNA (PDB code: 1T05 (Tuske et al. 
2004)). The two domains are the p66 (colored) and the p51 (green). The polymerase 
domain displays a highly conserved structure that resembles the shape of the human 
right hand, consisting of fingers domain (magenta), palm domain (blue), thumb 
domain (light blue). The p66 subunit also includes the connection domain (yellow) 
and RNase H domain (orange). The polymerase active site is located in the center 
of palm, fingers, and thumb subdomains. The three catalytic aspartic acid residues 
(110, 185 and 186), shown in red, are located in the palm subdomain and bind the 
cofactor divalent ions (Mg2+). The RNase H domain is situated at the p66 C-
terminus, approximately 60 Å from polymerase active site. The RNase H active site 
contains a DDE motif comprising the carboxylates residues ASP443, GLU478, 
ASP498, and ASP549 that can coordinate divalent Mg2+.  



24 

 
binding and incorporation at the polymerase site (Figure 2-b) (Mehellou and De Clercq 
2010). They act as chain terminators due to the lack of a 3’-OH group on their sugar 
moiety. Similarly to their natural counterparts, the NRTIs need to be converted in 5’-
triphosphate nucleotides by host-cell kinases to compete with the analogous 
deoxynucleotide-triphosphates (dNTPs), and consequently be incorporated into the 
growing DNA strand (Esposito et al. 2012).  

Figure 2: Graphic illustration of a NNRTI and NRTI in their binding site. (a) Efavirenz 
(green) within the NNRTI allosteric binding site (PDB code: 1FK9 (Ren et al. 2000)) 
and (b) AZT (yellow) within the NRTI binding site (PDB code: 3V4I (Das et al. 2012)). 
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The current clinically available NRTIs are structurally similar to pyrimidine and 
purine analogues, including thymidine analogues zidovudine (AZT, Retrovir®) and 
stavudine (d4T, Zerit®); together with cytidine analogues zalcitabine (ddC, Hivid®), 
lamivudine (3TC, Epivir®) and emtricitabine (FTC, Emtriva®). Purine analogues 
include the inosine analogue didanosine (ddI, Videx®) along with the carbocyclic 
nucleoside analogue abacavir (ABC, Ziagen®), a guanine analogue when in its active 
form (Figure 3) (Mehellou and De Clercq 2010).  
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Figure 3: 2D chemical structures of eight approved nucleoside and nucleotide reverse 
transcriptase inhibitors (N[t]RTI). 

In the NRTI class, there are RT inhibitors that already have a phosphate group 
incorporated into its structure. They are also known as nucleotide RT inhibitors 
(NtRTIs), such as tenofovir (TFV) (Figure 3), formulated as tenofovir disoproxil 
fumarate (TDF, Viread®), they require only two phosphorylation steps to achieve their 
active triphosphate derivatives (Squires 2001). However, their mode of action is the 
same as for the NRTIs.  

The NNRTIs are allosteric inhibitors of DNA polymerization. These compounds 
bind in a non-competitive manner to a hydrophobic pocket (Figure 2-a) located 
approximately 10 Å away from the polymerase active site, causing conformation 
changes that impair DNA synthesis (Squires 2001). During the DNA synthesis, the RT 
fits a “closed” conformation bringing the fingers and thumb subdomains closer to the 
palm one and allowing the binding of nucleic acids. The presence of an NNRTI leads 
to an open conformation that restricts the thumb to a hyperextension position, which 
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prevents the polymerization (Asahchop et al. 2012, Das et al. 2012).The currently 
approved NNRTIs are nevirapine (NVP, Viramune®), efavirenz (EFV, Sustiva®), 
delavirdine (DLV, Rescriptor®), etravirine (ETR, Intelence®) and rilpivirine (RPV, 
Edurant®) (Figure 4). The NNBP consists of hydrophobic residues with significant 
aromatic character (Tyr 181, Try 188, Phe 227, Trp 229, and Tyr 232 of p66) and 
hydrophilic residues (Lys 101, Lys 103, Ser 105, Asp 192, and Glu 224 of p66, and 
Glu 138 of p51) (Sluis-Cremer et al. 2004). The solvent accessible entrance is formed 
by the residues Leu 100, Lys 101, Lys 103, Val 179, Tyr 181, and Glu 138 (Figure 2-
a). However, this open state of the binding pocket is only noticeable when the structure 
is co-crystallized with NNRTIs, mainly due to significant torsional shifts of the Y181 
and Y188 residues to accommodate the ligand (Hsiou et al. 1996). In the absence of 
a ligand, the binding pocket is blocked given that the side chains of Tyr 181 and Try 
188 are situated at the hydrophobic core, representing a closed state of the pocket. 
Previous docking studies showed that the difference in geometries can affect the 
accuracy of ligand binding energies when docking other NNRTIs into the inhibitor 
binding pocket (Titmuss et al. 1999, Kroeger Smith et al. 1995). 
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Figure 4: 2D Chemical structures of five approved non-nucleoside reverse 
transcriptase inhibitors (NNRTI). 

Despite their popularity and the number of drugs already approved for this class, 
most RT inhibitors have their antiviral potency limited by several factors such as 
mutations in the binding site, drug-drug harmful interactions, toxicity and long-term 
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complications (Cihlar and Ray 2010, Ho and Hitchcock 1989, Waters et al. 2007, 
Johnson et al. 2008). Consequently, new inhibitors are being sought out.  

1.1.3 Computer-aided drug design methods 
Presently, computational methods are a significant part of the drug design 

process, and this kind of modeling is often denoted as computer-aided drug design 
(CADD). Computational methods can offer detailed information about the interaction 
between compounds and targets, increasing the efficiency and lowering the cost of 
research in several stages of drug discovery (Kirchmair et al. 2011). Choosing the most 
appropriate computational technique to apply when planning novel drugs depends on 
the understanding of the target of interest (Jorgensen 2004). So far, various 
computational methods have been employed to the development of anti-viral drugs 
(reviewed by Kirchmair et al. (2011) and Wlodawer (2002)). It is noteworthy that some 
approved drugs, for the treatment of an assortment of diseases, owe their discovery in 
part to CADD methods (recently reviewed by Sliwoski et al. (2014)). This group 
includes anti-HIV drugs such as protease inhibitors saquinavir (SQV, Invirase®), 
ritonavir (RTV, Norvir®) and indinavir (IDV, Crixivan®); integrase inhibitor raltegravir 
(Isentress®); reverse transcriptase inhibitor rilpivirine (RPV, Edurant®); and fusion 
inhibitor enfuvirtide (T-20, Fuzeon®).  

Computational studies, frequently applied in CADD, such as molecular docking, 
molecular dynamics (MD), free energy calculations, quantitative structure-activity 
relationships (QSARs), pharmacophore modeling and ADMET have been performed 
using the RT and its inhibitors as targets. A successful example of the multidisciplinary 
effort in drug discovery, when modeling RT inhibitors, is the 2011 FDA-approved 
NNRTI rilpivirine (RPV). RPV was developed by combining chemical synthesis with 
broad antiviral screening; bioavailability and safety assessments in animals; and 
molecular modeling, including analysis of three-dimensional structures and ligand-
target relationships by molecular docking (Janssen et al. 2005). 

In this work, we applied virtual screening in a library of lead compounds to 
search for potential RT inhibitors.  

1.1.3.1 Molecular docking 
Molecular docking can provide a better understanding of the interactions 

between protein and a ligand. Docking begins by sampling ligands’ orientations and 
conformations within the target binding site (Meng et al. 2011, Yuriev and Ramsland 
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2013). Afterward, the best poses for each ligand are determined, and the compounds 
are ranked according to a scoring function (Lahti et al. 2012). One of the earliest 
docking methods was constructed based on the lock-and-key theory of ligand-protein 
binding, where both the protein and ligand structures are treated as rigid bodies (Kuntz 
et al. 1982).  

Currently, the most popular docking programs account for ligand flexibility when 
binding to rigid targets, such as Autodock (Goodsell et al. 1996), DOCK (Ewing et al. 
2001), FlexX (Kramer et al. 1999), Glide (Friesner et al. 2004), GOLD (Verdonk et al. 
2003), and Surflex (Spitzer and Jain 2012), to name a few. Numerous studies (Titmuss 
et al. 1999, Zhou et al. 2002, Ivetac and McCammon 2011, Ragno et al. 2005, 
Sherman et al. 2006) have reported the use of molecular docking, by itself or in 
combination with other molecular modeling techniques, upon HIV-1 RT. A very 
promising use of molecular docking technique is the screening of compounds 
databases.  

1.1.3.2 Virtual screening 
Virtual screening (VS) is an important drug discovery tool, which allows 

identification of lead compounds among large databases, thanks to its ability to 
discriminate between true and false positives (Cummings et al. 2005). Several VS 
approaches have been described, among which the most common one uses molecular 
docking as a fast and more cost-effective alternative than experimental high-
throughput screening (HTS). VS aims to reduce a vast virtual library of approximately 
105-106 chemical compounds, to a more manageable number for the screening of 
compounds for biological targets and further synthesis of analogs, which could lead to 
potential drug candidates.  
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1.2 AIMS  

1.2.1 Main goal 
To search low weight molecules capable of acting as lead candidates and 

determine their possible binding modes from a compound library in the HIV-1 RT 
enzyme through the use of a combination of computational methods.  

1.2.2 Particular goals 
 To assess DOCK’s algorithm and primary score function performance in the 

NNBP using pose reproduction in multiple crystal structures. 
 To investigate suitable RT crystal structures for virtual screening of potential 

drug candidates through enrichment methods. 
 To perform screening of a compound library using molecular docking. 
 To cluster molecular docking outcomes into discrete similarity groups using 

the ChemmineR package. 
 To examine molecular docking outcomes in the NNBP.   
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1.3 MATERIAL AND METHODS 

1.3.1 Crystal structures selection 
Out of hundreds of RT structures available in PDB (as of May 2014), thirty-three 

with X-ray resolutions up to 2.5 Å and in complex with an NNRTI were filtered. The 
structure with the highest resolution (1.5 Å), PDB code 4G1Q (Bauman et al. 2013), 
was chosen as the reference structure to analyze the NNRTI binding site and 
surroundings of the different structures. Previous studies defined that residues: Leu 
100, Lys 101, Lys 103, Ser 105, Val 179, Tyr 181, Tyr 188, Asp 192, Glu 224, Phe 227, 
Trp 229, Tyr 232, and Glu 138, form the NNBP. Since conformational changes induced 
by inhibitors are common in the binding site, the root-mean-square deviation (RMSD) 
of each NNBP residue was calculated between the reference and the structures was 
calculated to identify the ones with distinct variation. After this analysis, ten structures 
were chosen for docking studies: 4G1Q, 1C1C (Hopkins et al. 1999), 1VRT (Ren et al. 
1995), 3MEC (Lansdon et al. 2010), 3MEE (Lansdon et al. 2010), 4I7F (Parrish et al. 
2013), 4IG0 (Bauman et al. 2013), 4KV8 (LaPlante et al. 2013), 1FK9 (Ren et al. 2000) 
and 1EP4 (Ren et al. 2000).  

1.3.2 Known ligands and decoys compounds 
A total of 18 known NNRTIs (including the ligands bound to the selected 

structures) (Figure 5) were combined with 980 DUD-e-like decoys (Mysinger et al. 
2012) into a compound set drawn from ZINC (Irwin et al. 2012). This ZINC feature, the 
so-called decoy maker, selects, for each ligand, at least 50 compounds with similar 
properties (molecular weight, logP, net charge, H-bond donors, and H-bond acceptors) 
to those of the known ligands though chemically different to act as decoys. Bond 
orders, stereochemistry, hydrogen atoms, and protonation states of the known ligands 
and decoy set were preserved as assigned by ZINC. Properties of the 18 known 
ligands, taken from ZINC, are displayed in Table 1. However, the ligands from the ten 
selected crystal structures were also prepared with Chimera and assigned AMBER 
ff12SB (Maier et al. 2015) partial charges to perform redocking and cross-docking 
procedures only.  
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Table 1: Properties of 18 known NNRTI taken from ZINC. 
 

ZINC ID Ligand Heavy 
atoms 

pH  
range xlogP 

Apolar 
desolvation 
(kcal/mol) 

Polar 
desolvation 
(kcal/mol) 

H-
bond 

donors 
H-bond 

acceptors 
Net 

charge 
tPSA 
(Å²) 

Molecular 
weight 
(g/mol) 

Rotatable 
bonds 

ZINC01554274 RPV 28 7 5.46 3.57 -12.57 2 6 0 97 366.43 5 
ZINC00004778 NVP 20 7 1.39 6.59 -11.74 1 5 0 64 266.30 1 
ZINC06069063 UC1 22 7 5.32 9.39 -12.01 1 3 0 34 335.86 6 
ZINC00593585 1WT 33 7 2.20 0.16 -29.24 0 8 0 87 441.50 5 
ZINC00602632 65B 28 7 5.03 0.49 -10.21 3 7 0 120 435.29 4 
ZINC02020233 EFZ 21 7 4.53 7.44 -10.07 1 3 0 38 315.68 1 
ZINC32025110 S11 29 7 4.50 8.39 -9.99 2 6 0 83 451.38 8 
ZINC03580965 TNK 27 7 4.12 8.72 -13.33 1 5 0 64 364.44 7 
ZINC18456332 ATP 31 7 -3.54 -3.61 -227.01 5 18 -3 288 504.16 8 
ZINC35413513 1FG 27 7 2.45 7.93 -19.64 1 6 0 69 362.43 4 
ZINC35010620 JLJ 23 7 3.92 8.16 -10.25 1 6 0 80 310.36 6 
ZINC03832004 U05 22 7 2.37 1.52 -11.35 0 7 0 85 298.30 2 
ZINC06495968 TT1 26 7 6.10 1.34 -11.2 0 3 0 30 397.96 6 
ZINC95921078 G73 31 7 6.38 13.78 -14.99 3 8 0 112 411.47 6 
ZINC02020240 AAP 23 7 3.64 -1.52 -13.98 3 4 0 72 351.23 5 
ZINC02008220 GCA 24 7 3.73 -0.26 -11.64 1 5 0 64 330.43 6 
ZINC02008218 612 22 7 3.33 6.22 -8.68 1 5 0 64 326.46 6 
ZINC95590437 NVE 37 7 3.59 13.34 -22.96 0 9 0 97 524.56 11 
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Figure 5: 2D chemical structure of known NNRTI compounds from ZINC. 
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1.3.3 Receptor preparation 
Receptor structures were prepared with the Dock Prep module in Chimera 

(Pettersen et al. 2004). This module consists of a graphical interface that performs 
several tasks such as solvent deletion, repairing of truncated sidechains, deletion of 
alternate positions, hydrogen addition, partial charges assignment, and Mol2 output 
files. For all receptor structures, water molecules, ions, and ligand compounds were 
removed. Propka (Li et al. 2005) was used to examine the correct protonation state of 
ionizable residues in the proteins at pH=7. Standard receptor residues were assigned 
AMBER parm99 atomic partial charges (Cornell et al. 1996). Each crystal structure 
NNBP was identified according to the location of its ligand and prepared separately in 
several steps necessary to perform DOCK6.6 (Brozell et al. 2012) calculations. The 
binding site preparation began with the calculation of the solvent accessible surface of 
each receptor, devoid of hydrogen atoms, using a probe radius of 1.4 Å with the Write 
DMS module in Chimera. This module provides a DMS file containing dot molecular 
surfaces, where at each surface point the surface normal vector was computed. The 
DMS file was used as input to the program SPHGEN (Kuntz et al. 1982), available with 
standard DOCK distribution. The program SPHGEN produces a negative image of the 
surface as a set of overlapping spheres from the molecular surface and the normal 
vectors (Kuntz et al. 1982). Spheres are generated over the entire surface, producing 
approximately one sphere per surface point (Figure 6). However, a filtering rule is used 
to keep only the largest sphere associated with each surface atom. The resulting 
spheres are then clustered using a single-linkage algorithm. Each cluster represents 
an evagination in the receptor. SPHGEN was assigned to generate spheres with a 
minimum radius of 1.4 Å and a maximum of 4.0 Å to all surface points of the receptor. 

The coordinates of the crystallographic ligand were then used to select a subset 
of spheres within a radius of 7.0 Å from the ligand with the program sphere_selector, 
which is also distributed as an accessory with DOCK. 

1.3.4 Grid generation 
Normally in computational docking, ligand conformations are generated by 

matching the distances between points in the ligand and accessible points in the 
receptor. When docking, the ligand conformations are scored using a precalculated 
grid of energies, in an attempt to allow rapid evaluation of the conformation. To 
visualize, define the location, and size of the grid, a cubic box around the binding site 
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center of the cubic box was the selected spheres and extra margins of 5 Å in all six 
directions were chosen. The grids were computed with DOCK’s GRID program using 
a 0.3 Å grid spacing, a 9,999 Å distance cutoff, 6–12 Lennard-Jones exponents, and a 
4r distance-dependent dielectric constant.  

DOCK has two types of scoring available: contact and energy scoring. In this 
work Energy scoring was the scoring mode chosen when generating the grids. DOCK’s 
energy scoring component is a type of force field scoring. Force field scores are 
approximate molecular mechanics interaction energies. In this case, it consists of 
Lennard-Jones and electrostatic components: 

ܧ = ෍ ෍ ቆܣ௜௝
௜௝௔ݎ

− ௜௝ܤ
௜௝௕ݎ

+ 332 ௝ݍ௜ݍ
௜௝ݎܦ

ቇ
௥௘௖

௝ୀଵ

௟௜௚

௜ୀଵ
 

(1) 
where each term is a double sum over ligand atoms ݅ and receptor atoms ݆. A bump 
grid was also calculated with GRID with a van der Waals overlap allowance of 0.75, 
i.e., if the sum of the van der Waals radii of any two atoms approaches closer than the 
allowed overlap, the grid point is flagged as a bump and stored in another grid file. The 
bump grid is used to identify orientations during docking whether a ligand atom is in 
severe steric overlap with a receptor atom. 

 
 
 

i 

j 

a) b) 

Figure 6: Illustrative representation of sphere generation in DOCK. a) The spheres 
are generated tangentially to the surface points i, j with the center on the surface 
normal of point i. (b) Illustrative representation of a small binding pocket formed by 
eight atoms (purple). The spheres (blue) are generated using points from the 
molecule. Adapted from: 
http://dock.compbio.ucsf.edu/Dock_6/tutorials/sphere_generation/generating_sphere
s.htm.  
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1.3.5 Molecular docking 
Ligand docking was performed in all structures with DOCK6.6. The ligand 

flexibility sampling algorithm, called anchor-and-grow, is an incremental construction 
method where the largest rigid substructure of the ligand is firstly recognized (anchor) 
and then rigidly oriented in the binding site. Later, each layer of flexible bonds is then 
grown from each cluster, minimized, ranked, and clustered again. This process is 
repeated until the molecule is fully built. The maximum number of orientations for each 
ligand was set at 500 and only the best pose, meaning the one with the lowest energy, 
was retained for each docking run. The grid-based score was chosen as the primary 
scoring function (For further details, see Appendix A).  

The final ligand orientations were submitted to rescore with the Amber Score 
function (available as a DOCK6.6 scoring function). AMBER score enables not only 
ligand flexibility but also all or a part of the receptor to be flexible, to reproduce the so-
called "induced-fit". Three AMBER score movable region protocols can be employed: 
ligand, nothing, and distance. For the ligand option, only the ligand is allowed to move 
during minimization and MD simulation. No minimization or MD simulation occurs for 
the nothing option, and the ligand is not flexible during the AMBER score energy 
protocol. The distance movable region option selects residues that are allowed to move 
by receptor-ligand distance. If any atom in a receptor residue is within the cutoff 
distance of the ligand, then the whole residue is selected. Amber input files for each 
receptor, ligand and, corresponding complex were prepared with the help of the Perl 
script prepare_amber.pl provided with DOCK distribution. The script employs other 

Figure 7: Graphic representation of the cubic box (in black) where the grid is 
generated. 
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scripts and programs, such as antechamber (Wang et al. 2006) to calculate the AM1-
BCC charges (Jakalian et al. 2002) for the ligands, and tLEaP (Case et al.) to assign 
the parm94 (Cornell et al. 1995) parameter set for protein atoms and the general 
Amber force field (GAFF) (Wang et al. 2004) parameter set for ligand atoms. We 
calculated Amber Score energies with the nothing option, since we aimed to rescore 
with multiple score functions (For further details, see Appendix A).  

Docking outcomes were labeled according to the definition of Allen, W. J., et al. 
(Allen et al. 2015). When the top-scoring pose produced from the docking run was 
within 2.0 Å RMSD from the crystallographic ligand position, it was named a successful 
pose. From the successful poses, docking success rate was calculated as 

(%) ݏݏ݁ܿܿݑܵ ݃݊݅݇ܿ݋ܦ = ݏ݁ݏ݋݌ ݈ݑ݂ݏݏ݁ܿܿݑܵ
ݏ݊݋݅ݐ݈ܽݑ݈ܿܽܿ ݃݊݅݇ܿ݋݀ ݂݋ ݎܾ݁݉ݑܰ × 100 (2) 

A number of docking calculations include only runs that produced poses. If a 
top-scoring pose produced RMSD over the 2.0 Å RMSD threshold, it was named a 
docking failure. The sum of docking success and docking failures equals 100%. 

In addition, a correlation coefficient between RMSD and the scoring functions 
were computed. A correlation coefficient illustrates the linear relation between two 
quantitative measures. The Spearman correlation coefficient (ܴௌ) was calculated using 
the stats package of program R. This coefficient defines the correlation between two 
sets of ranking variables. For a sample of size ݊, the ݊, the ݊ raw scores ܺ௜, ௜ܻ are 
converted to rank ݔ௜, ݕ௜, and ܴௌ is: 

ܴ௦ = 1 − 6 ∑ ݀௜ଶ݊(݊ଶ − 1) (3) 
where ݀௜ = ௜ݔ −  .௜, is the difference between ranksݕ

1.3.6 Ligand RMSD 
An initial evaluation of DOCK performance was to employ the process of 

docking each ligand into the native protein, known as Redocking, and afterward into a 
non-native RT structure, known as Cross-docking. To both procedures, the heavy atom 
RMSD between the final ligand pose and corresponding ligand from the crystal 
structure were calculated. RMSD calculation is a commonly used method for 
measuring geometric similarity concerning two poses of the same ligand (Allen et al. 
2015). DOCK reports three types of RMSD: 
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(i) Standard heavy-atom RMSD (RMSDs) – standard pair-wise RMSD 
calculation between non-hydrogen atoms of a reference conformation ܣ and 
a pose conformation ܤ for a ligand with ܰ total heavy atoms of index ݅. 

,ܣ)ݏܦܵܯܴ (ܤ =  ඩ1
ܰ ෍‖ܽ௜ − ܾ௜‖ଶ

ே

௜ୀଵ
 

(4) 
The variables ܽ௜ and ܾ௜ are Cartesian coordinates of corresponding atoms 

between the two ligands. 
(ii) Minimum-distance heavy-atom RMSD (RMSDm) – this measure is based on 

the method implemented in Autodock Vina (Trott and Olson 2010) where 
atom pairings between reference conformation ܣ and pose conformation ܤ 
are determined by the minimum distance to any atom of the same element 
type. 

,ܣ)݊݅݉ܦܵܯܴ_ܣܪ (ܤ = ,ܣ)݉ܦܵܯܴ_ܣܪሼݔܽ݉ ,(ܤ ,ܤ)݉ܦܵܯܴ_ܣܪ  ሽ (5)(ܣ

,ܣ)݉ܦܵܯܴ (ܤ =  ඩ1
ܰ ෍ min௝ ‖ܽ௜ − ܾ௜‖ଶ

ே

௜ୀଵ
 

(6) 
In this method, a one-to-one atom correspondence is not always preserved, 

since multiple atoms from one molecule can be matched to a single atom from the 
other molecule. 

(iii) Hungarian (symmetry-corrected) heavy-atom RMSD (RMSDh) – the last 
RMSD measure is based on the Hungarian algorithm (Kuhn 1955) 
implementation (Allen and Rizzo 2014). The algorithm solves the optimal 
assignment between a set of reference conformation ܣ atoms and a set of 
pose conformation ܤ atoms of the same size. For groups of atoms of the 
same atom type, a cost matrix ܯ is populated where each matrix element 
݉௜௝ is equal to the distance-squared between reference atom ܽ௜ and pose 
atom ௝ܾ.  

This algorithm is employed to determine one-to-one assignments in a way that the 
total distance between the atoms from the selected molecules is minimized. 

,ܣ)ℎܦܵܯܴ (ܤ = ඩ1
ܰ ෍ cor௝ ฮܽ௜ − ௝ܾฮଶே

௜ୀଵ
 

(7) 
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1.3.7 Scoring functions 
Three scoring functions were employed in this work: Grid Score, Amber Score, 

and DrugScore eXtended (DSX). Pose sampling was generated with DOCK6.6 and 
scored using DOCK’s Grid Score. DOCK’s outcomes were subsequently rescored with 
Amber Score and DSX. A combination of the three scoring functions, using consensus 
scoring (Charifson et al. 1999), were used to reevaluated the top-scoring compounds.  

Grid Score is a grid-based energy score and is based on the implementation of 
force field scoring. It evaluates intermolecular non-bonded van der Waals and 
Coulombic energies (scaled by a distance-dependent dielectric) between receptor and 
ligand (Meng et al. 1992). The van der Waals components are generalized to handle 
any combination of repulsive and attractive exponents that can be carefully chosen by 
the user at the grid generation part of the molecular docking process.  

Amber score is a simple MM-GB/SA approach with the traditional all-atom 
AMBER force fields (Pearlman et al. 1995) and the GAFF. Electrostatic and van der 
Waals energy terms represent the interaction between the ligand and the receptor, and 
the solvation energy is calculated using a Generalized Born (GB) solvation model 
chosen by the user. The Amber score is calculated as: 

௕௜௡ௗ௜௡௚ܧ = ௖௢௠௣௟௘௫ܧ − ൫ܧ௥௘௖௘௣௧௢௥ +  ௟௜௚௔௡ௗ൯ (8)ܧ
where ܧ௖௢௠௣௟௘௫, ܧ௥௘௖௘௣௧௢௥, and ܧ௟௜௚௔௡ௗ are, respectively, the internal energies of the 
complex, receptor, and ligand (all solvated) as approximated by the AMBER force field 
with the chosen MM-GB/SA solvation term. All or a part of the receptor-ligand complex 
can be selected to be flexible when using Amber score. However, flexibility increases 
the computational cost. 

DSX is a knowledge-based scoring function that enables scoring (putative) 
protein-ligand complexes (Neudert and Klebe 2011), whose pair potentials are based 
on the DrugScore formalism (Gohlke et al. 2000, Velec et al. 2005). Usage of DSX is 
available by a web-based user interface or by standalone version. This function uses 
the statistical distribution of non-bonded interactions, obtained from a database of 
known receptor-ligand complexes, and statistically derived torsional angle potentials, 
which allow fast relaxation of docking poses that may improve the ranking of a set of 
ligands according to their binding affinities. The master equation for knowledge based 
scoring functions is 

(݅)݁ݎ݋ܿݏ = − ln ቆߩ(݅)
௥௘௙ߩ

ቇ (9) 
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where the fraction ߩ(݅) is a state-dependent density function, that is also a probability 
function (Neudert and Klebe 2011). The total score for a given complex of protein 
atoms ܽ௣ and ligand atoms ܽ௟ is calculated as 

௣௔௜௥݁ݎ݋ܿݏ ݈ܽݐ݋ݐ = ෍ ෍ ݁ݎ݋ܿݏ ቀ݌൫ܽ௣൯, ݈(ܽ௟), ,൫ܽ௣ݎ ܽ௟൯ቁ
௔೗௔೛

 
(10) 

,݌)௣௔௜௥݁ݎ݋ܿݏ ݈, (ݎ = − ln ቆ݌)ߩ, ݈, (ݎ
௥௘௙ߩ

ቇ (11) 
where ݌(ܽ௣), and ݈(ܽ௟) are the atom types, ݎ(ܽ௣, ܽ௟) is the distance of ܽ௣ and ܽ௟, and 
 .(Neudert and Klebe 2011) (݅)ߩ ௥௘௙ can be seen as a kind of weighting function forߩ
Most knowledge-based functions are based in Eq. (11), however they differ in the 
definition of the density functions. 

Consensus scoring with the three chosen scoring functions was applied using 
the rank-by-rank method. This method was chosen since each scoring function 
assesses protein-ligand complexes from its own perspective, thus absolute score 
values usually differ from one another (Oda et al. 2006). For instance, if one score is 
bigger than the others, it will influence the average-based consensus score. Therefore, 
in a ranking method, the compounds are organized according to the score values, and 
the average of the ranks calculated from the individual scoring are employed, rather 
than the raw scores (Zhong et al. 2010). 

1.3.8 ROC analysis and enrichment metrics 
To investigate the influence of receptor conformation and the methodological 

predictive power in the ranking of known ligands when faced with a significant number 
of decoys, enrichment statistics and receiver operating characteristic curves (ROC) 
were employed. After the docking of the screening library of actives and inactives, ROC 
method was applied to assess the evolution of known compounds rate, identified as 
true positive rate (ܴܶܲ), versus the decoys rate, as the false positive rate (ܴܲܨ), in the 
final ranking (Triballeau et al. 2005) with the use of a curve (Figure 8).  

TPR is the percentage of truly active compounds being selected from the 
screening library and is calculated by the number of true positive (ܶܲ) results divided 
by the sum of true positives and false negatives (ܰܨ): 

ܶܲ
ܶܲ +  (12) ܰܨ
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Whereas ܴܲܨ is the percentage of truly inactive compounds being incorrectly 
identified as actives and is calculated by one minus the number of true negative results 
(ܶܰ) divided by the sum of true negatives and false positives (ܰܨ): 

1 − ൬ ܶܰ
ܶܰ +  ൰ (13)ܲܨ

From ROC curves, the performance was evaluated numerically as the area 
under the ROC curve (AUC), a metric that allows comparing the relative predictive 
performances between different receptors providing a measure of global enrichment. 
An ideally perfect performance has an AUC value of 1.0, while a random selection 
performance has an AUC of 0.5. ROC curves and ROC AUC were calculated with 
ROCR (Sing et al. 2005) package.  

To focus on early enrichment LogAUC (Mysinger and Shoichet 2010), 
calculated from a ROC curve plot with a base 10 semilog x-axis was also considered. 
Enrichment is defined as the proportion of the observed fraction of active compounds 

Figure 8: Schematic procedure for ROC curve plotting. Evaluation of five know ligands 
(black squares) against ten decoys (white squares) in a docking protocol through ROC 
curves. Three different docking outcomes ranked based on score are described. 
Perfect enrichment (red box and line) with AUC of 1, good enrichment (blue box and 
line) with AUC of 0.88, and bad enrichment (green box and line) with AUC of 0.22. The 
dashed line represents random enrichment with AUC of 0.5. 
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in the top few percent of a screening essay to that expected by random selection (Jain 
and Nicholls 2008). A real early enrichment in a screening of a large ligand library might 
infer that the selection of known compounds is been prioritized in ranking when faced 
with inactive ones (Figure 9). Enrichment factors (ܨܧ) after the ݔ% of the screening 
library were calculated as: 

%௫ܨܧ =
%௫݀݊ܽ݃݅ܮ

௫ܰ%൘
௧௢௧௔௟݀݊ܽ݃݅ܮ

௧ܰ௢௧௔௟ൗ  
(14) 

where, ݀݊ܽ݃݅ܮ௫% is the number of known compounds found at ݔ% of database 
screened; ௫ܰ% is the number of compounds screened at ݔ% of the database; 
 ௧௢௧௔௟ is the number of actives in the entire database, and ௧ܰ௢௧௔௟ is the number of݀݊ܽ݃݅ܮ
compounds in the entire database. Enrichment percentages were reported in the 0.5%, 
1%, 2% and 5% of the database screened. Maximum enrichment (ܧ௠௔௫) is given by 
the total number of active compounds and the total number of compounds in the 
database.  
 

1.3.9 Ligand subset 
The lead-like now ligand subset from the ZINC database was chosen. ZINC 

lead-like compounds are large enough to be detected in high-throughput 
spectrophotometric or other assays, smaller and more soluble than most drugs. At the 

Figure 9: Graphical enrichment curve of the schematic procedure discussed in Figure 
8. An ideal run would provide a curve where a high percentage of known ligands are 
ranked high in a low percentage of the database screened (red). Any run found above 
the random line (dashed gray line) would provide some good enrichment, whereas 
under it would show bad enrichment. In a bad enrichment curve is clear to see that 
decoys are receiving higher scores than known ligands. 
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time of this work, the ZINC lead-like now subset was composed of 2,797,315 
compounds and submitted to molecular docking using DOCK6.6. The screening was 
performed using the reference structure, in a way to filter and restrict the high number 
of compounds to a more manageable set for further rescoring. 

1.3.10 Compound selection 
After the docking, the compounds were ranked by their Grid score. The mean, 

median, 25th and 75th quartiles, min and max, were calculated to provide a better view 
of the data. Positives scores were discarded. We used the R package ChemmineR 
(Cao et al. 2008) to cluster the chosen compounds.  

ChemmineR is a cheminformatics package for analysing drug-like small 
molecule data in R, which can perform clustering of compounds into discrete similarity 
groups among other functions. This mathematical function uses single linkage for 
cluster joining with multiple cut-offs of a chosen similarity method. Instead of working 
with the complete molecule, atom pairs descriptors (Carhart et al. 1985)  for the 
compounds in the sample was calculated. Atom pairs are 2D topological descriptors 
that count the distance between two atoms in the shortest path of bonds. With the 
calculation of atom pairs, duplicated or identical compounds were removed from the 
sets. The chosen atom pairs were converted into binary atom pair fingerprints (Chen 
and Reynolds 2002) of fixed length. In general, fingerprints are binary representations 
of attributes where each bit denotes the absence or presence of a characteristic in a 
molecule (Chen and Reynolds 2002). Computations on this compact data structure are 
more time and memory efficient than on their relatively complex atom pair counterparts. 
The use of fingerprint permits the use of similarity methods. We have chosen the 
implemented method that calculates Tanimoto coefficient (Jaccard 1901, Tanimoto 
1957) as a similarity method. Tanimoto coefficient for dichotomous variables is 

஺ܶ,஻ = ܿ
ܽ + ܾ − ܿ (15) 

where ܽ is the number of on bits in molecule ܣ, ܾ is the number of on bits in molecule 
 while ܿ is the number of bits that are on in both molecules (Bajusz et al. 2015). The ,ܤ
Tanimoto coefficient has a range from 0 to 1 with higher values indicating greater 
similarity than lower ones. For instance, the same molecule compared with itself will 
produce a Tanimoto coefficient of 1. However, a Tanimoto coefficient of 1 does not 
automatically imply that two compounds are identical (Backman et al. 2011). It 
suggests an identical structural descriptors or identical on-bits between them, since 
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features of the two molecules that have not been determined in the fingerprint could 
be different (Backman et al. 2011).   

The compounds resulted from clustering were submitted to toxicity filtering 
using specific organic toxic roots using the ChemBioServer (Athanasiadis et al. 2012) 
The ChemBioServer hosts a group of tools aimed to facilitate computational compound 
screening and analysis. The final compounds were ranked according to rescoring 
using the chosen score functions and visually analysed with Chimera.     
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1.4 RESULTS AND DISCUSSION 

1.4.1 Identifying a structure 
RT popularity as a drug target, confirmed by a large number of crystal structures 

available in the Protein Data Bank (Berman et al. 2000), is of considerable aid to the 
computational discovery of new RT inhibitors. This structural diversity provides 
information about the binding pocket and binding mode of its inhibitors. Taking 
advantage of these structures, an initial validation protocol was applied to 
retrospectively evaluate the screening performance of each high-resolution structure 
in VS.  

The protocol started with an initial search for RT structures in the PDB database, 
where over one hundred crystal structures were found. Most RT crystal structures 
found in the PDB are complexed with NNRTIs, with only seven structures bound to 
NRTIs. From this result, we filtered twenty-three structures with X-ray resolutions up to 
2.5 Å, bound to an NNRTI compound, and with no mutations in the residues composing 
the NNBP. Also, two structures with unbound NNRTIs were included. As a reference, 
we chose the structure (PDB code 4G1Q) with the lowest resolution (1.5 Å), bound to 
the known NNRTI, RPV. The reference structure was used to compare the differences 
between the structures NNBP. The heavy atom RMSD between the NNBP residues of 
the reference and the structures was analyzed (Table 2). As it was expected, a slight 
variation in the RMSD could be noticed when comparing the reference with structures 
bound to compounds other than RPV (Figure 10). In these structures, the residues Tyr 
181 and Tyr 188 appeared to be the ones with the largest deviation. It is worth 
mentioning that the unbound structures showed the highest RMSD deviation between 
all residues of the reference structure. However, the lack of bound compounds in these 
structures led to a semi-closed conformation of the NNBP (Figure 11). Out of the 
twenty-five RT structures, we selected a manageable group of ten structures to perform 
redocking and cross-docking experiments using DOCK 6.6. The selection criterion was 
based on the differences in the heavy atom RMSD values of the NNBP residues from 
each structure when compared to the reference structure NNBP residues. The group 
consisted of two structures bound to RPV (the reference, and 3MEE) and eight bound 
to different NNRTIs (1C1C, 1VRT, 3MEC, 4I7F, 4IG0, 4KV8, 1FK9, and 1EP4).  

Redocking outcomes were considered successful (docking success rate of 
80%) and can be seen in Table 3 diagonal elements. Out of the ten ligands evaluated, 
only two presented top-scoring poses over 2.0 Å RMSD from the crystallographic 
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position (Figure 12). For the ligands S11 and NVE, from 1EP4 and 4I7F structures 
respectively, the predicted poses displayed part or the entire compound outside of the 
NNBP. These results may be due to limitations in DOCK’s anchor-and-grow algorithm 
since the algorithm has been validated only for binding mode prediction on sets of 
ligands with no more than seven rotatable bonds (Moustakas et al. 2006). S11 and 
NVE have eight and eleven rotatable bonds, respectively. 

 
 

Figure 10: Comparison of the reference structure-binding site, 4G1Q (yellow), 
between structures 1C1C (cyan) and 1VRT (green). 

1C1C 
4G1Q 

4G1Q 
1VRT 
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Table 2: Heavy atom RMSD between the residues of the reference structure, 4G1Q, and the other structures. 
 

  RMSD (Å) 
PDB Ligand Leu 

100 
Lys 
101 

Lys 
103 

Ser 
105 

Val 
179 

Tyr 
181 

Tyr 
188 

Asp 
192 

Glu 
224 

Phe 
227 

Trp 
229 

Try 
232 

Ser 
138 

1C1B GCA 0.76 1.60 0.41 0.79 1.52 1.58 1.50 0.41 1.88 0.45 0.87 1.73 1.84 
1C1C 612 1.14 1.77 0.42 0.91 1.49 1.73 1.65 0.55 1.75 0.44 2.65 2.20 2.22 
1EP4 S11 0.86 1.64 1.72 1.45 0.98 1.52 1.74 1.86 1.81 0.88 0.91 1.60 1.54 
1FK9 EFZ 0.69 0.96 0.65 1.10 1.41 1.99 1.68 0.74 1.97 0.81 0.58 1.46 1.18 
1RTH U05 0.59 1.21 0.60 1.11 1.48 0.79 1.58 0.27 1.82 1.03 0.48 1.85 1.29 
1RTJ -- 1.71 1.90 1.45 0.79 1.67 5.06 5.59 1.11 2.47 1.25 3.54 1.29 2.84 
1VRT NVP 0.29 0.74 0.72 0.82 1.39 1.08 2.09 0.90 1.94 0.81 0.80 0.33 0.75 
1VRU AAP 0.48 1.02 0.74 0.81 1.25 1.00 1.96 0.65 1.72 0.63 0.80 0.44 2.67 
2RKI TT1 0.77 1.72 1.74 0.93 1.02 0.93 2.01 0.75 1.93 0.58 0.81 0.65 1.82 
2ZD1 RPV 0.13 0.10 0.21 0.22 0.27 0.19 1.39 0.25 1.58 1.46 0.13 1.41 0.14 
3DLK -- 1.35 1.68 1.41 1.68 2.41 4.99 5.58 2.49 5.29 3.09 2.08 2.58 2.54 
3MEC ETR 0.39 1.33 0.55 0.86 1.41 1.80 2.73 1.45 3.19 1.43 0.93 0.68 0.76 
3MEE RPV 0.27 0.55 0.67 0.67 1.41 1.09 1.92 0.59 2.18 0.95 0.54 0.71 0.40 
4I2P G73 0.36 0.60 0.63 0.34 0.19 0.30 1.41 0.72 1.69 1.45 0.21 1.39 0.57 
4I7F NVE 0.45 1.45 0.98 0.84 1.16 1.22 1.98 0.75 2.05 0.90 0.47 0.72 1.32 
4ICL RPV 0.05 0.05 0.09 0.11 0.08 0.14 0.13 0.09 0.16 0.08 1.20 0.07 0.11 
4ID5 RPV 0.07 0.07 0.12 0.18 0.11 0.09 1.38 0.21 0.44 0.18 0.10 0.07 0.12 
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  RMSD (Å) (cont.) 
PDB Ligand Leu 

100 
Lys 
101 

Lys 
103 

Ser 
105 

Val 
179 

Tyr 
181 

Tyr 
188 

Asp 
192 

Glu 
224 

Phe 
227 

Trp 
229 

Try 
232 

Ser 
138 

4IDK RPV 0.09 0.11 0.16 0.11 0.14 0.12 0.13 0.29 1.49 0.16 0.17 0.17 0.18 
4IFV RPV 0.08 0.11 0.16 0.20 0.23 0.13 0.23 0.33 0.95 0.16 0.17 0.17 0.17 
4IFY RPV 0.07 0.09 0.12 0.16 0.14 0.15 0.09 0.25 1.10 0.20 0.15 0.12 0.14 
4IG0 1FG 0.59 0.41 0.90 1.01 1.15 1.58 1.65 0.69 3.02 0.99 0.76 0.67 0.51 
4IG3 RPV 0.10 0.17 0.32 0.43 0.42 0.21 0.29 0.36 3.12 0.30 0.16 0.27 0.27 
4KFB RPV 0.06 0.14 0.17 0.11 0.28 0.39 1.39 0.20 0.37 0.15 0.15 0.15 0.41 
4KO0 JLJ 0.49 0.32 0.23 0.55 0.93 0.95 1.21 0.40 0.69 0.34 0.59 0.38 0.71 
4KV8 1WT 0.45 1.65 1.03 0.80 1.24 1.19 1.99 1.18 2.27 0.98 0.47 0.61 0.95 
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Figure 11: Surface representation of four different NNBP. An open conformation is 
noticeable in the presence of a bound NNRTI. Structures without a bound NNRTI have 
a closed conformation of the NNBP. 
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Figure 12: Docking poses compared to the crystallographic position of the ligand in 
the binding site. Docking pose outcomes are showed in yellow against crystallographic 
ligands in orange from crystal structures. a) Good pose reproduction was reached 
when redocking the ligand from the reference structure, 4G1Q. b) The crystallographic 
position could not be reproduced in the case of the 4I7F structure. c) Part of the 
docking pose was placed in the NNBP, however pose reproduction could not be 
reached from structure 1EP4. 

a) 

b) 

c) 
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Cross-docking results did not show the same precision (docking success rate 
of 23%), as seen in Table 3 off-diagonal elements. For some structure-ligand pairs, no 
ligand pose was found. Since this problem was extended to other ligands besides S11 
and NVE, the rotatable bond algorithm behavior could not be entirely at fault. The 
induced fit effects that the NNBP suffers when ligand binding happen could be the 
source of cross-docking fail. In some cases, the poses have been adjusted not in the 
NNBP, resulting in a large RMSD value, when docking into the non-native structure. 
However, a few poses under 2.0 Å RMSD from the aligned ligand position were 
obtained (Figure 13). A small improvement in RMSD values was obtained when 
symmetry-corrected RMSD is taken into account (docking success rate of 26%) as 
seen in Table 4.  

 
Table 3: Standard heavy-atom RMSD (RMSDs) matrix. Matrix diagonal 
represents Redocking RMSDs, whereas off-diagonal elements represent cross-
docking RMSD values. 

 RMSDs (Å) 
 4G1Q 1C1C 3MEC 3MEE 1EP4 1FK9 1VRT 4IG0 4I7F 4KV8 

RPV 0.3 14.6 2.2 2.0 15.1 1.9 4.6 10.2 13.7 13.5 
612 -- 0.9 14.6 -- 15.2 5.7 4.4 13.8 13.5 -- 
ETR 12.0 13.4 0.3 1.9 -- 5.4 12.2 13.8 16.5 13.9 
RPV 6.8 6.3 1.4 1.8 16.9 1.5 4.0 9.4 11.2 9.3 
S11 4.5 5.6 11.4 8.0 9.7 5.5 1.3 6.1 3.1 1.5 
EFZ 7.5 13.0 15.5 7.9 -- 0.8 0.5 5.0 15.1 -- 
NVP 7.1 1.2 2.2 7.2 13.6 1.1 0.5 9.0 13.9 12.2 
1FG 2.2 5.3 0.8 8.1 6.3 5.7 1.6 0.5 12.6 9.2 
NVE 8.0 1.3 -- 7.8 15.5 1.5 1.8 6.6 16.4 0.3 
1WT 8.2 1.2 -- 6.1 15.9 1.1 1.3 6.2 6.1 0.3 
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Table 4: Symmetry-corrected heavy-atom RMSD (RMSDh) matrix. Matrix 
diagonal represents Redocking RMSDs, whereas off-diagonal elements 
represent cross-docking RMSD values. 

 RMSDh (Å) 
 4G1Q 1C1C 3MEC 3MEE 1EP4 1FK9 1VRT 4IG0 4I7F 4KV8 

RPV 0.3 14.3 1.5 1.1 14.9 1.8 3.8 8.3 13.5 13.3 
612 -- 0.5 14.5 -- 15.2 5.2 3.7 13.2 13.4 -- 
ETR 11.9 12.8 0.3 0.9 -- 5.0 12.2 13.3 16.0 13.7 
RPV 5.9 4.3 1.4 0.8 16.3 1.1 3.9 7.3 10.9 8.9 
S11 4.5 4.0 10.4 7.8 9.4 5.2 1.3 5.4 2.7 1.5 
EFZ 6.5 12.7 15.0 6.6 -- 0.5 0.5 4.8 13.5 -- 
NVP 6.2 1.2 2.2 6.3 13.4 0.7 0.5 6.8 13.6 12.1 
1FG 1.5 3.9 0.8 6.5 5.1 5.3 1.6 0.5 10.9 8.8 
NVE 7.6 1.1 -- 7.3 15.2 1.3 1.8 5.4 16.2 0.3 
1WT 7.7 0.9 -- 5.7 15.6 1.1 1.3 5.5 6.0 0.3 

 
 

Table 5: Minimum-distance heavy-atom RMSD (RMSDm) matrix. Matrix diagonal 
represents Redocking RMSDs, whereas off-diagonal elements represent cross-
docking RMSD values. 

 RMSDm (Å) 
 4G1Q 1C1C 3MEC 3MEE 1EP4 1FK9 1VRT 4IG0 4I7F 4KV8 
RPV 0.1 11.2 1.0 0.8 9.1 1.0 0.8 4.1 9.6 9.6 
612 -- 0.3 8.6 -- 10.9 3.1 1.6 9.9 9.9 -- 
ETR 6.0 8.6 0.3 0.4 -- 2.7 8.5 8.6 10.5 8.9 
RPV 0.5 0.9 0.6 0.4 9.6 0.8 1.9 3.2 6.5 5.3 
S11 1.0 0.5 6.3 2.1 4.1 2.4 0.3 1.0 0.8 0.8 
EFZ 1.2 8.5 8.9 0.9 -- 0.3 0.2 2.5 7.7 -- 
NVP 1.0 0.5 0.8 0.8 7.5 0.3 0.3 3.8 8.0 8.3 
1FG 0.7 1.2 0.2 1.2 1.5 2.7 0.8 0.3 3.5 5.3 
NVE 2.8 0.7 -- 2.1 10.6 1.0 1.0 1.5 10.9 0.2 
1WT 2.8 0.6 -- 0.8 9.8 0.7 0.7 0.8 1.9 0.3 
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Figure 13: Examples of the cross-docking experiments in the NNBP. Docking 
outcome are shown in yellow. Native (grey) and non-native structure (orange) are 
superimpose to better visualization. a) Good reproduction of NVP in the non-native 
structure 1FK9. b) An instance where an improvement of RMSD was made by the 
symmetry-correlated RMSD. Pose of EFZ in the non-native structure 1VRT. c) A 
cross-docking failure where the pose could not be achieved in the NNBP and RMSD 
was higher than the threshold. Pose outcome of S11 in the non-native structure 
3MEE. 

) 

) 

) 

a) 

b) 

c) 
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Minimum-distance RMSD also corrects ligand symmetry leading to poses 
values equal to or less than the standard RMSD and symmetry-corrected RMSD 
(Table 5). When RMSDm was chosen, the RMSD results were improved (docking 
success rate of 50%). However, symmetry-corrected RMSD is preferred when one-to-
one correspondence between pose and reference atoms is evaluated (Allen et al. 
2015). The overall docking success rate for RMSDs was 29%, for RMSDh was 32%, 
and for RMSDm was 53%. 

A rmsd-score correlation for each ligand using the primary score function was 
calculated using the Spearman correlation coefficient. A good rmsd-score correlation 
does not make it certain that better success rates can be achieved to identify the 
correctly docked conformations. However, it could imply that the score function might 
find a global minimum when conformation sampling is performed (Wang et al. 2003). 
Scoring with DOCK’s primary score function, Grid Score, is showed in Table 6. Grid 
Score did not give a good rmsd-score correlation in all three types of RMSD. RMSDs 
reached a Rୗ = 0.34, RMSDh was Rୗ = 0.36, and RMSDm achieved a slight 
improvement with Rୗ = 0.40 (Figure 14). In theory, scoring functions are expected to 
recognize the correct binding pose for compounds and rank them to separate ligands 
from non-ligands (Zhong et al. 2010). Moreover, scoring functions may perform better 
on some classes of proteins than on others (Neudert and Klebe 2011). An alternative 
to overcome individual scoring functions limitations is the use of multiple scoring 
functions upon rescoring (Wang and Wang 2001).  

Amber Score and DSX were applied to docking outcomes. The submission of 
docking outcomes to another score function is called rescoring. Each rescoring of 
docking outcomes is a consensus scoring since it is a combination of the primary 
scoring function used in docking and the function applied subsequently (Neudert and 
Klebe 2011). Rescoring with DOCK’s score function, Amber Score, is showed in Table 
7. Amber Score is a more advanced force-field based score function than Grid Score. 
However, an increase in interaction energy between the ligand and receptor in the 
majority of cases was observed. This less negative energy was expected since Amber 
Score is more refined in shielding electrostatics than Grid Score (Lang et al. 2009). 
Amber Score accomplished better rmsd-score correlation than Grid Score, RMSDs 
reached a Rୗ = 0.66, RMSDh Rୗ = 0.68, and RMSDm Rୗ = 0.67 (Figure 14). 
Whereas, DSX rmsd-score correlation was Rୗ = 0.70 for RMSDs, Rୗ = 0.73 for 
RMSDh, and Rୗ = 0.76 for RMSDm (Figure 14). DSX improvement may be due to the 
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Table 6: Redocking and cross-docking scoring with DOCK’s primary score 
function Grid Score. 

 Grid Score (kcal/mol) 
 4G1Q 1C1C 3MEC 3MEE 1EP4 1FK9 1VRT 4IG0 4I7F 4KV8 
RPV -62.5 -26.5 -55.2 -64.3 -33.1 -41.6 -34.0 -39.7 -45.2 -30.6 
612 -- -56.6 -17.5 -- 5.5 -28.2 -20.0 -24.2 -37.8 -- 
ETR -33.1 -29.7 -57.0 -31.3 -- -37.8 -22.8 -38.4 -37.5 -37.2 
RPV -45.0 -27.9 -48.3 -53.2 -35.2 -39.0 -26.7 -44.8 -49.7 -41.5 
S11 -48.7 -44.0 -31.1 -46.3 -41.0 -33.0 -37.1 -47.1 -58.0 -50.3 
EFZ -39.6 -31.7 -8.2 -37.9 -- -47.4 -39.8 -25.7 45.5 -- 
NVP -40.9 -28.8 -9.3 -45.2 -39.0 -36.3 -47.3 -43.7 -49.6 -27.7 
1FG -44.4 -50.2 -44.4 -47.0 -51.3 -39.4 -39.0 -57.9 -62.1 -48.4 
NVE -38.0 -37.5 -- -41.7 -33.0 -37.0 -33.3 -25.2 -14.0 -30.2 
1WT 24.3 -36.1 -- -2.4 -30.8 -33.7 -37.2 -51.3 3.4 -69.1 

 
 

Table 7: Redocking and cross-docking rescoring with DOCK’s score function 
Amber Score. 

 Amber Score (kcal/mol) 
 4G1Q 1C1C 3MEC 3MEE 1EP4 1FK9 1VRT 4IG0 4I7F 4KV8 
RPV -55.6 -12.3 -40.1 -53.6 -17.2 -33.3 -26.4 3.0 -12.9 -5.2 
612 -- -47.2 0.1 -- 52.9 -18.4 -2.7 18.4 12.0 -- 
ETR -4.5 -10.5 -48.3 -25.8 -- -22.5 -2.5 -17.5 -9.2 -11.9 
RPV -23.9 -7.8 -32.8 -45.4 -4.5 -25.3 -7.6 5.8 -3.1 -19.1 
S11 -29.9 -27.0 -15.8 -30.8 -24.3 -22.7 -26.9 -18.0 -33.4 -34.2 
EFZ -17.4 -10.8 6.0 -8.9 -- -35.4 -35.1 41.0 -15.7 -- 
NVP -26.8 -9.0 1.0 -20.6 -13.3 -27.7 -39.2 1.5 -17.1 -10.2 
1FG -40.3 -33.8 -30.8 -29.1 -22.3 -23.8 -28.6 -38.0 -32.6 -32.3 
NVE -22.2 -30.3 -- -24.0 -1.6 -25.9 -24.9 4.0 12.2 -20.0 
1WT 34.0 -25.2 -- 15.2 5.0 -20.8 -28.9 -22.2 46.8 -54.6 
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Table 8: Redocking and cross-docking rescoring with knowledge-based score 
function DSX. 

 DSX (a.u.) 
 4G1Q 1C1C 3MEC 3MEE 1EP4 1FK9 1VRT 4IG0 4I7F 4KV8 
RPV -149 -44 -141 -151 -52 -112 -89 -74 -96 -74 
612 -- -141 -44 -- -13 -102 -103 -49 -86 -- 
ETR -62 -60 -151 -144 -- -116 -51 -86 -70 -75 
RPV -113 -117 -144 -143 -72 -103 -102 -98 -135 -101 
S11 -131 -126 -69 -111 -101 -93 -95 -130 -151 -155 
EFZ -110 -57 -15 -105 -- -128 -106 -102 -81 -- 
NVP -106 -127 -109 -108 -71 -108 -115 -107 -95 -51 
1FG -121 -127 -135 -108 -138 -106 -95 -142 -138 -123 
NVE -120 -119 -- -113 -46 -105 -99 -127 -41 -164 
1WT -93 -116 -- -116 -49 -98 -107 -134 -121 -183 

 
scoring function formulation. DSX was designed to complement functions used in 
docking, since it does not calculate binding energies but relies on probabilities for given 
geometries. Rescoring with DSX function is shown in Table 8.  Rescoring with both 
Amber Score and DSX seemed to complement Grid Score outcomes, and it was 
carried out to all docking experiments throughout this work.  

Besides the rmsd-score correlation of the individual score functions, we 
investigated the best combination to perform consensus scoring with the primary score 
function Grid Score (Figure 15). Statistically, consensus scoring might be more robust 
and accurate than using a single scoring approach (Wang and Wang 2001). All 
combinations of consensus scoring showed superior rmsd-score correlation than Grid 
Score itself. This fact might indicate a complementarity between the selected score 
functions. Consensus score using the combination Grid Score and Amber Score 
presented correlations close to those of Amber Score itself. Correlations were Rୗ =
 0.54 for RMSDs, Rୗ = 0.56 for RMSDh, and Rୗ = 0.58 for RMSDm (Figure 15). 
Consensus score using the combination Grid Score and DSX showed better 
correlation than the combination Grid Score and Amber Score, but worse than DSX 
alone. Correlations were Rୗ = 0.57 for RMSDs, Rୗ = 0.60 for RMSDh, and Rୗ = 0.65 
for RMSDm (Figure 15). Correlation with all three score functions combined had the 
best performance of all consensus score and it was only slightly below the correlation 
of DSX alone. Correlations were Rୗ = 0.64 for RMSDs, Rୗ = 0.67 for RMSDh, and  
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Figure 14: Correlations between RMSD values (Å) and binding scores of the three score functions, Grid Score, Amber Score, and 
DSX. 
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Figure 15: Correlations between RMSD values (Å) and consensus scores of three combinations, Grid Score and Amber Score, 
Grid Score and DSX, and all three score functions together. 
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Rୗ = 0.70 for RMSDm (Figure 15). Therefore, we have chosen for consensus scoring 
the combination of all three functions. 

We carried out investigating the high-resolution structures and DOCK’s 
performance in virtual screening. Docking of the screening library formed by known 
ligands and decoys were performed into all ten structures. Though, not all compounds 
of the screening library produced a pose, including known ligands. For instance, the 
structure of PDB code 1VRT could only produce poses for 5% of the entire screening 
library, and containing only 11% of the known ligands. Since receptor files were the 
same ones used in the redocking and cross-docking procedures, failure to produce 
poses might be related to ZINC’s ligand assigned properties. Percentages of the 
docked screening library compounds in the selected structures can be seen at Table 
9. From the docking results of each selected structure enrichment calculations were 
done. 

Enrichment outcomes are plotted as ROC curves (Figure 16 and Figure 17) and 
as enrichment curves (Figure 18, Figure 19 and Figure 20). The results are numerically 
presented in Tables 10 and 11. When only Grid Score was considered only three 
structures demonstrated AUC values of 0.60 or over, the reference structure, 1C1C 
and 1EP4 (Table 9). However, early enrichment values were not adequate. Early 
enrichment is an interesting feature to bear in mind, since enrichment focuses on the 
rank of known ligands among decoys. On the other hand, early enrichment is limited 
by the fact that it does not entail that docked poses be correct regarding their 
experimental binding geometry. Structures 3MEC, 4I7F, and 4KV8 displayed 
reasonable early enrichment, but AUC values were not acceptable. Early enrichment 
for top 0.5%, 1%, 2%, and 5% of the docked database is shown in Table 11. When 
rescoring with Amber Score was considered two additional structures reached AUC 
values of 0.60 or over, 1C1C and 4KV8. Nevertheless, early enrichment was poorer 
than Grid Score. Rescoring with DSX, resulted in seven structures with AUC values of 
0.60 or higher. Early enrichment was also improved for the reference, 1EP4, and 4KV8 
structures. When consensus score was considered, eight out of the ten structures 
reached AUC of 0.60 or over, but early enrichment was not improved to most 
structures. The lack of early enrichment improvement could be to the influence of high-
rank values in the averaged rank calculated for consensus score. The number of 
compounds and known ligands docked varied from structure to structure the average 
calculated from the molecules rank could be influenced by high rank values from the 
structures. 
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Considering the individual performance of the structures, a final rescoring of the 
screening library was done for each compound against groups of structures to assess 
the possibility of performing ensemble docking. Since consensus scoring produced the 
best outcome, it was chosen as the score to calculate the averages of the rank of each 
compound across the structures of each group. The first group comprised all ten 
structures. The second group comprised seven structures (4G1Q, 1C1C, 3MEC, 
3MEE, 1EP4, 4IG0, and 4KV8) with AUC of 0.60 or over. The third group had four 
(4G1Q, 1C1C, 3MEE and 1EP4) structures with AUC of 0.65 or over. A fourth group 
involved two structures (4G1Q and 1C1C) with AUC over 0.70. A fifth and last group 
included three structures (1FK9, 4I7F, and 4IG0) with AUC up to 0.60. These tests 
produced low AUC values with poor early enrichment (Table 12). The problem here 
could be that the number of known ligands docked varied from structure to structure. 
Even if a compound did not achieve a pose in a particular structure, the average of 
ranks is still done by the total number of structures. However, consensus score 
provided good results in individual structures; it might be unsuited for these group of 
structures. Therefore, we have chosen the reference structure to perform VS of the 
screening library.  
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Figure 16: ROC curves of the scoring functions performance, Grid Score (blue), Amber Score (red), DSX (green), and consensus score 
(brown) from the structures: 4G1Q, 1C1C, 3MEC, 3MEE, 1EP4, and 1FK9. 
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Figure 17: ROC curves of the scoring functions performance, Grid Score (blue), Amber Score (red), DSX (green), and consensus score 
(brown) from the structures: 1VRT, 4IG0, 4I7F, and 4KV8. 
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Figure 18: Enrichment plots of the scoring functions performance, Grid Score (blue), Amber Score (red), DSX (green), and 
consensus score (brown) from the structures: 4G1Q, 1C1C, 3MEC, and 3MEE.  
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Figure 19: Enrichment plots of the scoring functions performance, Grid Score (blue), Amber Score (red), DSX (green), and 
consensus score (brown) from the structures: 1EP4, 1FK9, 1VRT, and 4GI0. 
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Figure 20: Enrichment plots of the scoring functions performance, Grid Score (blue), Amber Score (red), DSX (green), and 
consensus score (brown) from the structures: 4I7F, and 4KV8. 
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Table 9: Percentage of docked compounds from the screening library in the 
selected structures.  Docked % of % of 

initial 
library PDB Known 

Ligands Decoys 
4G1Q 77.8 74.7 74.7 
1C1C 50.0 47.2 47.3 
3MEC 38.9 53.6 53.3 
3MEE 55.6 64.4 64.2 
1EP4 77.8 85.9 85.8 
1FK9 44.4 53.0 52.8 
1VRT 11.1 4.9 5.0 
4IG0 83.3 78.2 78.3 
4I7F 83.3 89.5 89.4 
4KV8 72.2 70.7 70.7 

 
 

Table 10: AUC and logAUC for the score functions to the ten selected structures. 
 
  Grid 

Score  Amber 
Score  DSX  Consensus 

Score 
PDB  AUC logAUC  AUC logAUC  AUC logAUC  AUC logAUC 

4G1Q  0.70 0.25  0.61 0.20  0.72 0.31  0.73 0.27 
1C1C  0.64 0.21  0.67 0.25  0.70 0.23  0.72 0.26 
3MEC  0.54 0.22  0.56 0.19  0.69 0.26  0.64 0.19 
3MEE  0.58 0.20  0.60 0.25  0.77 0.24  0.69 0.23 
1EP4  0.64 0.25  0.65 0.24  0.62 0.23  0.66 0.26 
1FK9  0.51 0.20  0.49 0.17  0.52 0.22  0.50 0.21 
1VRT  0.51 0.17  0.46 0.12  0.92 0.41  0.65 0.26 
4IG0  0.59 0.19  0.57 0.19  0.59 0.15  0.60 0.18 
4I7F  0.49 0.16  0.59 0.18  0.50 0.12  0.54 0.15 
4KV8  0.57 0.21  0.65 0.23  0.62 0.26  0.64 0.22 
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Table 11: Early enrichment for 0.5%, 1%, 2%, and 5% of the ranked database. 
   Grid 

Score  Amber 
Score  DSX  Consensus 

Score 
PDB Emax  0.5% 1% 2% 5%  0.5% 1% 2% 5%  0.5% 1% 2% 5%  0.5% 1% 2% 5% 

4G1Q 53.3  0.0 7.1 3.6 2.9  0.0 0.0 0.0 2.9  28.6 14.3 7.1 4.3  0.0 0.0 0.0 3.3 
1C1C 52.4  0.0 0.0 0.0 2.2  0.0 7.4 5.6 4.4  0.0 0.0 5.6 2.2  0.0 8.0 5.6 4.4 
3MEC 76.0  28.6 14.3 7.1 2.9  0.0 0.0 0.0 5.7  0.0 0.0 0.0 2.9  0.0 0.0 0.0 0.0 
3MEE 64.1  0.0 0.0 5.0 2.0  0.0 10.0 5.0 4.0  0.0 0.0 0.0 2.0  0.0 0.0 0.0 4.0 
1EP4 61.1  4.0 11.1 7.1 4.3  14.3 7.1 3.6 1.4  14.3 7.1 3.6 4.3  14.3 7.1 4.0 4.3 
1FK9 65.9  0.0 0.0 0.0 5.0  0.0 12.5 6.3 2.5  0.0 12.5 6.3 2.5  25.0 12.5 6.3 2.5 
1VRT 25.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  25.0 25.0 25.0 10.0  0.0 0.0 0.0 5.0 
4IG0 52.1  0.0 6.7 3.3 1.3  0.0 0.0 4.9 2.7  0.0 0.0 0.0 0.0  0.0 0.0 0.0 1.3 
4I7F 59.5  13.3 6.7 3.3 1.3  0.0 0.0 0.0 1.3  0.0 0.0 0.0 0.0  0.0 0.0 3.3 1.3 
4KV8 54.3  15.4 7.7 3.8 1.5  0.0 0.0 0.0 1.5  30.8 15.4 7.7 3.1  0.0 0.0 0.0 1.5 

Table 12: AUC for selected structure groups rescoring. 
Group AUC 

1 (All structures) 0.36 
2 (4G1Q, 1C1C, 3MEC, 3MEE, 
1EP4, 4IG0, and 4KV8) 0.33 

3 (4G1Q, 1C1C, 3MEE, and 1EP4) 0.32 
4 (4G1Q and 1C1C) 0.35 

5 (1FK9, 4I7F, and 4IG0) 0.41 
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1.4.2 Clustering compounds 
From the screening library of 2,797,315 compounds docked into the reference 

structure 4G1Q, a total of 2,656,863 compounds achieved a pose and were scored by 
Grid Score. The average score of these compounds was -38.47 kcal/mol and the 
median -40.44 kcal/mol. When positive scores were eliminated (28,866 compounds), 
the average was -39.01 kcal/mol and the median -40.52 kcal/mol. Thus, we have 
chosen the median of -40.52 as the cut-off to select a subset of ligands for further 
analysis. A total of 1,317,146 compounds achieved Grid Score of -40.52 kcal/mol or 
over. However, the compound that reached the minimum Grid Score (-153.90 
kcal/mol), and the next three top-scoring compounds (Grid Scores of -148.06, -109.84, 
and -94.87 kcal/mol), were discarded due to structural errors (Figure 21). These 
structural errors lead to close contacts between the protein residues and the 
compounds, triggering in turn the favorable scores.  

 
 
 
 
 
 
 
 
 
 

From the remaining compounds, we have chosen two samples of 5,000 
compounds each. One sample containing compounds ranked by the lowest Grid Score 
value (-71.67 kcal/mol), and another sample containing the same amount of 
compounds, however randomly selected. The random selection of compounds was 
done in order to explore the possibility to find out a new sample of good candidates in 
the remaining database. The Grid Score average for the molecules ranked by Score 
sample was -56.60 kcal/mol and median -57.10 kcal/mol. As for the randomly selected 
sample, Grid Score average was -44.79 kcal/mol and median -44.20 kcal/mol.  

Figure 21: Structural error presented in four top scoring compounds. 
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With the help of the R package ChemmineR, we clustered the compounds from 
selected the sets. With the calculation of atom pairs, duplicated or identical compounds 
were removed from the sets. This resulted in 4,288 compounds to the set ranked by 
Grid Score and 4,994 to the random set. Afterward, clustering of the sets were done 
to identify discrete similarity groups using the binning clustering function. We have 
chosen the implemented method that calculates Tanimoto coefficient as similarity 
method with a cut-off of 0.55. The cut-off of Tanimoto coefficient of 0.55 was the one 
that provided a manageable number of compounds to be investigated for both sets 
(Table 13 and Table 14).  

 
Table 13: Clustering using Tanimoto coefficient of 0.55 for the ranked by Grid 
Score compounds. 

Cluster size Count 
1 58 
2 9 
3 1 

49 1 
4160 1 

 
Table 14: Clustering using Tanimoto coefficient of 0.55 for the randomly selected 
compounds. 

Cluster size Count 
1 91 
2 3 
7 1 

4890 1 
 
We have chosen all compounds where cluster size was one and a 

representative compound from each remaining cluster, totalizing 70 compounds for the 
set ranked by Grid Score, and 96 for the randomly selected one.  

The ChemBioServer toxicity report flagged out two compounds containing 
organic toxic roots for the ranked by Grid Score set. One compound presented in its 
composition diazene and aminothiazole, the latter was also found in the other 
compound. For the randomly selected set, the server signaled ten compounds. These 
compounds displayed in their composition a varied of toxicity motifs including 
Acrylonitrile-Michael acceptor, bromoethane-Michael acceptor, diazene, 
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aminothiazole, hydroquinone, benzo-dioxane, and catechol. All flagged compounds 
were removed.   

In the end, 68 compounds from the ranked by Grid Score set and 86 compound 
from the randomly selected set remained. Visual examination of the compounds 
confirmed that they all were within the NNBP. Using Chimera, we calculated the 
hydrogen bond interactions between the ligands and the receptor for all compounds in 
both sets. To further filter the remaining compounds, we selected only compounds with 
one or more hydrogen bonds. This rule resulted in 40 molecules in the ranked by Grid 
Score set and 20 molecules in the randomly selected one. Since the compounds were 
ranked according to consensus score of the three chosen scoring functions, we have 
chosen for each set ten compounds to further analysis (Figure 22 and Figure 24). 

For the ranked by Grid Score set, all ten compounds displayed hydrogen bond 
interaction with Lys 101 in the NNBP (Table 15). Hydrogen bond interactions with Lys 
101 are found between the crystallographic ligands RPV, EFZ, 1FG, 612, and JLJ 
(Table 16). A closer investigation of the ranked compounds shown that they displayed 
not only hydrogen bond with Lys 101, but also stacking interactions with Tyr 181 and 
Tyr 188. Interactions with residues Lys 103, Trp 229, and Val 179 were also observed. 
These interactions repeated in most compounds with some variation of residues 
(Figure 23 and Table 15).  

Since interactions between the ligands and the protein were similar among the 
compounds, we analyzed their properties from the ZINC database and the chemical 
structure displayed by them. Chemical structures also presented similarities with 
known RT inhibitors, such as compound 2 benzonitrile, also found in RPV. However, 
compounds 1 and 9 were not commercially available (Table 17). 

For the randomly selected set, all but two compounds displayed hydrogen bond 
interaction with Lys 101 in the NNBP (Table 18). Compound 8 interacted by hydrogen 
bonding with Tyr 318, whereas compound 10 formed hydrogen bond interaction with 
residue Ile 180. Most of the same observed interactions in the other set were also 
present in the randomly selected set (Figure 25 and Table 18). Compounds 5 and 6 
presented a cyclopropyl, also found in EFZ. However, compounds 1, 8, and 10 are 
charged ligands. Charged ligands are not common in NNRTIs, probably due to the 
hydrophobic nature of the pocket (Table 19).  

In the end, eight compounds (compounds 2, 3, 4, 5, 6 ,7, 8, and 10) from the 
ranked by Grid Score set remained and seven (compounds 2, 3, 4, 5, 6, 7, and 9) from 
the randomly selected set. It seems that the performed approach is capable of 
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choosing interesting compounds. However, to establish which compound would be a 
drug candidate, further examination with other methods are needed.   
Table 15: Hydrogen bond and other interactions with NNBP residues from the 
selected compounds from the ranked by Grid Score set. 

 

Rank ZINC ID H-bond 
Donor  

H-bond 
Acceptor 

Distance 
(Å) 

Other Interactions 

1 ZINC01495366 Lys 
101.A.N-H 1.O 2.1 Lys 103, Val 179, Tyr 181,Tyr 

188,Trp 229,Pro 236,Glu 138.B 
2 ZINC58331692 Lys 

101.A.N-H 2.O 2.3 Val 179, Tyr 181,Tyr 188,Trp 
229, His 235 

3 ZINC19497532 
3.N-H 
Lys 101.A.N-H 

Lys 
101.A.O 3.N 

1.8 2.3 Lys 103, Val 106, Tyr 181, Leu 234, His 235 

4 ZINC17068270 Lys 101.A.N-H 
4.N-H 

4.N Lys 
101.A.O 

2.2 
2.3 

Leu 100, Val 179, Tyr 181, Tyr 
188,Trp 229 

5 ZINC58168359 5.N-H Lys 
101.A.O 2.0 Val 179,Tyr 181,Tyr 188,Trp 

229, Tyr 318 
6 ZINC71499109 6.O-H Pro 236.A.O 2.2 Lys 103, Val 179, Tyr 181, Tyr 188, Trp 229, Pro 236 

7 ZINC04013923 7.N-H 
7.O 

Lys 101.A.O 
Glu 690.B.O 

1.9 
3.1 

Leu 100, Val 179, Tyr 181, Tyr 
188,Trp 229, Leu 234, His 235 

8 ZINC95425644 8.N4-H 8.N6-H19 8.N6-H18 
Lys 101.A.O 

His 235.O Pro 236.O 
2.0 2.0 2.1 

Lys 103, Val 179, Try 181, Tyr 
188, His 235, Pro 236, Tyr 318 

9 ZINC20318147 Lys 101 A.N-H 9.O 2.6 Lys 103, Val 106, Val 179, Try 181, Tyr 188, Pro 236, Tyr 318 
10 ZINC40493497 Lys 101 

A.N-H 10.O 2.6 Lys 103, Val 106, Val 179, Try 181, Tyr 188, Trp 229, His 235, Pro 236 
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Table 16: Hydrogen bond and other interactions with NNBP residues from the 
crystallographic structures. 
  PDB Ligand H-bond Donor H-bond Acceptor Heavy-atom Distance (Å) 

1C1B GCA GCA.N-H Lys 101.A.O 2.9 
1C1C 612 612.N-H Lys 101.A.O 2.6 
1EP4 S11 S11.N-H 

Lys 103.A.N-H 
Pro 236.A.O 

S11.O 
3.0 
2.7 

1FK9 EFZ Lys 101.A.N-H 
EFZ.N-H 

EFZ.O 
Lys 101.A.O 

3.2 
2.8 

1VRU AAP AAP.N-H Val 179.A.O 3.2 
2RKI TT1 Lys 103.A.N-H TT1.N 2.9 
3MEC 65B 

Lys 101.A.N-H 
65B.N-H18 G5B.N-H5 

65B.N 
Glu 138.B.O Lys 101.A.O 

3.4 
3.3 2.7 

4G1Q T27 Lys 101.A.N-H T27.N-H4 T27.N Lys 101.A.O 3.2 2.8 
4I2P G73 G73.N-H Lys 101.A.O 2.9 
4I7F NVE Val 106.A.N-H Val 106.A.N-H NVE.O1 NVE.O2 2.9 3.3 
4IG0 1FG Lys 101.A.N-H 1FG.O 3.0 
4KO0 JLJ Lys 101.A.N-H 

JLJ.N-H 
JLJ.N 

Lys 101.A.O 
3.1 
2.6 
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Figure 22: 2D chemical structure of the ten selected compounds from the ranked by 
Grid Score set. Compounds names are: (1) 6-(2,2-dimethoxyethylamino)-1-(3,5-
dimethylbenzyl)-3-methyl-pyrimidine-2,4-quinone; (2) 2-(4-cyanophenoxy)-N-[2-(2-
phenyloxazol-4-yl)ethyl]acetamide; (3) 3-[[(2R,6S)-2,6-dimethylmorpholin-4-
yl]methyl]-2-[(2R)-tetrahydrofuran-2-yl]-1H-pyrrolo[2,3-b]pyridi; (4) 2-methoxyethyl; 
(5) N-[3-(2-furylmethoxy)propyl]-2,5-dioxo-1,6,7,8-tetrahydroquinoline-3-
carboxamide; (6) (4S)-4-[[2-[5-(hydroxymethyl)-2-furyl]imidazol-1-yl]methyl]-1-(2-
methoxyethyl)pyrrolidin-2-one; (7) N-[9-[4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-
2-yl]-6-oxo-1H-purin-2-yl]-2-methyl-propanamide; (8) 5-amino-3-[3-[(6-ethoxypyrazin-
2-yl)-methyl-amino]propyl]-1H-pyrazole-4-carbonitrile; (9) 3-[3-[[(1R)-1-(1-
ethylpyrazol-3-yl)ethyl]carbamoyl]pyrazol-1-yl]propanoic; (10)  N-methyl-N-[2-[(5-
methylisoxazol-3-yl)amino]-2-oxo-ethyl]-3-(4-nitroimidazol-1-yl)propanamide. 
 

(1) (2) 
(3) 

(4) (5) 
(6) 

(7) (8) 
(9) 

(10) 
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Figure 23: Compounds (1), (2), (3), (4), and (5) interactions with protein residues of 
the NNBP. Black dashed lines show hydrogen bond interactions and the pink coloring 
shows other interactions regions. 

(1) (2) 

(3) (4) 

(5) 
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Table 17: Properties from ZINC of the ten compounds from the ranked by Grid Score set. 
 

Rank ZINC ID Heavy 
atoms 

Benign 
functionality xlogP Apolar desolvation 

(kcal/mol) 
Polar desolvation 

(kcal/mol) 
H-bond 
donors 

H-bond 
acceptors 

Net 
charge 

Molecular weight 
(g/mol) 

Rotatable 
bonds Vendors 

1 ZINC01495366 25 Yes 1.80 -0.36 -12.37 1 7 0 347.415 7 None 
2 ZINC58331692 26 Yes 3.11 6.78 -21.89 1 6 0 347.374 7 5 
3 ZINC19497532 23 Yes 2.15 4.92 -7.57 1 5 0 315.417 3 3 
4 ZINC17068270 24 Yes 0.28 8.42 -13.98 1 9 0 332.364 6 7 
5 ZINC58168359 25 Yes 1.10 4.31 -22.79 2 7 0 344.367 7 5 
6 ZINC71499109 23 Yes 0.67 3.89 -17.29 1 7 0 319.361 7 6 
7 ZINC04013923 24 Yes -0.82 0.39 -23.12 4 10 0 337.336 4 4 
8 ZINC95425644 22 Yes 1.55 3.16 -12.47 3 8 0 301.354 7 3 
9 ZINC20318147 22 Yes 0.36 4.49 -50.24 1 8 -1 304.33 7 None 

10 ZINC40493497 24 No -0.30 8.09 -25.0 1 11 0 336.308 7 6 
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Table 18: Hydrogen bond and other interactions with NNBP residues from the 
selected compounds from the randomly selected set. 

 

  

Rank ZINC ID H-bond Donor H-bond Acceptor Distance (Å) Other Interactions 

1 ZINC07047922 Lys 101.A.N-H 1.O 2.6 Leu 100, Lys 103, Val 179, Tyr 181,Tyr 188,Trp 227,Leu 
234,Glu 138.B 

2 ZINC03261798 
Lys 

101.A.N-H 2.N 

2.S 
Lys 101.A.O 

 
2.0 Leu 100, Lys 103,Tyr 181,Tyr 188,Trp 229, His 235 

3 ZINC00346063 101.A.N-H 3.N 2.7 Lys 103, Val 106, Tyr 181, Leu 
234, His 235, Tyr 318 

4 ZINC11394129 Lys 
101.A.N-H 4.N 2.4 Leu 100, Lys 103, Val 179, Tyr 

181, Tyr 188, Leu 234 
5 ZINC74708975 Lys 

101.A.N-H 5.S 2.4 Lys 103,Tyr 181,Tyr 188,Trp 
229, Leu 234, Tyr 318 

6 ZINC12918855 6.N-H 
Lys 

101.A.O  2.1 Lys 103, Tyr 181, Tyr 188, Trp 229, Tyr 318 
7 ZINC00416644 7.N-H Lys 101.A.O 2.1 Lys 103, Tyr 181, Tyr 188,Trp 229, Leu 234, His 235 
8 ZINC27644375 Tyr 318.A.OH 8.N 2.5 Leu 100, Val 179, Try 181, Tyr 188, Phe 227, Trp 229 
9 ZINC66476555 Lys 101 

A.N-H 9.N 2.2 Lys 103,Val 106, Val 179, Try 181, Tyr 188, Leu 234, Glu 138.B 
10 ZINC69571460 Ile 180.A.N 10.O 2.5 Leu 100, Thr 139, Val 179, Ile 180,Tyr 181,Phe 227, His 235 
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(10) 

(7) (8) (9) 

(4) (5) (6) 

(1) (2) (3) 

Figure 24: 2D chemical structure of the ten selected compounds from the randomly 
selected set. Compounds names are: (1) 2-[(2S)-1-(cyclopentylamino)-1-oxopropan-2-
yl]sulfanyl-6-(2-methoxy-2-oxoethyl)pyrimidin-4-olate; (2) 1-(2-methoxyethyl)-3-[(E)-(3-
methyl-2-thienyl)methyleneamino]thiourea; (3) [4,6-bis(isopropylamino)-s-triazin-2-yl]-
(cyanomethyl)cyanamide; (4) [2-[(5-methyl-1,2-oxazol-3-yl)amino]-2-oxoethyl] 2-[3-
(trifluoromethyl)pyrazol-1-yl]acetate; (5) 3-[(S)-cyclopropyl(thiazol-2-yl)methyl]-1-[[1-
(difluoromethyl)imidazol-2-yl]methyl]-1-methyl-urea; (6) 3-[[5-(cyclopropylamino)-1,3,4-
thiadiazol-2-yl]sulfanyl]-N-(methylcarbamoyl)propanamide; (7)  N-[5-[[2-(diethylamino)-2-
keto-ethyl]thio]-1,3,4-thiadiazol-2-yl]propionamide; (8)  8-hydroxy-2-deoxy Guanosine; (9)
1-(2,6-dimethylmorpholin-4-yl)-3-(1-methyltetrazol-5-yl)sulfanylpropan-2-ol; (10) (2S)-2-[3-
(4-methylpyrazol-1-yl)azetidin-1-yl]-N-[2-(2-thienyl)ethyl]propanamide.     
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Figure 25:  Compounds (1), (2), (3), (4), and (5) interactions with protein residues of 
the NNBP. Black dashed lines show hydrogen bond interactions and the pink coloring 
shows other interactions regions. 

(5) 

(3) (4) 

(1) (2) 
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Table 19: Properties from ZINC of the ten compounds from the randomly selected set. 
 

Rank ZINC ID Heavy 
atoms 

Benign 
functionality xlogP Apolar desolvation 

(kcal/mol) 
Polar desolvation 

(kcal/mol) 
H-bond 
donors 

H-bond 
acceptors 

Net 
charge 

Molecular weight 
(g/mol) 

Rotatable 
bonds Vendors 

1 ZINC07047922 23 Yes 2.76 3.82 -50.72 1 7 -1 338.409 7 4 
2 ZINC03261798 16 No 2.52 -3.89 -10.84 2 4 0 257.384 7 5 
3 ZINC00346063 20 No 2.36 3.03 -11.79 2 8 0 274.332 6 8 
4 ZINC11394129 23 Yes 1.02 5.97 -19.94 1 8 0 332.238 7 6 
5 ZINC74708975 23 Yes 1.78 6.15 -14.26 1 6 0 341.387 6 5 
6 ZINC12918855 19 No 0.63 3.04 -25.59 3 7 0 301.397 6 5 
7 ZINC00416644 19 Yes 1.53 -0.77 -17.08 1 6 0 302.425 7 2 
8 ZINC27644375 21 Yes -2.35 -10.66 -53.93 4 10 -1 296.263 3 1 
9 ZINC66476555 19 Yes 0.19 0.04 -10.61 1 7 0 287.389 5 1 

10 ZINC69571460 22 Yes 1.78 7.36 -48.32 2 5 1 319.454 6 1 
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1.5 PERSPECTIVES 

We plan to apply further analysis using molecular dynamics to determine the 
dynamic and energy behavior of the remaining compounds. Using methods of free 
energy calculations, it could be possible to establish a new rank to the compounds. 
With that, we could propose with slight more assertion lead candidates for 
experimental testing.  

Since we are selecting compounds that are commercially-available, 
experimental assessment could be for easy access.   
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1.6 CONCLUSIONS 

 Prior assessment of a molecular docking program performance seemed 
to be advantageous in the case of the chosen target HIV-1 RT. Using well established 
methods, such as redocking, cross-docking, and enrichment metrics, we were able to 
identify the strengths and weaknesses of the selected docking program, DOCK6.6.  

 DOCK6.6 had a good pose reproduction performance, and a fair cross-
docking one. On the other hand, the implemented algorithm, anchor-and-grow, is 
capable of generating useful conformations.  

 DOCK’s primary score function, Grid Score, did not display appealing 
results. With the use of one of DOCK’s score function, Amber Score, alongside another 
score function DSX, we were able to notice improvement in the rank of scoring 
compounds. Using these knowledge, we performed screening of a large compound 
library.  

 The use of molecular docking method in our work ensured that the 
subsequent chosen compounds, from the similarity evaluation, would fit and possible 
have interactions with the NNBP.  

 We were able to propose a representative number of compounds from 
the total initial screening library that might be potential drug candidates. However, the 
approximations used in our compound selection might have also disregarded possible 
candidates. 
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2 PART II 

2.1 INTRODUCTION 

2.1.1 Trypanosoma and Trypanosomiasis 
Trypanosoma (genus Trypanosoma, class Kinetoplastida, phylum Euglenozoa) 

is a group of unicellular parasitic flagellate protozoa. Most trypanosomes are 
transmitted via a vector and require more than one obligatory host to fulfill their life 
cycle. Usually, the propagation of a Trypanosoma species is done by blood-feeding 
invertebrates, but transmission mechanism may differ among the varying species. In 
an invertebrate host, they are found in the intestine, but normally occupy the 
bloodstream or an intracellular environment in the mammalian host. Trypanosomes 
cause several diseases in a variety of hosts. Trypanosomiasis is the name given to a 
group of diseases in vertebrates caused by parasitic protozoan trypanosomes of the 
genus Trypanosoma. The diseases include Chagas disease, caused by Trypanosoma 
cruzi, and African trypanosomiasis or sleeping sickness, caused by Trypanosoma 
brucei. 

2.1.1.1 Trypanosoma cruzi 
The protozoan parasite, Trypanosoma cruzi, was identified in 1909 by Brazilian 

physician Carlos Chagas as the etiological agent of Chagas’ disease (Chagas 1911). 
Trypanosoma cruzi is transmitted by the hematophagous reduviid bug (also known as 
the kissing bug or assassin bug). Transmission can also occur by blood transfusions 
and oral route, via ingestion of unwashed or undercooked food (Sajid and McKerrow 
2002). The parasite can be found in different hosts, including humans, domestic 
animals, and rodents. 

Trypanosoma cruzi manifest itself in three forms (Brener 1997, Martins et al. 
2012): amastigotes, epimastigotes, and trypomastigotes. These morphologies can be 
identified by the position of the kinetoplast in relation to the cell’s nucleus and by the 
emergence of the flagellum (Hoare and Wallace 1966, Contreras et al. 1988). The 
amastigote is the intracellular form of the parasite found in the tissues of the vertebrate 
host. It lacks an exterior flagellum and undulating membrane. This form, when released 
into the blood stream of the mammalian host, can infect new cells (Ley et al. 1988). 
The epimastigote is the noninfective dividing form found in the reduviid vectors 
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digestive tract. It presents a free flagellum, kinetoplast, and poorly developed 
undulating membrane (López-Velázquez et al. 2005). The trypomastigote corresponds 
to the non-replicative extracellular infective form, found in both hosts. In the 
invertebrate ones, epimastigotes transform themselves into infective metacyclic 
trypomastigotes in the insect’s midgut. Whereas, in the vertebrate hosts, it shifts into 
blood trypomastigote observed in the blood or other body fluids, for example, the 
cerebrospinal fluid and lymph, of the host. The trypomastigote forms possess short 
flagellum, narrow undulating membrane, and kinetoplast of high DNA density. The 
protozoan life cycle involves biological transformations between these three forms to 
adapt to different inner microenvironments of its mammalian hosts, including humans, 
and insect vectors (Vickerman 1985). 

When feeding on a vertebrate host, an infected insect vector deposits its feces 
containing metacyclic trypomastigotes on the skin surface near the biting, that later 
penetrate the skin or mucosa. When reaching the tissue of the vertebrate host, the 
metacyclic trypomastigotes are endocytosed by the local mononuclear phagocytic 
system. After cell invasion, the vacuoles are disrupted, and the parasite escapes into 
the cytoplasm of the cell, where it replicates into round-shaped amastigotes. After 
several binary divisions, the amastigotes transform into infective blood 
trypomastigotes, which are released into the blood and tissue spaces (Martins et al. 
2012). If another reduviid bug bites the infected vertebrate host, it may ingest the blood 
trypomastigotes. These trypomastigotes transform into epimastigotes in the vector’s 
midgut, which later multiply and differentiate. Epimastigotes differentiate into 
metacyclic trypomastigotes in the hindgut, and part of these will expelled to the outside 
by the vector’s feces, consequently restarting the cycle (Figure 26). 

Chagas disease, also known as American trypanosomiasis, is a potentially life-
threatening illness caused by the protozoan parasite Trypanosoma cruzi. In 2010, the 
World Health Organization (WHO) estimated that around 7 to 8 million people 
worldwide were infected with T. cruzi, resulting in more than 50,000 deaths every year 
(WHO 2013). Most cases are found in Latin American countries where the disease is 
endemic. However, the past decades have seen a substantial spread of this illness in 
the United States of America, Canada, and many European and some Western Pacific 
countries. The phenomenon is mainly due to population mobility between Latin 
America and the rest of the world.  

There are two successive clinical phases of Chagas disease; an initial acute 
phase, and a chronic phase. In the acute phase, a high number of parasite circulate in 
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the blood. However, in most cases symptoms are absent or mild, with less than fifty 
percent of people bitten by the reduviid bug with visible signs of the disease. These 
signs can be a skin lesion or a purplish swelling of the eyelid close to the bite wound 
or in the vicinity where the bug feces were deposited. Other symptoms are fever, 
headache, enlarged lymph glands, paleness, muscle pain, difficulty in breathing, 
swelling, and abdominal or chest pain. This acute phase lasts for about two months 
after infection (Coura and Borges-Pereira 2012). As the parasite sustains its life cycle 
by multiplying intracellularly and infecting new cells, it leads to a chronic accumulation 
of host tissue damage over several years, resulting in cardiac disorders, digestive 
(typically enlargement of the esophagus or colon), neurological or mixed alterations 
(Coura and Borges-Pereira 2011). If the infection is left untreated, it can cause sudden 
death or heart failure. 

 

Figure 26: Overview of Trypanosoma cruzi infective and diagnostic stages. Figure 
taken directly from http://www.cdc.gov/dpdx. 
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The current chemotherapy for Chagas disease is composed of nitrofurans like 
nifurtimox (Lampit, Bayer) and benznidazole (Radanil/Rochagan, Roche) (Figure 27), 
used to cure the acute phase of the disease. These drugs present severe side effects 
and limited efficacy (10-20%) for the treatment of the chronic stage of the disease 
(Rodrigues et al. 2002, Cazzulo 2005). Furthermore, certain T. cruzi strains have 
shown resistance to these drugs and neither compounds eradicate the parasite nor 
prevent damage to the heart tissue (Wilkinson et al. 2008, Lauria-Pires et al. 2000). 
Throughout the years, potential drugs have demonstrated efficacy in vitro against T. 
cruzi (Urbina et al. 1996, Urbina et al. 2000, Molina et al. 2000, Docampo 2001). 
However, these drugs showed not to be effective in vivo, including when treating the 
acute phase of the disease (Coura and Borges-Pereira 2012). Therefore, there is an 
urgent need to develop safe and efficient new anti-Chagas’ drugs to overcome the 
issues arising from the current treatment. 

 
Figure 27: 2D chemical structures of Nifurtimox and Benznidazole. 

2.1.1.2 Trypanosoma brucei 
Trypanosoma brucei is a flagellated protozoan and the etiological agent of 

African trypanosomiasis that infects both man and animals. The parasite is transmitted 
by the bite of infected tsetse flies and lives extracellularly in the blood and tissue fluids 
of humans. Two subspecies, morphologically indistinguishable, cause distinct disease 
patterns in humans: T. b. gambiense causes West African sleeping sickness and T. b. 
rhodesiense causes East African sleeping sickness (Ley et al. 1988). Trypanosoma 
brucei brucei, Trypanosoma congolense and Trypanosoma vivax are responsible for 
the infection in animals (Caffrey et al. 2001). 

T. brucei undergoes morphological changes as host infection progresses (Ooi 
and Bastin 2013). It has a single flagellum, which is present during the cell cycle and 
all stages of development (Langousis and Hill 2014). T. brucei life cycle in mammalian 



95 

hosts begins when a tsetse fly delivers growth-arrested metacyclic trypomastigotes 
into skin tissue through its bite. The parasites enter into the lymphatic system, moves 
into the bloodstream, and differentiates into proliferating long slender forms: the 
bloodstream trypomastigotes. Eventually, they are carried to other sites throughout the 
body, invade extravascular tissues, including the nervous system, and continue the 
replication by binary fission. The extracellular stages accomplish the entire life cycle of 
African trypanosomes. If a tsetse fly bites an infected host, parasites will be transported 
together with the infected blood into the insect midgut. The parasites transform into 
procyclic trypomastigotes, multiply by binary fission and leave the midgut to transform 
themselves into epimastigotes. The epimastigotes reach the fly’s salivary glands, 
replicate, and eventually complete the life cycle generating metacyclic trypomastigotes 
that are free and adapted to survive in the mammalian host (Figure 28). 

Human African trypanosomiasis (HAT) or sleeping sickness is an infection 
caused by the protozoan T. brucei. Currently, sleeping sickness is restricted to sub-
Saharan Africa, where it causes morbidity and mortality in its population. The disease 
affects mostly rural populations living in regions where tsetse flies are found. Those 
who suffer from this illness depend usually on agriculture, fishing, animal husbandry or 
hunting. In 2013, WHO reported that the number of new cases was about 7,000, 
although over 50 million people in 36 countries were still at risk of acquiring the disease 
(WHO 2015).  

HAT takes two forms, depending on the parasite involved. Sleeping sickness 
chronic form is caused by T. b. gambiense and occurs in western and central Africa 
(Steverding 2013). This form currently accounts for over 98% of reported cases of the 
infection (WHO 2015). The remaining 2% are due to the acute form of HAT caused by 
T. b. rhodesiense, found in eastern and southern Africa (WHO 2015). Throughout the 
course of HAT, two distinct stages can be perceived. In the first one, the parasites are 
restricted to the blood and lymph systems, causing irregular fever, headaches, joint 
pain, and itching (WHO 2015). In the second phase, the central nervous system is 
infected, and patients display more pronounced symptoms of the diseases, such as 
confusion, disturbed sleep pattern, sensory disturbances, extreme lethargy, poor 
coordination, and coma. If the infection is left untreated, patients infected with the T. b. 
rhodesiense form die within months and those infected with T. b. gambiense within 
years. 

Chemotherapy for HAT depends on the disease stage and form of infection 
(Croft et al. 1997). Currently, there are four available drugs (Figure 29), where three 
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(suramin, pentamidine, and melarsoprol) were discovered over 50 years ago (Caffrey 
et al. 2001). The drugs used in the first phase are safer and easier to manage than 
those administered for the second phase. Pentamidine and suramin are first-phase 
treatment drugs and are only effective against T. b. gambiense and T. b. rhodesiense, 
respectively. Both provoke undesirable side effects affecting the urinary tract or 
including allergic reactions, and difficulty in breathing (WHO 2015). Second-phase 
drugs include melarsoprol, active against both T. b. gambiense and T. b. rhodesiense 
infections; eflornithine, effective only against T.b. gambiense; and a combination of 
nifurtimox and eflornithine, recommended as first-line treatment for the T. b. 
gambiense form, but not studied for T. b. rhodesiense. All these drugs present major 
shortcomings, including poor efficacy, significant toxicity, and drug resistance has also 
been reported (Caffrey et al. 2001, Baker et al. 2013, Delespaux and de Koning 2007). 
For example, treatment with melarsoprol causes acute encephalopathy 
(encephalopathic syndrome) in 5-10% of patients treated, which can be fatal (1% to 
5% of the cases) (Caffrey et al. 2001). Evidently, new treatment strategies for HAT are 
required. 

 
Figure 28: Overview of Trypanosoma brucei infective and diagnostic stages. The 
Figure was taken directly from http://www.cdc.gov/dpdx. 
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Figure 29: 2D chemical structures of pentamidine, suramin, melarsoprol, and 
eflornithine. 
2.1.2 Overview of Proteases   

Proteases (also referred to as peptidases or proteinases) are any enzyme that 
executes proteolysis. Proteolysis is the hydrolytic cleavage of peptide bonds under 
enzymatic conditions, in which the enzymes act as catalysts for the irreversible 
cleavage of a polypeptide chain (Smith and Simons 2004). Proteases comprise a 
widely studied class of enzymes and are used as drug targets for treating diseases 
such as diabetes, osteoporosis, various kinds of cancer, and infectious diseases 
(Rodenko and de Koning 2013). These enzymes perform essential functions in all 
living organisms. As well as mediating nonspecific protein hydrolysis, they can act as 
processing enzymes that execute highly selective, limited and efficient cleavage of 
specific substrates, which sets off irreversible decisions that influence many biological 
processes (Puente et al. 2003). 

Proteases can be categorized according to their key catalytic group in the active 
site: serine, threonine, cysteine, aspartate, glutamate, or zinc in metalloproteases. 
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Serine, cysteine and threonine proteases act directly as nucleophiles that attack an 
amide carbonyl C, whereas aspartate, glutamate, and metalloproteases activate a 
water molecule that then acts as a nucleophile (Siklos et al. 2015). Proteases can also 
be classified into exopeptidases and endopeptidases, based on their substrate 
specificities or mechanism of catalysis. Exopeptidases truncate one or several amino 
acids from either the N- or the C-terminus of a peptide, whereas endopeptidases 
cleave within a polypeptide chain (Siklos et al. 2015).  

A catalytic triad or dyad, an oxyanion hole, and specificity binding pockets 
categorize the active sites of proteases. The substrate specificity is determined by the 
structure of the binding pockets and is influenced by a defined optimum pH (Smith and 
Simons 2004). 

For the interaction substrate-enzyme, a nomenclature according to Schechter 
and Berger (Schechter and Berger 1967) has become commonly used. This 
nomenclature designates residues carboxy-terminal to the scissile peptide bond as a 
prime side (P’) and amino-terminal residues as a non-prime side (P). P and P’ residues 
interact with complementary protease subsites called S and S’ (Schilling and Overall 
2008) (Figure 30). Binding can be due to hydrophobic interactions, salt bridges, and 
hydrogen bonds, and the cleavage rate, or, at least, selectivity is influenced by the 
intensity of binding (Smith and Simons 2004). 

Figure 30: Substrate binding region of proteases. Enzyme subsites are designated as 
S1, S2, S3, S4, S1', S2', and S3'. The appropriate amino acid positions in the substrate 
are named as P1, P2, P3, P4, P1', P2', and P3'. The scissile bond in substrates is 
between P1 and P1’. Figure adapted from (Storer and Ménard 1994). 
2.1.2.1 Cysteine proteases 

Cysteine proteases receive their name due to the nucleophilic cysteine residue 
present in the active site that forms a covalent bond with the carbonyl group of the 
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scissile peptide bond in substrates (Brömme 2001). Catalytic residues Cys 25 and His 
159 (papain numbering) are evolutionarily preserved in all cysteine proteases. These 
residues are responsible for the enzymatic activity of cysteine proteases and thought 
to exist as a thiolate-imidazolium ion pair –S-…H+Im– in the free enzyme (Storer and 
Ménard 1994, Polgar 2004). The formation of an unstable tetrahedral intermediate, S-
acyl-enzyme moiety, is a significant step in hydrolysis (Grzonka et al. 2000). The 
moiety is formed via nucleophilic attack of the thiolate group of the cysteine residue 
acting on the carbonyl group of the hydrolyzed peptide bond with the release of the C-
terminal fragment of the cleaved product. When a water molecule reacts with the 
moiety, the N-terminal fragment is released, and the regenerated free cysteine 
protease can start over a new catalytic cycle (Storer and Ménard 1994)(Figure 31). 

Cysteine proteases are optimally active in slightly acidic conditions (pH 4 – 6.5) 
and their molecular masses are about 21-30 kDa (Grzonka et al. 2000). They are 
expressed either ubiquitous or tissue and cell specific, and play a major role in human 
physiology and pathology (Bromme and Kaleta 2002). Human cysteine proteases are 
involved not only in protein catabolism, but also in hormone activation, antigen 
presentation, and tissue remodeling (Turk et al. 2000, Nägler and Ménard 2003). Also, 
investigation of parasite-derived cysteine proteases has shown they play an essential 
role in the parasite’s life cycle (Lecaille et al. 2002). 

These enzymes are divided into clans, C-, CA, CD, CE, CF, and CH in the 
MEROPS peptidase database (Rawlings et al. 2010, Barrett and Rawlings 2001). The 
most explored clan is the CA, the papain-like enzymes, in which the belonging 
proteases consist of promising targets for therapeutic discovery in parasitic infections 
and human diseases. 
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Figure 31: Simplified mechanism of substrate hydrolysis by cysteine proteases. The 
enzyme thiol group attacks the carbonyl carbon of a substrate's peptide bond and 
forms a tetrahedral intermediate that disintegrates into an acyl-enzyme powered by the 
release of the C-terminal portion of the substrate. Afterward, the acyl-enzyme 
hydrolyzes into the free enzyme and the N-terminal portion of the substrate. Figure 
adapted from (Storer and Ménard 1994). 
2.1.2.2 Papain Family 

Papain-like cysteine proteases have been classified as the clan CA, family C1 
(Rawlings and Barrett 1993) and are found in viruses, plants, parasites, invertebrates, 
and vertebrates (Brömme 2001). Papain is a plant protease isolated from papaya fruits 
and gives the C1 family its name (Smith and Simons 2004). The CA-clan papain-like 
cysteine proteases catalytic triad consists of the referred cysteine residue, a histidine 
residue, and an aspartate or asparagine residue and is highly conserved among 
members of the enzyme family (Lecaille et al. 2002). The third member of the triad 
does not contribute directly to the catalysis, but acts as hydrogen bond acceptor toward 
the imidazole entity of the histidine, allowing consequently the formation of a 
permanent thiolate-imidazolium ion pair (Löser et al. 2005).  
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Mammalian proteases, also known as cathepsins, are not catalytically 
conserved. The majority are papain-like cysteine proteases, including the human 
isoforms B, C, F, H, K, L, O, S, V, X and W (Turk et al. 2012). Also, numerous cysteine 
proteases have been identified in several parasitic organisms, sharing the common 
amino acid sequence and fold of a papain-like structure. Location of papain-like 
cysteine proteases is not restricted to lysosomes; these enzymes also navigate 
between phagosomes and endosomes. 

The mature domain of most papain-like cysteine proteases has between 214 to 
260 amino acids in length, and the highest conservation is observed in the catalytic 
domain (Brömme 2001). In these proteases, the cysteine residue is surrounded by a 
highly conserved peptide sequence, CGSCWAFS (underlined is the catalytic cysteine), 
where only a small number of proteases have different residues in this region (Smith 
and Simons 2004). Furthermore, the area surrounding the two other catalytic triad 
residues is also preserved. A common fold is also shared between the mature 
enzymes, consisting of two domains of similar size, the N-terminal L (left) and the C-
terminal R (right) domain. Between the two domains is located the V-shaped active 
site cleft, with the catalytic triad in the center, where the substrate can bind in an 
extended conformation (Löser et al. 2005). 

In 1967, Schechter and Berger (Schechter and Berger 1967) described that the 
substrate pocket of papain-like cysteine proteases binds, at least, seven amino acid 
residues in proper subsites. With four sites binding amino acid residues N-terminal on 
the scissile bond (S1-S4) and three sites in the C-terminal direction (S1’-S3’) (Brömme 
2001). A revised proposition by Turk (Turk et al. 1998), suggested that only five 
subsites are essential for substrate binding. Based on kinetic and structural studies, it 
was revealed that S2, S1 and S1’ pockets are necessary for both backbone and side-
chain binding, whereas S3 and S2’ are crucial for amino acid side-chain binding 
(Grzonka et al. 2000). 

Papain-like cysteine proteases activities have been recognized as critical in the 
degenerative, invasive, and immune system associated disorders as well as in several 
parasitic infections. Parasitic papain-like cysteine proteases have been known to 
display virulence factors, degrade extracellular matrix proteins, and enhance the 
processing of proenzymes (Que and Reed 2000).  
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2.1.2.3 Cruzain 
Cruzain is the major papain-like cysteine protease of Trypanosoma cruzi, the 

etiological agent of Chagas’ disease. Originally it was named cruzipain, a term 
currently employed to refer to the native parasite-derived enzyme, while cruzain is 
used to the recombinantly-expressed protein (Sajid and McKerrow 2002). This 
cysteine protease is present in all stages of T. cruzi life cycle (Serveau et al. 1996), 
with higher levels in the epimastigote form (Fampa et al. 2008), and plays a number of 
essential biological roles (Sajid and McKerrow 2002, Steverding et al. 2006, 
Scharfstein et al. 2000, Aparicio et al. 2004); such as contributing to general protein 
turnover, nutrient processing, evasion of host immune response, cell infection, and 
parasite differentiation.  

Cruzain structural domain contains 215 amino acids including the catalytic 
residues, Cys 25, His 162, Asn 182, and the oxyanion hole Glu 19 (cruzain numbering). 
As a member of the papain superfamily of cysteine proteases, cruzain has a sequence 
identity closely related to the major cysteine proteases of Trypanosoma brucei (around 
70%), rhodesain, and to the human cathepsin F enzyme (around 50%). It has been 
shown that the specificity of cruzain is largely due to the composition of the S2 pocket 
of the substrate-binding cleft, as observed for other proteases of the same family (Sajid 
et al. 2011). Cruzain’s S2 pocket is hydrophobic in nature and residues Met 68, Ala 
138, Leu 160 and Gly 163, with Glu 208 at the base of the pocket, are present in its 
formation. Glu 208 plays a significant role in the physicochemical preference for 
substrate residues, typically amino acids with a noncharged aliphatic or aromatic side 
group, when at the pH optimum of cruzain (pH 5.5) (Gillmor et al. 1997, McGrath et al. 
1995). However, the presence of a Glu at the S2 pocket also grants the opportunity for 
interaction with amines in the P2 position of the substrate, due mostly to Glu 208 
restructuration of the pocket at different pH (Gillmor et al. 1997). Depending on the 
ligand co-crystalized, crystal structure comparisons showed that the carboxylic acid 
moiety of Glu 208 swings into the S2 pocket at neutral pH but is directed away at acid 
pH (Sajid et al. 2011). 

As a target, cruzain has been validated through biochemical studies, animal 
models, and X-ray crystallographic structure determination. Also, new classes of 
cruzain compounds have been discovered throughout the years, and for some of the 
binding mode has been determined through crystallography (Gillmor et al. 1997, 
McGrath et al. 1995, Mott et al. 2009, Ferreira et al. 2010). However, none of these 
compounds has reached clinical trials. Inhibitor classes extend from potent peptidic 
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compounds (McGrath et al. 1995, Kerr et al. 2009, Choe et al. 2005, Huang et al. 2003) 
to potent nonpeptidic compounds (Bryant et al. 2009, Brak et al. 2010, Ferreira et al. 
2014). Cruzain inhibitors based on vinyl sulfones, tetrafluorphenoxymethyl ketones, 
and diazomethyl ketones are the most structuraly studied compounds for the enzyme. 
These classes contain an electrophilic warhead capable of inactivating covalently and 
irreversibly the enzyme as a result of nucleophilic attack by the active site cysteine 
(Yang et al. 2012). Also, several small reversible compounds, which usually bind 
noncovalently to the enzyme producing inhibition, have been identified (Ferreira et al. 
2010, Ferreira et al. 2014). Despite the different binding modes, the great concern is 
to develop selective inhibitors able to distinguish between mammalian and parasitic 
proteases, since there is a high identity percentage with cysteine proteases (Ettari et 
al. 2013). 

2.1.2.4 Rhodesain 
Trypanosoma brucei in bloodstream expresses two papain-like cysteine 

proteases: a cathepsin L-like protease and a cathepsin B-like protease (Ehmke et al. 
2013). However, T. brucei cathepsin L-like enzymes are the most abundant of the two 
proteases. Recently, Steverding et al. (Steverding et al. 2012) conducted a study in 
which they showed that T. brucei cathepsin L-like protease is the essential cysteine 
protease of T. brucei and should be considered the primary target for the treatment of 
sleeping sickness (Steverding et al. 2012). To distinguish the cathepsin L-like 
proteases from T. b. rhodesiense and T. b. brucei, they are commonly termed 
rhodesain and brucipain, respectively. Rhodesain and brucipain are nearly identical in 
sequence (98.4%  identity) (Ettari et al. 2013) and the same functional role is assumed 
in both subspecies of T. brucei (Costa et al. 2012). Furthermore, rhodesain exhibits 
notable structural similarity with T. cruzi cruzain (around 70% amino acid identity). 
Similar to cruzain, it consists of a single polypeptide chain of 215 amino acids with the 
catalytic triad (Cys 25/His 162/Asn 182) located between the left (L) and right (R) 
domains.  

Rhodesain plays essential roles in all phases of T. b. rhodesiense life cycle (Kerr 
et al. 2010). Its presence is required to allow the parasite cross the blood–brain barrier 
of the human host that causes the severe (and lethal) stage of the disease (Lonsdale-
Eccles and Grab 2002). Rhodesain is also involved in the turnover of variant surface 
glycoproteins of trypanosomes (Barry and McCulloch 2001), enabling infected T. 
brucei to evade host immune responses, causing chronic infection (Ettari et al. 2013). 
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Like other papain-like cysteine proteases, rhodesain’s S2 pocket establishes 
the specificity towards peptidyl substrates. Within the S2 pocket, a range of bulky 
hydrophobic residues is tolerated with a preference for leucine and phenylalanine in 
the P2 position of the substrates. The presence of an alanine residue, Ala 208, at the 
bottom of the S2 pocket, turns it shallower than the cruzain pocket (Kerr et al. 2010), 
while residues Gln 159 and Leu 160 narrow the pocket (Kerr et al. 2009).  

With the help of crystal structures of rhodesain in complex with specific inhibitors 
(Kerr et al. 2009), structural and biochemical insights have enabled the design of 
rhodesain compounds. Rhodesain main classes of inhibitors include peptidic, 
peptidomimetic, and nonpeptidic structures, with different modes of action (Ettari et al. 
2013). Promising inhibitors can be found in the groups of vinyl sulfones, aldehydes, 
ketone derivatives, azadipeptide nitriles, thiosemicarbazones and fumaric acid 
derivatives (Ettari et al. 2013). 

2.1.3 Molecular modeling 
Both cruzain and rhodesain are validated therapeutic targets, with inhibitor 

classes described, and for some of these compounds, their structures in complex with 
the respective proteins were determined by X-ray crystallography. Structural similarity 
between cruzain and rhodesain enables the development of novel inhibitors for both 
enzymes. Amino acid identity between both proteins is around 70%; the similarity is 
even higher in the active site. In this region the differences are found in the S3 subsite, 
where the cruzain residue Ser 186 is replaced by a Phe residue in rhodesain; and at 
the base of the S2 subsite, where the cruzain residue Glu 208 is replaced by an Ala 
residue. Consequently, inhibitors often have little distinction between both enzymes, 
and classes of compounds which act against both proteins have been developed (Mott 
et al. 2009, Greenbaum et al. 2004, Jaishankar et al. 2008) 

From molecular docking studies only is not possible to understand the 
differences in their inhibitory capacity. Therefore, in this work we propose the use of 
Molecular Dynamics (MD) simulations and free energy calculations to determine the 
affinity of a series inhibitors candidates of both enzymes.  

2.1.3.1 Molecular Dynamics 
Molecular Dynamics (MD) is a widely used method to determine the dynamic, 

structural and thermodynamic properties of biological systems through computer 
simulations. This methodology uses a potential energy function, that is a description of 
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the terms by which the particles in the simulation will interact, known as a force field 
(Adcock and McCammon 2006). This potential function is based on molecular 
mechanics and is represented by 

ܧ = ௕௢௡ௗ௦ܧ + ௔௡௚௟௘௦ܧ + ௧௢௥௦௜௢௡௦ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥܧ
௕௢௡ௗ௘ௗ

+ ௘௟௘௖௧௥௢௦௧௔௧௜௖ܧ + ௩ௗ௪ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥܧ
௡௢௡ି௕௢௡ௗ௘ௗ

 (1) 
the sum of bonded and non-bonded potentials, defined by their atomic coordinates. 
The bonded terms refer to bonds, angles, and torsional energies, and the non-bonded 
terms describe the electrostatic and van der Waals interactions (Rapaport 2004). In a 
MD simulation, the interaction and the physical movements of atoms and molecules 
are depicted over time, usually over tens to hundreds of nanoseconds (ns), generating 
a trajectory interactively (Adcock and McCammon 2006). Trajectories are obtained by 
integrating Newton’s equation of motion 

పሬሬԦܨ = ݉௜ܽపሬሬሬԦ = ݉௜
݀ଶݎపሬሬԦ
ଶݐ݀  (2) 

where ܨపሬሬԦ is the resulting force acting on atom ݅ with mass ݉௜. ܽపሬሬሬԦ is the acceleration, 
which can be represented as the second derivative of the coordinates ݎప ሬሬሬԦ with respect 
to the time ݐ. The force can also be derived from the gradient of the potential energy, 

పሬሬԦܨ = −∇௜(3) ܧ 
Combining these two equations, Newton’s equation of motion can then relate to 

the derivative of the potential energy of the changes in positions as a function of time. 
The atoms motions are not independent, but they influence each other and are coupled 
together. Since the potential energy is a function of the atomic positions of all the atoms 
in the system, there is no analytical solution to the equations of motion. Therefore, they 
must be solved numerically. 

2.1.3.2 Free energy calculations 
The term “free energy calculations” is commonly used to denote a class of 

numerical simulations that relate, through equations of classical statistical mechanics, 
the free energy difference between two different states or conformations to a 
thermodynamic ensemble average determined by potential energy properties of those 
states or conformations (Beveridge and DiCapua 1989). Free energy simulation 
methods have been successfully applied to a variety of problems in chemistry and 
biology (Kollman 1993, Hansen and van Gunsteren 2014, Michel et al. 2010). All 
molecular behavior, from association to conformational preference, stems directly from 
the free energy profile (Pearlman and Rao 1998). As the calculation of the absolute 
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free energy of a receptor-ligand complex is virtually impossible (Pearlman and Rao 
1998), most free energy calculations are formulated regarding estimations of the 
relative free energy differences (Brandsdal et al. 2003). A difference in free energy 
provides the relative likelihood of directing the system to one state as opposed to 
another.  

The difference in free energy between two neighboring states, A and B, can be 
calculated from (Zwanzig 1954): 

ܩ∆ = ஻ܩ − ஺ܩ = ଵିߚ− ln〈exp (−ߚ∆ܸ)〉஺ (4) 
where ߚ = 1 ݇ܶ⁄  and 〈 〉஺ denotes an ensemble average of Δܸ = ஻ܸ − ஺ܸ. 

From the computational point of view and convergence’s sake, simulations are 
usually carried out by describing a series of non-physical intermediate states 
connecting the physical states A and B (Pearlman 2001). These intermediate states 
are potential energy functions that are commonly constructed as linear combinations 
of the states A and B: 

௠ܸ = (1 − (௠ߣ ஺ܸ + ௠ߣ ஻ܸ (5) 
where ߣ varies from 0 to 1 (Brandsdal et al. 2003) (Figure 32). As the simulation 
progresses, the system gradually begins to look more like B and less like A. The use 
of the coupling parameter ߣ is supported by the fact that the free energy difference is 
defined by the initial and final states and can be calculated along any reversible path 
connecting those states (Brandsdal et al. 2003).  

 
Figure 32: Alchemical transformation from an initial state (λ=0) to a final state (λ=1) divided into distinct intermediate states with a corresponding coupling parameter λ. 

The total free energy change can be obtained by summing over the intermediate 
states along the ߣ variable: 

ܩ∆ = ஻ܩ − ஺ܩ = ଵିߚ− ෍ ln〈exp[−ߚ( ௠ܸାଵ − ௠ܸ)]〉௠
௡ିଵ

௠ୀଵ
 (6) 

In general, free energy simulations are carried out in the context of a 
thermodynamic cycle (Figure 33). For instance, to compare the relative binding 
energies of two ligands to the same receptor, we can use the cycle in Figure 33. To 
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calculate free energy differences, two transformation systems need to be prepared: 
one for the unbound ligands in solution (Δܩௌ) and the other complexed to the receptor 
(Δܩ஼). Since free energy is a state function, the variation in free energy can be 
rigorously calculated as the sum of the free energies differences between these similar 
intermediates (Pearlman 2001).  

ΔΔܩ = Δܩ௑ − Δܩ௒ = Δܩௌ − Δܩ஼ (7) 
Two approaches are broadly used to produce a thermodynamically relevant 

ensemble: Molecular Dynamics (MD) (McCammon and Karplus 1983) and Monte 
Carlo (MC) (Jorgensen 1983). In MD, the ensembles are generated over time, from 
which the averaged quantities can be derived, whereas, in MC the averages are 
derived from ensembles over space, through a series of random moves along with 
energy based approval criteria to create a thermodynamically significant ensemble 
(Pearlman and Rao 1998). However, Jorgensen et al. (Jorgensen and Tirado-Rives 
1996) demonstrated that for reasonably sized solutes, MC simulations can be exposed 
to limitations in the total amount of sampling when compared to those obtained from 
MD, especially for macromolecular systems that can undergo large-scale motions 
(Pearlman and Rao 1998). 

The most applicable and possibly most accurate methods for calculating free 
energies are the sampling-based explicit methods, free energy perturbation (FEP) and 
thermodynamic integration (TI), or variants of those. Despite their accuracy, these 
methods are computationally expensive with slow convergence. Other methods can 
be applied to estimate relative and absolute free energies, however, they provide some 
limitations depending on the system. In the present work, TI was used to calculate the 

Figure 33: Thermodynamic cycle for relative free energies of binding. The receptor is 
in dark blue, and X and Y are two ligands. 
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difference in the free energy of binding for a series of potential inhibitors to the enzymes 
cruzain and rhodesain.  

TI method can be derived from the same basic classical statistical mechanical 
equations to determine free energies (Pearlman and Rao 1998). If the ߣ-steps are 
sufficiently small, the potential difference in the exponent of Eq. (5) can be rewritten as  

௠ܸାଵ − ௠ܸ = ߲ ௠ܸ
௠ߣ߲

Δ(8) ߣ 
where Δߣ௠ = ௠ାଵߣ − ௠ and Δܸߣ = ஻ܸ − ஺ܸ = డ௏೘

డఒ೘ . Combining Eq. (6) with Eq. (8), we 
have 

Δܩ = ଵିߚ− ෍ ln ർexp ൤−ߚ ߲ ௠ܸ
௠ߣ߲

Δߣ௠൨඀
௠

௡ିଵ

௠ୀଵ
 (9) 

For small steps in ߣ, Eq. (9) can be linearized by retaining only the leading terms 
in the Taylor expansion of the exponent and logarithm, yielding: 

Δܩ = ෍ ർ߲ ௠ܸ
௠ߣ߲

඀
௠

Δ
௡ିଵ

௠ୀଵ
 ௠ (10)ߣ

When ߣ → 0, Eq. (10) can be written as an integral over ߣ: 
ܩ∆ = න ൽ߲ܸ(ߣ)

ߣ߲ ඁ
ఒ

ଵߣ݀
଴

 (11) 
Eq. (11) is the master equation for TI method. In this equation, ߣ = 0 corresponds to 

஺ܸ and ߣ = 1 corresponds to ஻ܸ. In practice, the integrand in Eq. (11) is assessed at a 
series of discrete points or “windows”, and the integral is approximated from these 
points using a numerical integration method. All numeric integration methods have the 
form 

ܩ∆ ≈ ෍ इ௠ ൽ߲ܸ(ߣ)
ߣ߲ ඁ

௠

௡

௠ୀଵ
 (12) 

where इ௠ are weights and will depend on the numeric integration chosen. TI 
calculations use several independent MD (or MC) simulations at fixed ߣ values, so 
parallelization and the subsequent addition of ߣ points can be performed. 
  



109 

2.2 AIMS 

2.2.1 Main goal 
To investigate the dynamic and energy behavior of a set noncovalent inhibitors 

of the enzymes cruzain and rhodesain in different protonation states of the enzyme 
and elucidate the possible binding modes of a series of analogues derived from the 
crystallographic inhibitor B95 through molecular modeling methods. 

2.2.2 Particular goals 
 To examine and analyze structural stability of the B95 ligand (neutral and 

positively charged) under the influence of different protonation states of the 
cruzain catalytic dyad, Cys 25 and His 162. 

 To define and investigate initial binding modes for the ligand B95 in its non-
native structure of rhodesain by molecular docking and molecular dynamics. 

 To estimate the free energy of binding of a series of B95 analogs with related 
structures in complex with cruzain and rhodesain through thermodynamic 
integration methodology. Calculations will be useful to give support to the 
binding modes obtained by molecular docking methods. 
 
 

  



110 

2.3 MATERIAL AND METHODS 

2.3.1 Crystal structure selection 
The crystal structures of cruzain and rhodesain were taken from the Protein 

Data Bank (Berman et al. 2000). Cruzain structure, PDB code 3KKU (Ferreira et al. 
2010), is in complex with the non-covalent ligand B95 located in the active site of the 
enzyme, and has an X-ray resolution of 1.28 Å. On the other hand, the chosen 
rhodesain structure, PDB code 2P86 (Marion et al.), is bound to the irreversible 
pseudopeptide inhibitor K11002 located in the active site of the enzyme, and presents 
an X-ray resolution of 1.16 Å. Computational preparation of the protein consisted of 
hydrogen addition of residues according to acidic protonation states (pH=5.5) using 
the MOE (2016) program. The ligand B95 was also prepared with MOE. Hydrogens 
were added and two protonation states of the ligand benzimidazole ring were 
considered.  

2.3.2 Active site amino acids 
The active site of cruzain was considered as the residues within 10 Å of 

compound B95 center of mass: Gln 19, Gly 23, Cys 25, Trp 26, Ala 27, Ser 29, Asp 
60, Ser 61, Gly 62, Cys 63, Ser 64, Gly 65, Gly 66, Leu 67, Met 68, Asn 69, Glu 117, 
Val 137, Ala 138, Val 139, Asp 140, Ala 141, Ser 142, Gln 159, Leu 160, Asp 161, His 
162, Gly 163, Val 164, Trp 184, Ser 186, Leu 204, and Glu 208. We superimposed the 
crystal structures 3KKU and 2P86 to assess the active site of rhodesain (Table 20 and 
Figure 34). Since the region occupied by both ligands was the same, we selected the 
residues chosen at same position of cruzain in rhodesain as the corresponding active 
site. The differences between sites are found in residues Phe 61, Gly 64, Asp 69, Asp 
117, Ile 137, Thr 142, Phe 186, and Ala 208. 

2.3.3 Molecular docking 
Since no crystal structure of the non-covalent ligand B95 bound to rhodesain is 

available, molecular docking was employed to obtain an initial binding mode. Docking 
was performed with Glide version 6.6 (Friesner et al. 2006, Friesner et al. 2004, 
Halgren et al. 2004) using the Virtual Screening Workflow that allows ensemble 
docking of a ligand library against multiple rigid receptors.   
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Table 20: Cruzain and rhodesain alignment results. 
Max 

score 
Total 
score 

Query 
cover 

E 
value Identity Positives Gaps RMSD 

322 322 100% 2e-
111 

151/215 
(70%) 

175/215 
(81%) 

0/215 
(0%) 

0.466 
Å 

 

 
Figure 34: Superimposed structures of cruzain (purple and orange), PDB code 3KKU, 
and rhodesain (cyan and yellow), PDB code 2P86. 
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Ten representative structures were extracted from a MD simulation of rhodesain 
structure 2P86 without its native ligand using hierarchical clustering. The first two 
poses were selected and submitted to additional analysis using short 10 ns MD 
simulations to determine a possible B95 binding mode to rhodesain. 

2.3.4 Molecular dynamics simulations 
MD simulations were carried out using AMBER 14.0 (Case et al. 2014) version 

of PMEMD. Protein models used the Amber 99SB-ILDN force field (Hornak et al. 2006, 
Lindorff‐Larsen et al. 2010), with the TIP3P (Jorgensen et al. 1983) model for water. 
Ligands were parametrized using the generalized Amber force field (GAFF) (Wang et 
al. 2004) with the LEaP program, whereas AM1-BCC (Jakalian et al. 2000) partial 
charges were assigned using the Antechamber (Wang et al. 2006) program. Also using 
LEaP, truncated periodic octahedral box was used with a minimum distance of 12 Å 
between any box edge and any solute atom. Both LEaP and Antechamber programs 
are part of AmberTools version 14.0 (Case et al. 2014). Before the free MD simulations, 
an extensive protocol involving minimization and equilibration was performed (For 
further details, see Appendix B).: 
i) A minimization of 1000 cycles where all heavy atoms of the system were kept 

fixed with a force constant weight of 1000 kcal mol-1 Å-1. The steepest descent 
algorithm was used to the first 500 cycles and then switched to conjugate 
gradient algorithm for the remaining steps. Short range vdW interactions were 
truncated at 8 Å.  

ii) The same minimization settings as before was used, however, with all ligand 
and protein atoms fixed instead of only the heavy atoms. 

iii) Heating in the NVT ensemble from 0K to 300K over 100 ps using the Langevin 
thermostat (Loncharich et al. 1992, Pastor et al. 1988), with a collision 
frequency set to 2 ps-1. The time step for this simulation was of 1 fs. Bonds 
involving hydrogen atoms were constrained with SHAKE (Ryckaert et al. 1977) 
for nonwater molecules. Force constant weight of 1000 kcal mol-1 Å-1 was used 
to the ligand, protein, and heavy atoms. 

iv) Equilibration in the NPT ensemble with a target pressure of 1 bar and 2ps 
coupling time over 200 ps using the Berendsen barostat (Berendsen et al. 
1984). The time step for this simulation was of 2 fs. Bonds involving hydrogen 
atoms were constrained with SHAKE for nonwater molecules. Force constant 
weight of 1000 kcal mol-1 Å-1 were used to the ligand, protein, and heavy atoms. 
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v) Another simulation in the NVT ensemble with the same previous settings was 
performed. However, the temperature was decreased from 300K to 100K over 
100 ps with 1 fs time step. 

vi) Thirteen consecutive minimization simulations where force constant weight was 
lessened from 1000 kcal mol-1 Å-1 to 0.5 kcal mol-1 Å-1 (1000, 500, 200, 100, 50, 
20, 10, 5, 4, 3, 2, 1, 0.5) were performed. Previous settings remained the same. 

vii)  A last NVT ensemble simulation to increase the temperature from 100K to 
300K over 400 ps using the same NVT settings as before, however, all force 
constant weights were removed from the system. 

viii) A last 100 ps NPT ensemble simulation using the same NPT settings as before, 
without force constant weights applied to all atoms of the system, was 
executed. 
The final coordinates of the minimization and equilibration protocol were then 

used to complete 10 nanoseconds (ns) NPT ensemble production simulations using 2 
fs time step, during which the temperature was kept at 300K. SHAKE and a cut-off of 
8 Å for the non-bonded interaction were employed. Electrostatic interactions were 
computed using the Particle Mesh Ewald (PME) (Darden et al. 1993) method. Energies 
were recorded and coordinates were recorded every 20 ps. A succession of production 
simulations was executed, using the coordinates of the preceding MD simulation, until 
completing a total of 1000 ns. 

2.3.5 MM-PB(GB)/SA calculations 
The Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area 

(MM-PB(GB)/SA) are post-processing end-state approaches, characterized by the use 
of Poisson-Boltzmann (PB) (Homeyer and Gohlke 2012) and Generalized Born (GB) 
(Homeyer and Gohlke 2012) methods, to compute free energies of molecules in 
solution. These methods provide two types of analysis, calculation of the relative 
stability of multiple conformations of a system and the binding free energy of the 
noncovalently bound, receptor-ligand complex (Miller III et al. 2012). Binding free 
energies of the complex are considered by subtracting the unbound receptor and 
ligand-free energies from the bound complex free energy, as shown in the equation: 

௕௜௡ௗ௜௡௚,௦௢௟௩௔௧௘ௗܩ∆ = ௖௢௠௣௟௘௫,௦௢௟௩௔௧௘ௗܩ∆ − 
௥௘௖௘௣௧௢௥,௦௢௟௩௔௧௘ௗܩ∆ൣ +  ௟௜௚௔௡ௗ,௦௢௟௩௔௧௘ௗ൧ (13)ܩ∆

The free energy change associated with eq. (13) is approximated by: 
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௦௢௟௩௔௧௘ௗܩ∆ = 〈ெெܩ∆〉 + 〈௦௢௟௩௔௧௜௢௡ܩ∆〉 − ܶ∆ܵ (14) 
where ∆ܩெெ  characterizes the change in the molecular mechanics energy upon 
complexation in the gas-phase, often the molecular mechanical (MM) energies from 
the force field, the solvation free energies, ∆ܩ௦௢௟௩௔௧௘ௗ are calculated using the implicit 
solvent model, and ܶ ∆ܵ is the change of conformational entropy associated with ligand 
binding. ∆ܵ, the entropic contribution, is predicted using known approximations or by 
using normal mode analysis (Miller III et al. 2012). The average interaction energies of 
receptor and ligand are usually obtained by performing calculations on an ensemble 
of uncorrelated snapshots collected from an equilibrated molecular MD or Monte Carlo 
(MC) simulation. The interaction energy and solvation free energy for the complex, 
receptor and ligand and the results average to obtain an estimate of the binding free 
energy were calculated using the MMPBSA.py script (Miller III et al. 2012) available 
through the AMBER distribution. The molecular mechanics free energy (∆ܩெெ) is 
decomposed as:  

ெெܩ∆ = ௘௟௘ܩ∆ +  ௩ௗௐ (15)ܩ∆
where ∆ܩ௘௟௘ is the electrostatic and ∆ܩ௩ௗௐ non-electrostatic (hydrophobic) 
contributions. The solvation free energy ∆ܩ௦௢௟௩௔௧௜௢௡ arises from the sum of the polar 
 :as shown (ௌ஺ܩ∆) and nonpolar solvation (௉஻ܩ∆)

௦௢௟௩௔௧௜௢௡ܩ∆ = ௉஻ܩ∆ +  ௌ஺ (16)ܩ∆
 ௉஻ was computed by solving the linearized PB equation using Parse radii and aܩ∆
solvent probe radius of 1.4 Å. In this work, the dielectric constant was set to 1.0 for the 
interior of solutes (interior of protein) and 80.0 for the solvent. ∆ܩௌ஺ was determined 
using a solvent accessible surface area (SASA) term as in: 

ௌ஺ܩ∆ = ߛ × ܣܵܣܵ +  (17) ߚ
where ߛ is the surface tension proportionality constant and was set to 0.00542 
kcal/(mol∙Å-2), and ߚ is the offset value, set to 0.92 kcal/mol. Usually, the binding free 
energy described would require three independent MD simulations of the complex, 
proteins, and ligands. However, approximations are made that no significant 
conformational changes occur upon binding so that the snapshots for all three species 
can be obtained from a single trajectory, the so-called single trajectory approach. We 
extracted 1 snapshot every 2 ns from the 1000 ns MD simulation. However, calculation 
of the entropy contribution to binding were not performed.  

The binding energies were also decomposed into contributions of individual 
residues using the MMPBSA.py script by applying the so-called per-residue 
decomposition. 
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2.3.6 Thermodynamic integration 
TI simulations were carried out using AMBER 14.0 implementation of PMEMD. 

In PMEMD, the dual-topology approach is implemented (Kaus et al. 2013). When dual-
topology is chosen, the system is prepared in a way that the two complete versions 
(initial state and final state) of the changing group coexist at every ߣ (Pearlman and 
Rao 1998). The functional form of the potential energy used by PMEMD is 

,ݍ)ܸ (ߣ = ௖ܸ௢௠௠௢௡(ݍ) + (1 − (ߣ ௜ܸ,௣௘௥௧௨௥௕௘ௗ(ݍ, (ߣ + ߣ ௙ܸ,௣௘௥௧௨௥௕௘ௗ(ݍ,  (18) (ߣ
where ௖ܸ௢௠௠௢௡ is the potential for the unperturbed atoms, ௜ܸ,௣௘௥௧௨௥௕௘ௗ and ௙ܸ,௣௘௥௧௨௥௕௘ௗ 
are the potentials that correspond to the initial and final stated for the perturbed part of 
the system, and ݍ denotes the 3ܰ atomic coordinates (Kaus et al. 2013). Since 
singularity problems can occur, in which the value of 〈߲ܸ(ߣ) ⁄ߣ߲ 〉 diverges when ߣ 
approaches to zero or one, the use of softcore van der Waals and electrostatic terms 
may be included to improve the efficiency and stability of the simulations (Shirts and 
Pande 2005, Steinbrecher et al. 2011). For softcore simulations the potential energy 
form is 

,ݍ)ܸ (ߣ = ௖ܸ௢௠௠௢௡(ݍ) + ௜ܸ,௕௦௖(ݍ, (ߣ
+ (1 − ൣ(ߣ ௜ܸ,௡௕௦௖(ݍ, (ߣ + ௜ܸ,௣௘௥௧௨௥௕௘ௗ(ݍ, ൧(ߣ + ௙ܸ,௕௦௖(ݍ, (ߣ
+ ]ߣ ௙ܸ,௡௕௦௖(ݍ, (ߣ + ௙ܸ,௣௘௥௧௨௥௕௘ௗ(ݍ,  (19) [(ߣ

where ௕ܸ௦௖ is the potential for the bonded interactions of the softcore atoms and ௡ܸ௕௦௖ 
is the potential for the nonbonded interactions including the softcore atoms (Kaus et 
al. 2013). Both potentials may be used in a single-step transformation, or may use only 
the van der Waals softcore in a multistep transformation. In single-step 
transformations, electrostatic and van der Waals forces are simultaneously modified. 
In a multistep transformation, these properties are changed in separate calculations, 
where adding and removing charges receive their own step. In the first step, the atomic 
partial charge of the disappearing atom from the initial ligand is removed linearly from 
ߣ = 0 to ߣ = 1. In the second step, the ligand vdW-transformation is performed using 
the van der Waals softcore. The initial ligand is decoupled from its surroundings from 
ߣ = 0 to ߣ = 1, while simultaneously the atom from the final ligand is built up. In 
AMBER, the van der Waals softcore potential is a different form of the LJ-equation, 
specifically designed for better convergence of TI calculations in the case of appearing 
or disappearing atoms: 
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(20) 
where ߝ is depth of the potential well, ߪ is the finite distance at which the inter-particle 
potential is zero, and ݎ௜௝ is the distance between particles. The parameter ߙ, which is 
characteristically 0.5, is used to specify the ߣ-dependent limit and this to prevent 
singularity effects during the simulations (Shirts and Pande 2005). Finally, the atomic 
partial charge of the newly constructed atom is switched on linearly form ߣ = 0 to ߣ =
1 (Figure 35). The total free energy from a multistep approach is then: 

Δܩ = Δܩௗ௘௖௛௔௥௚௘ + Δܩ௩ௗௐ ௕௢௡ௗ௘ௗ + Δܩ௖௛௔௥௚௘ (21) 

 
Relative binding energies of the potential cruzain and rhodesain inhibitors were 

calculated using a dual-topology and multistep approach. A thermodynamic cycle was 
used to calculate the relative free energies, where simulations of the ligands bound to 
the receptor and the ligands in solution were performed. Ligand and complex 
preparation parameters were maintained the same as the ones used in the MD 
simulations (For further details, see Appendix C). Both systems, ligand in solution and 
ligand bound to the receptor, were prepared with a truncated octahedral periodic box 

Figure 35: Schematic representation of single step and multistep approach. In a 
multistep approach three independent simulations are necessary: decharge the 
atoms, vdW transformation, and charge the atoms. 
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with a minimum distance of 12 Å between any box edge and any solute atom. For each 
step and simulated system, the following equilibration protocol was applied: 

i) Initial coordinates were minimized using 1000 steps of steepest 
descent minimization at ߣ = 0.5. 

ii) Each simulation was heated to 300K over 250 ps. 
iii) Equilibration to adjust the density over 250 ps at NPT ensemble. 

TI simulations were performed with PME periodic boundary conditions for long-
range electrostatics, a cutoff of 8 Å for nonbonded interactions, Langevin thermostat 
with a collision frequency of 2 ps-1, an isotropic pressure scaling and a time constant 
of 1 ps. For the two systems, the ligand in solution and the ligand-receptor complex, 
the simulation time to each ߣ-window was set to 0.5 ns for switching the charge on and 
off. The vdW-transformation step was assigned to take 1 ns to each ߣ-window. 
Simulations were performed for every Δߣ = 0.05, resulting in 21 ߣ-windows for each 
ligand transformation. The trapezoid rule was chosen as the numeric integration 
method. Under the trapezoid rule, the lambda weights in Eq. (12) are 

इଵ = इ௠ = 1
[2(݊ − 1)]           ܽ݊݀        इ௠ஷଵ,௡ = 1

(݊ − 1) (22) 
Forward (A→B) and backward (B→A) transformations were calculated. The 

forward transformations used the same initial structure. The backward transformations 
used the last snapshots of the ߣ = 1 simulations as starting structures for the 
simulations. The final results are shown as the average of the forward and backward 
transformations. 

The statistical error in TI can be calculated by the total variance for TI over the 
entire interval as a weighted sum of the variances: 

୼ீߪ = ඨ෍ इ௠ଶ ௠ଶߪ
௠

 
(23) 

where ߪ௠ is the standard error of the mean for the ߲ܸ ⁄ߣ߲  values of the ݉-th window. 
The standard error for each window can be estimated as: 

σ = డ௏ߪ డఒ⁄ . ඥ2߬ ⁄ௌݐ  (24) 
where  ߪడ௏ డఒ⁄  is the standard deviation, ߬ is the autocorrelation time of ߲ܸ ⁄ߣ߲ , and ݐௌ 
is the total length of the simulation (Straatsma et al. 1986). The autocorrelation function 
used was the one defined in Steinbrecher et al (Steinbrecher et al. 2011) work as, 

(ݐ)ܴ = 1
݊ − ݐ ෍ ൤൬߲ܸ

൰ߣ߲
௜

− ർ߲ܸ
඀൨ߣ߲ . ൤൬߲ܸ

൰ߣ߲
௜ା௧

− ർ߲ܸ
඀൨ߣ߲

௡ି௧

௜ୀଵ
 (25) 
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The autocorrelation function (ܴ(ݐ)) was evaluated for continuous points over 
the length of the simulation. From ܴ(ݐ), the estimated correlation time (߬) was: 

߬ = න (ݐ)ܴ ஶ⁄ݐ݀(0)ܴ
଴

≃ න (ݐ)ܴ ⁄ݐ݀(0)ܴ + න ݁ି௧ ఛ⁄ ஶݐ݀
ଵ

ଵ
଴

= න (ݐ)ܴ ଵ⁄ݐ݀(0)ܴ
଴

+ ߬݁ିଵ ఛ⁄  (26) 
The Root-Mean-Square Error (RMSE) between the experimental and calculated 

free energies was also computed and determined by 

ܧܵܯܴ = ඩ1
ܰ ෍(ݔ௜ − ො௜)ଶݔ

ே

௜ୀଵ
 

(27) 
where ܰ is the number of TI transformations, ݔ is the value experimentally obtained 
experimental measure, and ݔො is the one computed free energy by TI calculations. 

In a previous work, compound B95 was identified as a powerful competitive 
cruzain inhibitor (Ferreira et al. 2010), inspiring the synthesis of structurally similar 
compounds to establish a structure-activity relationship between this class and cruzain, 
published in Ferreira et al. (2014). Afterward, these same compounds were also 
evaluated against rhodesain. Despite the high structural similarity, the compounds 
potency against the enzymes are variable (Table 21). These compounds were used in 
the TI calculations. To estimate the relative free energy of binding between a pair of 
molecules using TI outcomes, we used the ܥܫହ଴ values of the transforming compounds 
as 

௘௫௣௘௥௜௠௘௡௧௔௟ܩ∆∆ =  −ܴܶ ln ହ଴,ଶܥܫ
ହ଴,ଵܥܫ

 (28) 
where ܥܫହ଴,ଵ is the ܥܫହ଴ value of the initial compound and ܥܫହ଴,ଶ is the ܥܫହ଴ value of the 
transformed compound, ܴ is the Universal constant of gases and ܶ the absolute 
temperature. 
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Table 21: Inhibitory activity of B95 analogs against the rhodesain and cruzain 
enzymes. 

Code Structure 
Inhibition 
against 
Cruzain 
100 μM 

(%)a 

Cruzain 
IC50 (μM)b 

Inhibition 
against 

Rhodesain 
100 μM (%)a 

 
Rhodesain 

IC50  (μM)b 

 
MAD558 

(B95) 
Br

O NH
O

NH
N

 

 
89 ± 2 0.8 93 ± 6 2.7 

MAD619 F
O NH

O
NH

N

 
92 ± 0 5 ± 1 97 ± 13 0.82 ± 0.08 

MAD644 I
O NH

O
NH

N

 
96 ± 3 1.6 88 ± 8 9.4 ± 2.0 

MAD554 
CH3 O NH

O
NH

N

 
88 ± 1 4 84 ± 8 6.5 

MAD597 Br
O NH

O
NH

N

 
92 ± 0.6 0.2 88 ± 5 0.25 ± 0.21 

MAD574 Br
NH

O
NH

N

 
51 ± 0.5 78 86 ± 9 43.7 ± 11.0 

MAD790 Br
O NH

O
NH

N

 
51 8.2 ± 0.9 82 ± 4 4.4 ± 0.7 

MAD700 Br
O NH

O
NH

N

 
88 10.9 ± 1 54 ± 8 2.4 ± 0.5 

a The percent inhibition values of the compounds are the average of at least three 
measurements, and the errors are within 10%. b The IC50 values of the 
compounds against cruzain and rhodesain were independently determined by 
obtaining rate measurements in triplicate for at least six inhibitor concentrations. 
The values represent the means of a least three individual experiments. 

 

OH 
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2.4 RESULTS AND DISCUSSION 

2.4.1 Cruzain dyad simulations 
Cysteine and histidine form the catalytic dyad in the active site of cysteine 

proteases, including cruzain and rhodesain. The dyad is believed to exist as a thiolate-
imidazolium ion pair where His162-NH+/Cys25-S-, in this work represented as H162q-
Cys25q, in the free enzyme (Storer and Ménard 1994, Otto and Schirmeister 1997). 
However, recent studies suggest other catalytic mechanism (Sárkány et al. 2001, 
Shokhen et al. 2009). In the work of Shokhen et al. (2009), the authors suggested the 
catalytic dyad as His162-NH+/Cys25-SH being the cysteine in its neutral state, in this 
work represented as H162q-Cys25n. Since X-ray crystallography cannot directly 
identify the actual protonation state of the catalytic dyad, unless the structures very 
high resolution, we have chosen to simulate both states.  

We have also extended the protonation study to the ligand B95 bound to the 
cruzain structure found in the crystal structure 3KKU (Figure 36). We submitted the 
compound to pKa prediction programs and online servers in an attempt to determine 
its protonation state at pH of 5.5. However, the predictions were inconclusive, and an 
assumption of which protonation state of benzimidazole ring presents in the ligand to 
use was indecisive (Table 22). Therefore, we have chosen to simulate both protonation 
states of the ligand as well (Figure 37). 
Table 22: pKa predictions of the nitrogen in the benzimidazole ring from ligand 
B95. 

Program/Server pKa of N  
MOKA 6.05 
Epik (Schrödinger) 5.95 +/-0.73 
ACE and JChem acidity and basicity calculator  5.40 
Marvin 5.36 

   
In order to assess the interactions between receptor-ligand complex, 1000 ns 

MD simulations were performed in four systems: H162q-Cys25q with B95 protonated; 
H162q-Cys25q with B95 unprotonated; H162q-Cys25n with B95 protonated; and 
H162q-Cys25n with B95 unprotonated.   
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Figure 36: Outcome of protonation prediction of ligand B95 from the program 
Marvin. The program calculates the probability of the states according to the pH, 
where 1 is the unprotonated state of the ligand and 2 is the protonated state. Marvin 
predicted that at the pH 5.5 the ligand B95 would be in the unprotonated state. 
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Ligand RMSD was calculated between simulation frames and the 

crystallographic ligand position found in 3KKU (Figure 38). All simulations were carried 
through 1000 ns with the ligand within the active site of cruzain, except the simulation 
of B95 protonated in the H162q-Cys25n pair. In this simulation, the ligand exited the 
active site at approximated 500 ns, suggesting that the presence of the hydrogen atom 
in both the protein cysteine and protonated benzimidazole ring of the ligand is not 
favorable. The protonation state of B95 may also be corroborated by the fact that the 
protonated ligand in the H162q-Cys25q system produced conformations closer to the 
crystallographic position of the ligand than the unprotonated one in the same system. 
On the other hand, the unprotonated ligand, in the H162q-Cys25n system, was the one 
with lower deviation to the X-ray conformation. The peaks in the RMSD can be 
associated with the flexibility of the ligand. The benzimidazole part of the ligand were 
constantly moving, while the bromobenzene part were offered less deviation from the 
crystallographic positon (Figure 39). 

Binding free energies were analyzed from the MD simulations, using 
MMPBSA.py, and provided favorable results to all systems (Table 23). The protonated 

Figure 37: Graphical representation of ligand B95 in the cruzain active site and 
protonation states simulated. 

Cruzain 
PDB: 3KKU 

B95 Unprotonated 

B95 Protonated Assay at pH = 5.5 
B95 IC50 (μM) = 0.8 

H162q-Cys25q 

H162q-Cys25n 
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ligand in the H162q-Cys25q (ionic pair) system achieved the lowest total free energy 
of binding, however it was not much lower than for the other systems.  

Figure 39: Heavy-atom RMSD between the bromobenzene in the ligands and the 
crystallographic ligand bromobenzene. 

Figure 38: Heavy-atom RMSD between the simulated ligand states and the 
crystallographic ligand of 3KKU. a) the protonated ligand in the H162q-C25q (red) 
system offered a more stable and close to the crystallographic ligand than H162q-C25n 
(black); b) the unprotonated ligand in the H162q-C25n (black) was the one that showed 
conformations closer to the crystallographic ligand than the H162q-C25q (red). 
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On the other hand, for the H162q-Cys25n system contributions were calculated 
up until the ligand left the active site, meaning that the binding free energy could be 
higher. What seems to distinguish between the systems can be the electrostatic energy 
and solvation free energy contributions. This expresses the energy that the system has 
to use to de-solvate the binding particles and to align their binding interfaces. In 
systems where the ligand was in the protonated form, the electrostatic energy was 
extremely negative and the solvation free energy extremely positive, almost canceling 
each other (Table 23). Since no entropy contribution to binding was calculated, these 
results do not equal to actual free energy of binding and were calculated aiming to 
establish a comparison between the systems.  

The amino acid free energy contributions decomposition showed that Asp 161, 
Hip 162, and Glu 208 were key amino acids to electrostatic contribution in the binding 
site of B95 protonated (Figure 40). The difference between electrostatic contributions 
in these systems was exactly the catalytic cysteine, which offered stronger electrostatic 
interaction in H162q-Cys25q than in H162q-Cys25n. While systems where the ligand 
was unprotonated, van der Waals component to the interaction energies was the major 
contributor. Amino acid free energy contributions decomposition showed that Leu 67, 
Leu 160, Asp 161, and Hip 162 were key amino acids to van der Waals contribution to 
the binding site of B95 unprotonated (Figure 41). However, Leu 160 was the main 
contributor in the H162q-C25n, while Hip 162 was the one in the H162q-C25n. This 
could also be associated with the protonation state of the cysteine, as it was the single 
difference in this region. 

 
Table 23: Averaged binding free energies decomposed in contributions and 
calculated by MMPBSA.py. 

 Average energy component (kcal/mole) 
System vdWaals Elec EPB EPolar ΔGgas ΔGsolv ΔGtotal 

H162q-Cys25q 
B95 Protonated -30.7 -289.2 294.8 -3.1 -319.9 291.7 -28.2 
H162q-Cys25q 

B95 Unprotonated -31.4 -19.2 30.2 -3.1 -50.6 27.2 -23.4 
H162q-Cys25n 
B95 Protonated -26.9 -214.7 223.7 -2.8 -241.6 220.9 -20.7 
H162q-Cys25n 

B95 Unprotonated -37.4 -34.0 50.9 -3.4 -71.4 47.6 -23.8 
VDWAALS = van der Waals contribution from MM. 
EEL = electrostatic energy as calculated by the MM force field. EPB = the electrostatic contribution to the solvation free energy calculated by PB. 
EPOLAR = nonpolar contribution to the solvation free energy calculated by an empirical model. 
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Figure 40: Electrostatic contribution decomposed by residues. Red shows negative 
contribution and blue shows positive contribution. Protonated ligand is presented in 
green and the unprotonated one in magenta.  
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Figure 41: van der Waals contribution decomposed by residues. Red shows 
negative contribution and white shows no contribution. Protonated ligand is 
presented in green and the unprotonated one in magenta. 
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Hydrogen bond interactions between the ligand and residues Asp 161, Gly 66, 
and Ser 64 were observed for all systems. In the systems where the ligand was 
protonated, interactions with residue Asp 161 alternated with the ones with Gly 66 
throughout the simulation (Figure 42 and Figure 43). However, in the H162q-C25q 
system this behavior was more noticed than in the H162q-C25n (Table 24). For the 
unprotonated ligand in the H162q-C25q system, besides the hydrogen bond interaction 
with Asp 161, it was observed a long-term hydrogen bond interaction with Leu 160 
(53.4% of the simulation time) (Figure 44 and Table 24). On the other hand, this 
interaction was not as long in the H162q-C25n (1.8% of the simulation time), where 
the longest hydrogen bond interaction was between Asp 161 and His 162 (29.9% of 
the simulation time) (Figure 45 and Table 24). 

The influence of the protonation states of cysteine and histidine could also be 
observed in the atomic fluctuations of the protein residues in the binding site (Figure 
46). Overall, the H162q-C25n systems showed more fluctuations in the amino acids 
near the ligand than the H162q-C25q systems. Residues Asp 161, His 162 and Cys 
25 seemed to be unaffected by the protonated state of the ligand in the H162q-C25n 
system. While in the H162q-C25q system, they displayed practically the same 
fluctuation for both protonation states of the ligand (Figure 46). This fact suggested 
that the state of the cysteine might generate instabilities in the binding site. 

Nevertheless, the unprotonated ligand bound to the H162q-Cys25n protein 
might offer promising outcomes, and the protonated compound provided more 
favorable energy contributions when bound to the H162q-Cys25q protein. In the 
following simulations, we have employed the H162q-Cys25q system. 
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Figure 42: Hydrogen bond analysis of the H162q-C25q system with B95 protonated during the 1000 ns simulation. 

Present 
None 

Hydrogen Bond 
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Hydrogen Bond 

Present 
None 

Figure 43: Hydrogen bond analysis of the H162q-C25n system with B95 protonated up until the ligand left the binding site.
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  Hydrogen Bond 
Present 
None 

Figure 44: Hydrogen bond analysis of the H162q-C25q system with B95 unprotonated during the 1000 ns simulation. 
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Hydrogen Bond 

Present 
None 

Figure 45: Hydrogen bond analysis of the H162q-C25n system with B95 unprotonated during the 1000 ns simulation. 
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Table 24: Important protein-ligand and protein-protein hydrogen bond interaction lifetime through simulations. 
  Fraction of the simulation time (%)   H162q-C25q  H162q-C25n 

H-bond  B95 Protonated B95 Unprotonated  B95 Protonated B95 Unprotonated 
ASP_161@O-B95@NAO-H1  32.5 2.2  19.0 22.4 

B95@OAA-GLY_66@N-H  21.6 0.9  15.1 11.0 
SER_64@O-B95@NAP-H2  19.3 -  5.9 - 

ASP_161@OD1-B95@NAN-HN  14.5 0.4  5.9 0.6 
ASP_161@OD2-B95@NAN-HN  12.8 -  6.7 0.3 

SER_64@O-B95@NAN-HN  12.7 0.5  5.4 12.5 
ASP_161@OD2-B95@NAP-H2  10.0 -  6.2 - 

LEU_160@O-B95@NAO-H1  1.6 53.4  2.8 1.8 
B95@NAP-LEU_160@N-H  - 14.5  0.2 - 

ASP_161@O-HIP_162@ND1-HD1  - -  10.0 29.9 
ASP_161@OD1-HIP_162@ND1-HD1  - -  16.7 26.3 
ASP_161@OD2-HIP_162@ND1-HD1  - -  18.3 24.0 
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Figure 46: Graphic illustration of the atomic fluctuations of the protein residues in a 
distance of 6 Å of the center of mass of the ligand. Red represents the H162q-Cys25q 
systems and in black the H162q-Cys25n systems. Instabilities can be found in H162q-
Cys25n systems, especially in residues Cys 25, Asp 161, and Hip 162.   
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2.4.2 Docking of B95 in Rhodesain 
We have docked B95 ligand in both protonated states within the rhodesain 

binding site. Ten representative structures were extracted using hierarchical clustering 
on the frames of an MD simulation of the 2P86 crystal without the crystallographic 
ligand and used as receptors. From each structure, the top-scoring pose was chosen 
and the two best scoring poses were selected to further analysis (Table 25). However, 
it is worth to mention that none of the top-scoring pose reproduced the position of the 
crystallographic B95 in cruzain. The selected poses were submitted to MD simulations 
in a total of 20 ns for each one. The outcomes were compared with the simulations 
done with cruzain.  

 
Table 25: GlideScore for docking B95 protonated and unprotonated in 
rhodesain.  GlideScore (kcal/mol) 

Stucture Protonated Unprotonated 
1 -7,2 -4,7 
2 -5,8 -4,6 
3 -6,7 -6,5 
4 -5,4 -5,3 
5 -5,9 -5,6 
6 -6,4 -5,8 
7 -5,0 -4,9 
8 -7,7 -3,5 
9 -5,5 -5,7 

10 -6,3 -5,2 
 
The two best poses of the protonated ligand in rhodesain belonged to structure 

8 (Pose 1) and structure 1 (Pose 2). Curiously, these poses pointed toward different 
directions in the active site (Figure 47). Pose 1 position may be due to the binding site 
conformation achieved by the extracted structure from MD without the ligand in the 
binding site. Whereas, pose 2 presented a position much closer to the crystallographic 
ligand than pose 1. RMSD plots from the MD simulations showed a stable evolution of 
the ligands in the active site of rhodesain (Figure 48). However, pose 2 deviations were 
lower and closer to the crystallographic ligand than pose 1. Since, a small number of 
residues in the active site of rhodesain differ from those of cruzain, we investigated the 
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  a) 

b) 

c) 

Figure 47: a) Superimposed structures of 3KKU and 2P86 with the B95 ligand in the 
active site. Map of interactions between the ligand and the protein. b) Pose 1 (yellow) 
position in relation to the B95 ligand of 3KKU (orange). The pose achieved different 
interactions from the crystallographic ligand. c) Pose 2 (yellow) position in relation to 
the B95 ligand of 3KKU (orange). Even though, pose was not similar to the 
crystallographic ligand interaction with amino acid Asp 161 remained. 
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interactions formed by ligand-receptor complex (Figure 47). The interaction with Asp 
161 that the crystallographic ligand does with cruzain was maintained only in pose 2 
for rhodesain, also in the simulation. Hydrogen bond interactions with amino acids Gly 
64 and Gly 66 were also observed for pose 2 throughout the MD simulation. 

The two best poses of the unprotonated ligand belonged to structure 3 (Pose 1) 
and structure 6 (Pose 2). Different from the poses with the protonated ligand, the ones 
with neutral ligand showed similar position between them in the active site; however, 
conformation was not equivalent to the one corresponding to crystallographic B95 
(Figure 49). Similar behavior of the poses was also observed in the RMSD plots from 
the MD simulations (Figure 48). However, deviations from the crystallographic position 
of B95 were much higher than the cases in which the ligand was charged. Interactions 
with amino acids Gly 66, Leu 160, and Asp 161 were identified for both poses during 
the course of the simulations.   

What seemed to be common for the majority of examined poses was the 
orientation of the bromobenzene ring. In all poses, the ring pointed to the inside of the 
binding pocket in a similar position B95 as in cruzain. From the cruzain simulations, it 
appeared that the bromobenzene ring deviated little from the initial position, especially 
for the protonated ligand (Figure 39). Therefore, the docked poses with this 
characteristic might be favorable for an initial investigation of the binding mode of B95 
in rhodesain. We have chosen both poses 2, from the protonated ligand and the 
unprotonated ligand, to perform a 1000 ns MD simulation to compare with the already 
performed cruzain simulations.  
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Figure 48: RMSD plots of the docking poses of the protonated and unprotonated ligands compared to the simulation in cruzain with the 
same ligands. 
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  a) 

b) 

c) 

Figure 49: a) Superimposed structures of 3KKU and 2P86 with the B95 ligand in the 
active site. Map of interactions of the ligand with the protein.  b) Pose 1 (yellow) position 
in relation to the ligand B95 of 3KKU (orange). The pose achieved interactions similar to 
the crystallographic ligand. c) Pose 2 (yellow) position in relation to the ligand B95 of 
3KKU (orange). Even though, the pose was not similar to the crystallographic ligand, 
interaction with amino acids Asp 161 and Gly 66 remained. 
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2.4.3 Comparing Cruzain and Rhodesain simulations bound to B95 
We performed 1000 ns simulations of both states of B95 (protonated and 

unprotonated) bound to rhodesain to compare their behavior across the simulation 
time. Ligand RMSD was calculated between simulation frames and the 
crystallographic ligand position found in 3KKU (Figure 50). Both ligand states remained 
in the active site of rhodesain. Similar to the cruzain outcomes the protonated ligand 
was the one to achieve lower deviation from the crystallographic ligand. Nevertheless, 
the unprotonated ligand evolution showed high RMSD when compared to B95 
crystallographic position, it was very stable. The bromobenzene ring of the ligands 
were also evaluated for rhodesain simulations (Figure 51). In rhodesain, the 
bromobenzene ring from the protonated ligand oscillated much more than in the 
cruzain simulation. This might be due to the replacement of Glu 208 in cruzain for Ala 
208 in rhodesain that changes the conformation of the S2 site. In both RMSD plots, it 
was clear to see that the unprotonated ligand maintained the conformation obtained 
from docking throughout the simulation, with little deviation. 

 
  

Figure 50: Heavy-atom RMSD between the simulated ligand states and the 
crystallographic ligand of 3KKU. Among the cruzain simulations the protonated ligand 
(blue) offered conformations close to the crystallographic ligand than the unprotonated 
ligand (green); Among rhodesain simulations the protonated ligand (blue) 
conformations was closer to the crystallographic ligand. However, RMSD of 
unprotonated ligand showed stable behavior (green). 
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Figure 51: Heavy-atom RMSD between the bromobenzene in the ligands and the 
crystallographic ligand bromobenzene. 

 
To better distinguish between the ligand conformations sampled by the MD 

simulations, we extracted from the simulations at regularly spaced intervals 10 clusters 
using the average distance between members of two cluster as a condition. These 
clusters had the purpose of group together similar conformations of the ligand. From 
the cluster, we can observe how long a particular ligand conformation prevailed along 
the simulation. We used the nofit option when clustering, so that the structures were 
not fitted onto each other prior to calculating RMSD. This way, the cluster is done in 
the conformation achieved in the MD simulation. Nevertheless, we asked for ten 
clusters; all simulations could be separated into two clusters at maximum. Especially 
in the simulations with the protonated ligand, it was clear by clustering that the ligand 
shifted from one conformation to the other all through the simulation (Figure 52). 
Whereas, simulations with unprotonated ligand did not show as many shifts (Figure 
53).  
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Figure 52: RMSD plot colored according to the cluster for the protonated ligand in 
both structures, cruzain and rhodesain. The average RMSD between the frames 
of the simulation and the crystallographic ligand was also calculated. 

Figure 53: RMSD plot colored according to the cluster for the unprotonated ligand 
in both structures, cruzain and rhodesain. The average RMSD between the frames 
and the crystallographic ligand was also calculated. 
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By analyzing free energy contributions decomposition by MMPBSA.py for all 
neighboring residues in the active site, we observed similar behavior across the 
enzymes in the presence of B95 (Figure 54 and Figure 55). When ligand B95 was in 
its protonated state residues Asp 161 and His 162 were the major contributors to the 
binding free energy in both systems. As discussed before for cruzain, systems with the 
B95 ligand protonated had an extremely favorable electrostatic energy. This behavior 
was also observed for rhodesain (Table 26). When B95 was in its unprotonated state, 
major energy contributions detected were from residues Leu 67 and Leu 160 (Figure 
55). Rhodesain system with B95 unprotonated had better vdWaals contribution than 
electrostatic one, similar to cruzain bound to the same ligand, although the total free 
energy of binding was the highest of all systems (Table 26). Once again, no entropy 
contribution to binding was calculated. Therefore, these results do not equal to the real 
binding free energy. 

 
Table 26: Averaged binding free energies decomposed in contributions and 
calculated by MMPBSA.py.  

  
  

  

 Average energy component (kcal/mole) 
System vdWaals Elec EPB EPolar ΔGgas ΔGsolv ΔGtotal 
Cruzain 

B95 Protonated -30.7 -289.2 294.8 -3.1 -319.9 291.7 -28.2 
Cruzain 

B95 Unprotonated -31.4 -19.2 30.2 -3.1 -50.6 27.2 -23.4 
Rhodesain 

B95 Protonated -26.0 -317.1 325.5 -2.7 -343.2 322.8 -20.4 
Rhodesain 

B95 Unprotonated -29.4 -16.1 28.7 -2.9 -45.5 25.8 -19.7 
 
VDWAALS = van der Waals contribution from MM. 
EEL = electrostatic energy as calculated by the MM force field. EPB = the electrostatic contribution to the solvation free energy calculated by PB. 
EPOLAR = nonpolar contribution to the solvation free energy calculated by an empirical model. 



143 

  

Figure 54: Electrostatic contribution decomposed by residues. Red shows negative 
contribution and blue shows positive contribution. Protonated ligand is presented in 
green and the unprotonated one in magenta  

Figure 55: van der Waals contribution decomposed by residues. Red shows negative 
contribution and white shows no contribution. Protonated ligand is presented in green 
and the unprotonated one in magenta.  
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Hydrogen bond analysis showed similar behavior between rhodesain and 
cruzain systems. Likewise cruzain, when B95 was in its protonated form hydrogen 
bond interactions with residue Asp 161 (32.5% of the simulation time in cruzain and 
55.9% in rhodesain) alternated with the ones with Gly 66 (21.6% of the simulation time 
in cruzain and 37.5% in rhodesain) throughout the simulation (Figure 56 and Table 27). 
However, hydrogen bonds interactions with the residue Gly 64 (26.8% of the simulation 
time), a serine in cruzain, were also present (Figure 56). Nevertheless, when B95 was 
unprotonated in rhodesain, hydrogen bond analysis showed similar interaction 
behavior as cruzain (Figure 57 and Table 27). 

The influence of the protonation states of B95 could also be observed in the 
atomic fluctuations of the protein residues in the binding site (Figure 58). Overall, the 
systems behaved in similar manner. However, small instabilities could be noticed with 
residues Gly 65 and Gly 66 in the presence of the protonated ligand in rhodesain. This 
could be due the presence of Gly 64 between them, since in cruzain this residue is a 
serine. 

At the end of all analyzes, it seemed clear that cruzain and rhodesain acted in 
a similar manner when bound to the same protonated state of the ligand. However, like 
observed for cruzain the protonated form of B95 provided slightly advantageous 
outcomes than the unprotonated state. Therefore, we have chosen the protonated 
ligand to perform TI in both enzymes. 
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 Hydrogen Bond 

Present 
None 

Figure 56: Hydrogen bond analysis of B95 protonated in rhodesain during the 1000 ns simulation. 
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  Hydrogen Bond 

Present 
None 

Figure 57: Hydrogen bond analysis of B95 unprotonated in rhodesain during the 1000 ns simulation. 
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Table 27: Important protein-ligand hydrogen bond interaction lifetime through simulations. 
  Fraction of the simulation time (%)   Cruzain  Rhodesain 

H-bond  B95 Protonated B95 Unprotonated  B95 Protonated B95 Unprotonated 
ASP_161@O-B95@NAO-H1  32.5 2.2  55.9 2.5 

B95@OAA-GLY_66@N-H  21.6 0.9  37.5 1.3 
SER_64@O-B95@NAP-H2  19.3 -  - - 

ASP_161@OD1-B95@NAN-HN  14.5 0.4  13.1 0.4 
ASP_161@OD2-B95@NAN-HN  12.8 -  12.4 0.2 

SER_64@O-B95@NAN-HN  12.7 0.5  - - 
ASP_161@OD2-B95@NAP-H2  10.0 -  17.1 - 

LEU_160@O-B95@NAO-H1  1.6 53.4  0.2 33.8 
B95@NAP-LEU_160@N-H  - 14.5  0.3 13.1 
GLY_64@O-B95@NAP-H2  - -  26.8 0.3 
GLY_64@O-B95@NAN-H2  - -  19.1 - 
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Figure 58: Graphic illustration of the atomic fluctuations of the protein residues in a 
distance of 6 Å of the center of mass of the ligand. Blue represents the cruzain 
systems and green the rhodesain systems. Small instabilities can be seen with 
residues Gly 65 and Gly 66 in the presence of the protonated ligand in rhodesain. 
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2.4.4 Thermodynamic Integration of B95 analogs 
Our purpose here was to validate the experimental structure activity data of a 

series of B95 analogues, tested against both cruzain and rhodesain. From Table 21, 
we organized a workflow to calculate the relative energy of binding (Figure 59). In total, 
seven transformations systems were performed in cruzain and rhodesain. For cruzain, 
the differences in relative free energy of binding, calculated by TI, were in good 
agreement with experimental data, calculated from compounds ܥܫହ଴ (Table 28). The 
RMSE observed for cruzain was of ~1.6 kcal/mol, while for rhodesain, RMSE was a 
little higher ~2.2 kcal/mol (Figure 60). It is unclear why rhodesain TI outcomes were 
not as good as cruzain ones. 

 
Table 28: Relative free energy of binding of compounds calculated by TI and 
compared to the experimental relative binding free energy. 

  Cruzain   Rhodesain  
Transformation  Calculated 

ΔΔG 
Experimental 

ΔΔG |Δx|a  Calculated 
ΔΔG 

Experimental 
ΔΔG |Δx|a 

MAD558 ↔ 
MAD574  1.29 ± 0.08 2.75 1.46  1.43 ± 0.14 1.67 ± 0.20 0.24 

MAD558 ↔ 
MAD597  -0.98 ±0.12 -0.83 0.15  -1.45 ±0.08 -1.43 ± 1.53 0.02 

MAD558 ↔ 
MAD619  1.06 ± 0.17 1.10 ± 0.12 0.04  1.02 ± 0.11 -0.72 ± 2.11 1.74 

MAD558 ↔ 
MAD700  1.38 ± 0.13 1.56 ± 0.13 0.18  3.44 ± 0.12 0.29 ± 0.81 3.15 

MAD619 ↔ 
MAD644  -0.60 ±0.13 -0.68 0.08  -1.63 ±0.13 1.46 ± 1.93 3.09 

MAD597 ↔ 
MAD790  4.62 ± 0.13 2.23 ± 0.90 2.39  4.7 ± 0.15 1.36 ± 0.52 3.34 

MAD619 ↔ 
MAD554  -0.06 ±0.11 -0.15 0.09  0.74 ± 0.12 1.24 ± 2.64 0.50 

a Absolute error between the calculate and experimental values. 
 
Some systems, mostly in rhodesain, presented large absolute error between 

the calculate and experimental values. For instance, the transformation MAD597 ↔ 
MAD790 absolute error of over 2.0 kcal/mol in both enzymes, might be due to the 
transformation group -OH. In this the transformation step of recharging the transformed 
group in water produced a value three units over the same transformation in the  
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Figure 59: Schematic workflow for relative binding free energy of analogs of B95 (highlighted in red). 
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Table 29: Outcomes of all TI transformation steps of the compounds in Cruzain 
    Ligand in Water    Complex   

Transformation    ΔGdecharge ΔGvdw ΔGrecharge Total   ΔGdecharge ΔGvdw ΔGrecharge Total  
MAD558 ↔ MAD574    -13.78 -13.58 4.63 -22.73   -12.82 -13.72 5.1 -21.44  
MAD558 ↔ MAD597    -9.57 5.67 1.81 -2,09   -8.76 4.07 1.62 -3.07  
MAD558 ↔ MAD619    1.12 6.02 -3.03 4.11   1.10 6.97 -2.90 5.17  
MAD558 ↔ MAD700    1.10 -10.79 4.45 -5.23   1.08 -8.83 3.89 -3.85  
MAD619 ↔ MAD644    2.90 -1.61 -1.48 -0.19   2.96 -2.10 -1.65 -0.79  
MAD597 ↔ MAD790    0.84 7.51 -10.88 -2.52   0.85 8.16 -6.09 2.10  
MAD619 ↔ MAD554    2.94 -10.23 0.23 -7.06   2.90 -10.15 0.25 -7.00  
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Table 30: Outcomes of all TI transformation steps of the compounds in Rhodesain. 

 
    Ligand in Water    Complex   

Transformation    ΔGdecharge ΔGvdw ΔGrecharge Total   ΔGdecharge ΔGvdw ΔGrecharge Total  
MAD558 ↔ MAD574    -12.91 -6.56 4.8 -14.67   -11.21 -7.27 5.24 -13.24  
MAD558 ↔ MAD597    -9.62 14.61 1.85 6.84   -8.55 11.42 2.52 5.39  
MAD558 ↔ MAD619    0.94 8.45 -2.16 7.23   1.05 9.66 -2.46 8.25  
MAD558 ↔ MAD700    0.93 -10.37 4.36 -5.08   1.01 -6.51 3.85 -1.64  
MAD619 ↔ MAD644    3.65 -3.31 -2.8 -2.46   3.9 -4.82 -3.17 -4.09  
MAD597 ↔ MAD790    1.54 2.36 -13.8 -9.89   1.83 4.54 -11.55 -5.19  
MAD619 ↔ MAD554    3.71 -13.08 0.43 -8.94   3.8 -12.85 0.85 -8.20  
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complex system. The value implies that the -OH interaction with water exceeded the 
group interaction with protein residues and caused this discrepancy in the results 
(Table 29). The same thing might have occurred with this and the MAD558 ↔ MAD700 
transformation system in rhodesain (Table 30). However, in rhodesain the MAD597 ↔ 
MAD790 transformation saw an increase in the vdW part of the transformation for the 
complex, which might suggest appearance of steric effects between the ligand and 
protein (Table 30). For those systems where the difference between calculated and 
experimental was large, we tried to add ߣ-windows. This provided no improvement to 
the calculated curves, which implies that the problem with these systems might go 
beyond sampling problems. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Other problems, such as the chosen numerical integration or the force field used 

could also be at fault. Or maybe, the reason for the discrepancy might be attributed to 
the uncertainty of the ligand conformation chosen from docking essays.  

Figure 60: Comparison between the calculated relative binding free energy and 
experimental biding free energy. Cruzain outcomes are in black and rhodesain ones 
are in red. The coefficient of determination when both systems are considered is ࡾ૛ =
૙. ૛ૠ. When only cruzain is considered is ࡾ૛ = ૙. ૟૜, and only rhodesain is considered ࡾ૛ = ૙. ૙ૢ. 
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2.5 PERSPECTIVES 

From the successful prediction of the free energy of formation, particularly of 
the cruzain complexes, might enable the same methodology to be used to calculate 
the ∆G of the analogs with unknown activity, allowing prioritization of new analogs to 
be synthesized. After the synthesis of new molecules by collaborators, these will be 
assessed against cruzain and rhodesain enzymes and their respective parasites. 
Finally, for the most potent inhibitors there is the prospect of determining the crystal 
structure of inhibitor-protein complexes, providing support for the design of new 
molecules. 

Another possibility is the employment of metadynamics simulations to explore 
the free energy surface to determine the existence of transition states before the ligand 
achieves the final conformation in the binding site.  
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2.6 CONCLUSIONS 

 We have studied two protonation states of the catalytic dyad, His162-
NH+/Cys25-S- and His162-NH+/Cys25-SH, in a computational context using MD 
simulations. As far as we know, these are the first MD simulations of the ligand B95 
bound to the cruzain crystal structure used, 3KKU.  

 The simulations allowed to study the protonation state of the B95 ligand. 
MD simulations suggested that the presence of the hydrogen atom in both the protein 
cysteine and protonated benzimidazole ring of the ligand is not favorable and 
introduces instabilities within the binding site.  

 The protonation effect was corroborated by the fact that the ligand left 
the binding site in the His162-NH+/Cys25-SH early in the simulations. Although 
outcomes seemed to point out to the His162-NH+/Cys25-S- protonation bound to the 
protonated form of the ligand, the neutral ligand in the His162-NH+/Cys25-SH 
performed well and displayed conformation of the ligand close to the crystallographic 
ligand B95.  

 Probably, the mechanism involves an interchange of the proton between 
the His162-NH+/Cys25-S- and the protonated ligand, or, the His162-NH+/Cys25-SH 
and the neutral ligand. However, this assumption should be confirmed through more 
precise simulations such as the ones involving quantum methods.   

 The ligand B95 in its non-native structure of rhodesain exhibited very 
similar behavior to the one presented in cruzain. The small changes in the binding site 
did not offer much interference to B95.  

 When confronted to B95 analogues, the binding mode proposed by 
docking did not produced outcomes as good as cruzain.  

 The RMSE observed for the TI calculations of B95 analogues in cruzain 
was of ~1.6 kcal/mol, while for the same systems in rhodesain, TI calculations provided 
a higher RMSE of ~2.2 kcal/mol.  

 Reasons for the discrepancy in TI calculations might be attributed to the 
chosen numerical integration method, the chosen force field, and steric effects 
between the ligand and protein. Although both enzymes share high active site identity, 
their dynamic behavior is slightly different and the specificity of the B95 analogues 
needs to be wisely explored. 
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3 APPENDIX A – DOCK 6.6 INPUTS 

###Dock 6.6 input for Grid Score scoring 
ligand_atom_file                                  ligand.mol2 
limit_max_ligands                                 no 
skip_molecule                                     no 
read_mol_solvation                               no 
calculate_rmsd                                    yes 
use_rmsd_reference_mol                           yes 
rmsd_reference_filename                          ligand-reference.mol2 
use_database_filter                              no 
orient_ligand                                     yes 
automated_matching                               yes 
receptor_site_file                                selected_spheres.sph 
max_orientations                                  500 
critical_points                                   no 
chemical_matching                                no 
use_ligand_spheres                               no 
use_internal_energy                              yes 
internal_energy_rep_exp                          12 
flexible_ligand                                   yes 
user_specified_anchor                            no 
limit_max_anchors                                no 
min_anchor_size                                  40 
pruning_use_clustering                           yes 
pruning_max_orients                              100 
pruning_clustering_cutoff                        100 
pruning_conformer_score_cutoff                   25.0 
use_clash_overlap                                no 
write_growth_tree                                 no 
bump_filter                                       no 
score_molecules                                  yes 
contact_score_primary                            no 
contact_score_secondary                          no 
grid_score_primary                               yes 
grid_score_secondary                             no 
grid_score_rep_rad_scale                         1 
grid_score_vdw_scale                             1 
grid_score_es_scale                              1 
grid_score_grid_prefix                           grid 
multigrid_score_secondary                        no 
dock3.5_score_secondary                          no 
continuous_score_secondary                       no 
descriptor_score_secondary                       no 
gbsa_zou_score_secondary                         no 
gbsa_hawkins_score_secondary                     no 
SASA_descriptor_score_secondary                  no 
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amber_score_secondary                            no 
minimize_ligand                                   yes 
minimize_anchor                                  yes 
minimize_flexible_growth                         yes 
use_advanced_simplex_parameters                  no 
simplex_max_cycles                               1 
simplex_score_converge                           0.1 
simplex_cycle_converge                           1.0 
simplex_trans_step                               1.0 
simplex_rot_step                                  0.1 
simplex_tors_step                                10.0 
simplex_anchor_max_iterations                    500 
simplex_grow_max_iterations                      500 
simplex_grow_tors_premin_iterations              0 
simplex_random_seed                              0 
simplex_restraint_min                            no 
atom_model                                        all 
vdw_defn_file                                     ~/dock6/parameters/vdw_AMBER_parm99.defn 
flex_defn_file                                    ~/dock6/parameters/flex.defn 
flex_drive_file                                   ~/dock6/parameters/flex_drive.tbl 
ligand_outfile_prefix                             flex 
write_orientations                                no 
num_scored_conformers                            1 
rank_ligands                                      no 

 
 
###Dock 6.6 input for Amber Score scoring 
ligand_atom_file                                scored.amber_score.mol2 
limit_max_ligands                               no 
skip_molecule                                   no 
read_mol_solvation                              no 
calculate_rmsd                                  no 
use_database_filter                             no 
orient_ligand                                   no 
use_internal_energy                             no 
flexible_ligand                                 no 
bump_filter                                     no 
score_molecules                                 yes 
contact_score_primary                           no 
contact_score_secondary                         no 
grid_score_primary                              no 
grid_score_secondary                            no 
multigrid_score_primary                         no 
multigrid_score_secondary                       no 
dock3.5_score_primary                           no 
dock3.5_score_secondary                         no 
continuous_score_primary                        no 
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continuous_score_secondary                     no 
descriptor_score_primary                        no 
descriptor_score_secondary                      no 
gbsa_zou_score_primary                          no 
gbsa_zou_score_secondary                       no 
gbsa_hawkins_score_primary                     no 
gbsa_hawkins_score_secondary                   no 
SASA_descriptor_score_primary                  no 
SASA_descriptor_score_secondary                no 
amber_score_primary                             yes 
amber_score_secondary                           no 
amber_score_receptor_file_prefix               protein_semH 
amber_score_movable_region                     nothing 
amber_score_gb_model                            5 
amber_score_nonbonded_cutoff                   18.0 
amber_score_temperature                         300.0 
amber_score_abort_on_unprepped_ligand         yes 
ligand_outfile_prefix                           output 
write_orientations                              no 
num_scored_conformers                           1 
rank_ligands                                    no 
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4 APPENDIX B – AMBER MD INPUTS 

minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=1000.0,restraintmask="!@H=" 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=1000.0,restraintmask="!@H=&:1-216", 
/ 
 
equilibration 
&cntrl 
 ntb=1,ntc=2,ntf=2,ntt=3,gamma_ln=2.0,cut=8.0, 
 ntr=1,restraint_wt=1000.0,restraintmask="!@H=&:1-216", 
 nstlim=100000,dt=0.001,nmropt=1, 
/ 
&wt TYPE='TEMP0', istep1=0, istep2=100000, value1=100.0,value2=300.0 / 
&wt TYPE='END' / 
 
pressure equilibration 
&cntrl 
 ntb=2,ntp=1,pres0=1.0,tautp=2.0,  ntc=2,ntf=2,ntt=3,gamma_ln=2.0, 
 tempi=300.0,temp0=300.0, 
 ntr=1,restraint_wt=1000.0,restraintmask="!@H=&:1-216", 
 nstlim=100000,dt=0.002, 
/ 
 
equilibration 
&cntrl 
 ntb=1,ntc=2,ntf=2,ntt=3,gamma_ln=2.0,cut=8.0, 
 ntr=1,restraint_wt=1000.0,restraintmask="!@H=&:1-216", 
 nstlim=100000,dt=0.001,nmropt=1, 
/ 
&wt TYPE='TEMP0', istep1=0, istep2=100000, value1=300.0,value2=100.0 / 
&wt TYPE='END' / 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=1000.0,restraintmask="!@H=&:1-216", 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=500.0,restraintmask="!@H=&:1-216",/ 
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minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=200.0,restraintmask="!@H=&:1-216", 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=100.0,restraintmask="!@H=&:1-216", 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=50.0,restraintmask="!@H=&:1-216", 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=20.0,restraintmask="!@H=&:1-216", 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=10.0,restraintmask="!@H=&:1-216", 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=5.0,restraintmask="!@H=&:1-216", 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=4.0,restraintmask="!@H=&:1-216", 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=3.0,restraintmask="!@H=&:1-216", 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=2.0,restraintmask="!@H=&:1-216",/ 
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minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=1.0,restraintmask="!@H=&:1-216", 
/ 
 
minimization 
&cntrl 
 imin=1,ncyc=500,maxcyc=1000,ntr=1,cut=8.0, 
 restraint_wt=0.5,restraintmask="!@H=&:1-216", 
/ 
 
equilibration 
&cntrl 
 ntb=1,ntc=2,ntf=2,ntt=3,gamma_ln=2.0,cut=8.0, 
 nstlim=200000,dt=0.002,nmropt=1, 
/ 
&wt TYPE='TEMP0', istep1=0, istep2=200000, value1=100.0,value2=300.0 / 
&wt TYPE='END' / 
 
pressure equilibration 
&cntrl 
 ntb=2,ntp=1,pres0=1.0,tautp=2.0, 
 ntc=2,ntf=2,ntt=3,gamma_ln=2.0, 
 tempi=300.0,temp0=300.0, 
 nstlim=50000,dt=0.002, 
/ 
 
10ns npt simulation for production 
&cntrl 
  ntb=2  

 ntp=1,pres0=1.0,taup=2.0 
  iwrap=1  
  ioutfm=1 

 ntx=5, irest=1 
  cut=8.0 
  ntc=2,ntf=2 

 ntt=3,gamma_ln=2.0 
 tempi=300.0,temp0=300.0 

  nstlim=5000000,dt=0.002 
  ntpr=10000,ntwx=10000 
/ 
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5 APPENDIX C – AMBER TI INPUTS 

Decharge 
minimization 
 &cntrl 
    imin = 1, ntmin = 2, 
    maxcyc = 1000, 
    ntpr = 200, ntwe = 200, 
    ntb = 1, 
    ntr = 1, restraint_wt = 5.00, 
    restraintmask='!:WAT & !@H=', 
 
    icfe = 1, ifsc = 1, clambda = 0.5, scalpha = 0.5, scbeta = 12.0, 
    logdvdl = 0, 
    timask1 = ':1', timask2 = ':2', 
    ifsc = 0, crgmask = ':2@F', 
 / 
 &ewald 
 / 
 
equilibration 
&cntrl 
 ntb=1,ntc=2,ntf=1,ntt=3,gamma_ln=2.0,cut=8.0, 
 nstlim=125000,dt=0.002,nmropt=1, 
 ntr = 1, restraint_wt = 5.00,restraintmask='!:WAT & !@H=', 
 ioutfm = 1, iwrap = 1, 
 ntwe = 25000, ntwx = 25000, ntpr = 25000, ntwr = 62500, 
  
 icfe = 1, clambda = 0.00, scalpha = 0.5, scbeta = 12.0, 
 logdvdl = 0, 
 timask1 = ':1', timask2 = ':2', 
 ifsc = 0, crgmask = ':2@F', 
/ 
&wt TYPE='TEMP0', istep1=0, istep2=120000, value1=100.0,value2=300.0 / 
&wt TYPE='END' / 
 
pressure equilibration 
&cntrl 
 ntb=2,ntp=1,pres0=1.0,tautp=2.0, 
 ntc=2,ntf=1,ntt=3,gamma_ln=2.0, 
 tempi=300.0,temp0=300.0, 
 nstlim=125000,dt=0.002, 
 ntr = 1, restraint_wt = 0.50,restraintmask='!:WAT & !@H=', 
 ioutfm = 1, iwrap = 1, 
 ntwe = 25000, ntwx = 25000, ntpr = 25000, ntwr = 62500, 
 
 icfe = 1, clambda = 0.00, scalpha = 0.5, scbeta = 12.0, 
 logdvdl = 0, 
 timask1 = ':1', timask2 = ':2', 



174 

 ifsc = 0, crgmask = ':2@F', 
/ 
 
TI simulation 
 &cntrl 
    imin = 0, nstlim = 250000, irest = 1, ntx = 5, dt = 0.002, 
    ntt = 3, temp0 = 300.0, gamma_ln = 2.0, ig = -1, 
    ntc = 2, ntf = 1, 
    ntb = 2, 
    ntp = 1, pres0 = 1.0, taup = 2.0, 
    Ioutfm = 1, iwrap = 1, 
    ntwe = 2500, ntwx = 10000, ntpr = 10000, ntwr = 10000, 
 
    icfe = 1, clambda = 0.00, scalpha = 0.5, scbeta = 12.0, 
   logdvdl = 1, 
   ifmbar = 1, bar_intervall = 1000, bar_l_min = 0.0, bar_l_max = 1.0, 
   bar_l_incr = 0.1, 
   timask1 = ':1', timask2 = ':2', 
    ifsc = 0, crgmask = ':2@F', 
 / 
 
 &ewald 
 / 
 
 
VDW Bonded 
minimization 
 &cntrl 
    imin = 1, ntmin = 2, 
    maxcyc = 1000, 
    ntpr = 200, ntwe = 200, 
    ntb = 1, 
    ntr = 1, restraint_wt = 5.00, 
    restraintmask='!:WAT & !@H=', 
 
    icfe = 1, ifsc = 1, clambda = 0.5, scalpha = 0.5, scbeta = 12.0, 
    logdvdl = 0, 
    timask1 = ':1', timask2 = ':2', 
    ifsc=1, scmask1=':1@F', scmask2=':2@C01,H01,H02,H03',  
 crgmask=':1@F | :2@C01,H01,H02,H03' 
 / 
 &ewald 
 / 
 
equilibration 
&cntrl 
 ntb=1,ntc=2,ntf=1,ntt=3,gamma_ln=2.0,cut=8.0, 
 nstlim=125000,dt=0.002,nmropt=1, 
 ntr = 1, restraint_wt = 5.00,restraintmask='!:WAT & !@H=', 
 ioutfm = 1, iwrap = 1, 
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 ntwe = 25000, ntwx = 25000, ntpr = 25000, ntwr = 62500, 
  
 icfe = 1, clambda = 0.00, scalpha = 0.5, scbeta = 12.0, 
 logdvdl = 0, 
 timask1 = ':1', timask2 = ':2', 
 ifsc=1, scmask1=':1@F', scmask2=':2@C01,H01,H02,H03',  
 crgmask=':1@F | :2@C01,H01,H02,H03' 
/ 
&wt TYPE='TEMP0', istep1=0, istep2=120000, value1=100.0,value2=300.0 / 
&wt TYPE='END' / 
 
pressure equilibration 
&cntrl 
 ntb=2,ntp=1,pres0=1.0,tautp=2.0, 
 ntc=2,ntf=1,ntt=3,gamma_ln=2.0, 
 tempi=300.0,temp0=300.0, 
 nstlim=125000,dt=0.002, 
 ntr = 1, restraint_wt = 0.50,restraintmask='!:WAT & !@H=', 
 ioutfm = 1, iwrap = 1, 
 ntwe = 25000, ntwx = 25000, ntpr = 25000, ntwr = 62500, 
 
 icfe = 1, clambda = 0.00, scalpha = 0.5, scbeta = 12.0, 
 logdvdl = 0, 
 timask1 = ':1', timask2 = ':2', 
 ifsc=1, scmask1=':1@F', scmask2=':2@C01,H01,H02,H03',  
 crgmask=':1@F | :2@C01,H01,H02,H03' 
/ 
 
TI simulation 
 &cntrl 
    imin = 0, nstlim = 500000, irest = 1, ntx = 5, dt = 0.002, 
    ntt = 3, temp0 = 300.0, gamma_ln = 2.0, ig = -1, 
    ntc = 2, ntf = 1, 
    ntb = 2, 
    ntp = 1, pres0 = 1.0, taup = 2.0, 
    ioutfm = 1, iwrap = 1, 
    ntwe = 2500, ntwx = 10000, ntpr = 10000, ntwr = 10000, 
 
    icfe = 1, clambda = 0.00, scalpha = 0.5, scbeta = 12.0, 
   logdvdl = 1, 
    ifmbar = 1, bar_intervall = 1000, bar_l_min = 0.0, bar_l_max = 1.0, 
     bar_l_incr = 0.1, 
    timask1 = ':1', timask2 = ':2', 
    ifsc=1, scmask1=':1@F', scmask2=':2@C01,H01,H02,H03',  
 crgmask=':1@F | :2@C01,H01,H02,H03' 
 / 
 
 &ewald 
 / 
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Recharge 
Minimization 
 &cntrl 
    imin = 1, ntmin = 2, 
    maxcyc = 1000, 
    ntpr = 200, ntwe = 200, 
    ntb = 1, 
    ntr = 1, restraint_wt = 5.00, 
    restraintmask='!:WAT & !@H=', 
 
    icfe = 1, ifsc = 1, clambda = 0.5, scalpha = 0.5, scbeta = 12.0, 
    logdvdl = 0, 
    timask1 = ':1', timask2 = ':2', 
    ifsc = 0, crgmask = ':1@C01,H01,H02,H03', 
 / 
 &ewald 
 / 
 
equilibration 
&cntrl 
 ntb=1,ntc=2,ntf=1,ntt=3,gamma_ln=2.0,cut=8.0, 
 nstlim=125000,dt=0.002,nmropt=1, 
 ntr = 1, restraint_wt = 5.00,restraintmask='!:WAT & !@H=', 
 ioutfm = 1, iwrap = 1, 
 ntwe = 25000, ntwx = 25000, ntpr = 25000, ntwr = 62500, 
  
 icfe = 1, clambda = 0.00, scalpha = 0.5, scbeta = 12.0, 
 logdvdl = 0, 
 timask1 = ':1', timask2 = ':2', 
 ifsc = 0, crgmask = ':1@C01,H01,H02,H03', 
/ 
&wt TYPE='TEMP0', istep1=0, istep2=120000, value1=100.0,value2=300.0 / 
&wt TYPE='END' / 
 
pressure equilibration 
&cntrl 
 ntb=2,ntp=1,pres0=1.0,tautp=2.0, 
 ntc=2,ntf=1,ntt=3,gamma_ln=2.0, 
 tempi=300.0,temp0=300.0, 
 nstlim=125000,dt=0.002, 
 ntr = 1, restraint_wt = 0.50,restraintmask='!:WAT & !@H=', 
 ioutfm = 1, iwrap = 1, 
 ntwe = 25000, ntwx = 25000, ntpr = 25000, ntwr = 62500, 
 
 icfe = 1, clambda = 0.00, scalpha = 0.5, scbeta = 12.0, 
 logdvdl = 0, 
 timask1 = ':1', timask2 = ':2', 
 ifsc = 0, crgmask = ':1@C01,H01,H02,H03', 
/ 
 
TI simulation 
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 &cntrl 
    imin = 0, nstlim = 250000, irest = 1, ntx = 5, dt = 0.002, 
    ntt = 3, temp0 = 300.0, gamma_ln = 2.0, ig = -1, 
    ntc = 2, ntf = 1, 
    ntb = 2, 
    ntp = 1, pres0 = 1.0, taup = 2.0, 
    ioutfm = 1, iwrap = 1, 
    ntwe = 2500, ntwx = 10000, ntpr = 10000, ntwr = 10000, 
 
    icfe = 1, clambda = 0.00, scalpha = 0.5, scbeta = 12.0, 
    logdvdl = 1, 
    ifmbar = 1, bar_intervall = 1000, bar_l_min = 0.0, bar_l_max = 1.0, 
     bar_l_incr = 0.1, 
   timask1 = ':1', timask2 = ':2', 
    ifsc = 0, crgmask = ':1@C01,H01,H02,H03', 
 / 
 
 &ewald 
 / 
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6 APPENDIX D – PUBLISHED PAPER 

 


