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The complete characterization of the snake venom protein components is a requirement for a systems-
wide understanding of their biological context. In this work, we provide a deep proteomic
characterization of Crotalus durissus terrificus venom using different bottom-up approaches. We
identified more than five times more protein families than the sum of all identifications previously
reported. For the first time in this sub-species, we report the identification of three new toxin families:
CRISP, phospholipase-B, and SVVEGF. This work also describes proteins involved in regulation of toxin
synthesis and processing that are present in venom.

© 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Introduction

Venomous animals rely on an extensive array of toxins for prey
capture and defense. Venom toxins represent a huge and under
explored reservoir of bioactive components that could be used as
drug library, [1,2] because toxins in venom are directed against a
wide variety of pharmacological targets [3-5]. Studies of venoms
allow: (I) a better understanding of the mechanism of venoms and
toxins actions; (II) development of specific research tools; (Ill) new
improvements in therapies to treat snake bite envenomation; and
(IV) development of new drug candidates [5].

A great number of snake toxins have been used in vivo for
pharmacological tests and several are currently being developed as
novel experimental therapeutics [6]. An example of a new drug
candidate is the cobra venom factor used for treatment of diseases
of the complement system [7]. A good example of a toxin used as a
drug is the bradykinin-potentiating peptide; it also aided in the
understanding cardiovascular physiology and development of
Captopril®, the first active-site directed inhibitor of angiotensin-
converting enzyme, used worldwide to treat human hypertension.

* Corresponding author.
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This discovery was made possible by studies of Bothrops jararaca
venom [8-10].

Comprehensive analysis of venom proteomes became possible
at the end of the twentieth century together with the emerging
“omics” technologies based on 2D electrophoresis combined with
Edman degradation and/or mass spectrometry (MS) analysis
[11,12]. Soon after, venome analysis relying completely in LC-MS
mass fingerprint, RP-HPLC and Edman sequencing was introduced
[13].In 2004 Calvete’s group developed a pipeline to explore snake
venom proteomes and coined it “snake venomics”. This pipeline is
one of the most widely-used venomics approaches and is based on
RP-HPLC venom fractionation in C18 columns followed by fraction
characterization by N-terminal Edman sequencing, SDS-PAGE in
reduced and non-reduced conditions, cysteine (—SH and S—S)
content verification, and molecular mass determination by MS.
Afterwards, electrophoretic bands are excised, trypsinized and
submitted to MS analysis; all data are used to identify and quantify
protein relative abundance. The results are displayed as a pie chart
of protein families found in the venom [14,15].

The following years showed a fast and steady increase in snake
venom proteome publications with a variety of technical
combinations (see reviews [4,16,17]). The use of shotgun
proteomics with hybrid high resolution mass spectrometers
(LTQ-FT) was disclosed by Fox and coworkers [18]. The first
venom study using a bottom-up proteomic approach combined
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with peptide spectral matching, spectral alignment, and de novo
sequencing analyses, aiming to improve protein coverage and
identification in western diamondback rattlesnake venom, was
published in 2007 [19].

One of the shortcomings in most widely adopted venomics
protocols is that it is difficult to identify low abundance proteins in
very complex mixtures with wide dynamic range. One way to
access this “hidden proteome” is to use a combinatorial peptide
ligand library (CPLL) [20]. When this equalizer technology was
applied to explore the venome of Crotalus atrox and Bitis arietans,
several low abundance proteins were identified. These low
abundance proteins are not likely to be directly involved in
generic killing and/or digestive functions, instead they may be
component of cellular debris, proteins related to toxin sorting and
processing, and/or proteins under neutral selection to became new
toxins [21,22]. Therefore, decomplexing venoms prior to MS
analysis has shown to be a valuable tool for exploring venom
complexity.

Moreover, proteomic approaches are mostly database-depen-
dent and the lack of sequenced snake genomes and transcriptomes
are crucial problems for high throughput and efficient identifica-
tion of venom proteins. However, de novo sequencing of high
quality MS/MS data followed by sequence similarity search to
homologous proteins has proven to be an excellent alternative for
non-genome sequenced organisms [23,24]. Some of the tools
available to perform automated de novo sequencing with high
accuracy in large LC-MS/MS data are: PEAKS [25], PepNovo [26],
pNovo+ [27]. Protein identification by similarity sequence search
can be provided by MS-BLAST [28] or PepExplorer, a new similarity
search tool that uses artificial neural networks to disclose protein
identification [29]. It must be stressed that the use of different
approaches is complementary and the choice will depend on the
proposed problem.

Here we propose a pipeline to create a reliable, comprehensive
resource of Crotalus durissus terrificus (Cdt) venom that is also able
to explore low abundance proteins. Cdt venon is one of the most
studied snake venoms in the world with more than 390 papers
listed in PubMed (15th January 2015). Early studies in the late
nineteenth and early twentieth centuries reported distinct
pharmacological effects of Crotalus and Bothrops venom as well
as the specificity of respective antivenom sera [30]. The
envenomation induced by Cdt bite predominantly precipitates
neurotoxic and myotoxic [31] effects because of the presence of
high amounts of crotoxin, the first isolated animal venom toxin
[32]. In 2010 two distinct papers exploring the Cdt venome were
published. Calvete et al. (2010) using venomics pipeline showed
venom variations of Central American rattlesnake Crotalus simus
and South American Crotalus durissus complexes, indicating the
presence of seven toxin classes in Cdt venom [33]. The second
study was based on 2D electrophoresis and seven protein families
were identified [31], but only three were also found in Calvete’s
study. In our pipeline, we combined three bottom-up approaches:
venom in-solution digestion (ISD), peptide pre-fractionation by
isoelectric focusing (IEF), and combinatorial peptide ligand library
(CPLL) techniques. MS data were searched and analyzed by peptide
spectrum match (PSM) and de novo sequencing coupled with
similarity sequence search (SSS) approaches to identify proteins
according to their similarity.

We were able to show that, even taking one of the most studied
snake venom, our combined approach to Cdt venom identified 77%
more protein families than reported in all previous studies, with
the identification of new toxin families present in this venom as
well as non-toxin protein families. Overall, we demonstrate that a
combination of pre-fractionation approaches in combination with
a LC-MS/MS platform can provide deep characterization of protein
components in venom.

Material and methods
Venom sample

A pool of lyophilized Crotalus durissus terrificus (Cdt) venom
from adult specimens was obtained from the Butantan Institute,
Sdo Paulo - Brazil, as described by Giannotti et al. [34], and
generously donated by Prof Ana Maria Moura da Silva from the
Laboratory of Immunopathology - Butantan Institute. Venom
protein concentration was determined fluorometrically using
Qubit 2.0 protein assay kit following manufacturer’s instructions
(Invitrogen).

Combinatorial peptide ligand library enrichment

We employed a combinatorial hexapeptide ligand library (CPLL)
approach using three different pHs [21,22]. Three aliquots of crude
venom (20 mg each) were dissolved at room temperature in 5 mL
of three distinct pH buffers (buffer pH 3.0, 25mM sodium
phosphate monobasic and 50 mM potassium chloride; buffer pH
7.0, 25mM sodium phosphate dibasic and 50mM potassium
chloride; buffer pH 11.0, 25mM CAPS and 50mM potassium
chloride) containing complete ultra-tablets protease inhibitor
cocktail (Roche). Each venom sample was centrifuged at 10,000x g
for 10 min and the supernatant was incubated for 3 h under gentle
shaking at room temperature with 30 L of CPLL beads (generously
donated by Dr. Pier Giorgio Righetti, Politecnico di Milano, Italy).
CPLL beads were previously hydrated and equilibrate for 1 h with
the respective pH buffer. The suspensions were centrifuged at
2000xg for 5min, the supernatants containing the non-captured
proteins were reserved and the beads slurry were washed three
times with 1 mL of the respective pH buffer to eliminated unbound
or non-specific bonds. Captured proteins yet bond to the beads [35]
and flow through proteins were submitted to trypsin digestion,
separately.

Protein digestion

Four aliquots of one hundred micrograms of venom protein,
three different flow through of CPLL containing 100 g of protein
each, and three distinct pH CPLL beads with captured proteins
were suspended in urea 7 M and thiourea 2 M. DTT was added to a
final concentration of 10mM and reacted for 1h at room
temperature. Cysteine residues were carboxamidomethylated
with addition of 10 mM iodoacetamide for 30 min in the dark.
Samples were diluted to 1M urea with Tris-HCL 100 mM, pH 8.5,
and MS grade trypsin (Promega) was added (1:50 protease/
substrate (w/w)) for overnight digestion at 37 °C. Proteolyses was
stopped by adding formic acid to a 1% final concentration. Peptide
solutions were centrifuged 10,000xg for 5min to pellet non-
soluble materials and/or CPLL beads. Supernatants were desalted
in C18 Micro SpinColumns (Harvard Apparatus) following man-
ufacturer’s instructions.

Isoelectric focusing (IEF)

In duplicate, 100 g of digested peptides dissolved in 200 p.L of
8 M urea/2 M thiourea were loaded into strip holders to which a 3-
10 pH IPG strip (18 cm, GE Healthcare Life Sciences) was laid over
and covered with mineral oil. Isoelectric focusing was performed in
the IPGphor system (GE Healthcare Life Sciences) for 24h
employing rehydration for 12 h at 20°C and 50 wA/strip, focusing
0-200V for 1h, 200-500V for 1h, 500-1000V for 1h, 1000V for
1h, 1000-8000V for 30 min, 8000V for 5h, and 500V for 3h
totaling 46000 Vh. After focusing, strips were washed in petroleum
ether, divided in 5 pieces and covered with peptide extraction
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solution (95% ACN 5% formic acid 0.1) for 24h, at room
temperature. Peptides were dried and submitted to clean up in
C18 Micro SpinColumns (Harvard Apparatus) following manufac-
turer’s instructions.

LC-MS/MS data acquisition

Peptide samples were resuspended in 0.5% formic acid (FA) and
fractionated using a nanoHPLC system Easy-nLC Il (Proxeon) on an
in-house packed 2 cm x 150 pm i.d. pre-column (Reprosil-Pur C18-
AQ, 5um, 120A, Dr. Maisch), and 20cm x 75 wm i.d. column
(Reprosil-Pur C18-AQ, 3 um, 120 A, Dr. Maisch) coupled to a LTQ
Velos Orbitrap mass spectrometer (Thermo Scientific). Chroma-
tography was performed at 300 nL/min flow rate with 95% water,
5% ACN and 0.1% FA as mobile phase A and 95%, 5% water and 0.1%
FA as phase B. The column was equilibrated with buffer A for
10min and the runs were performed in optimized gradient of
180 min (5-45% B over 160 min, followed by 45-90% B over 15 min,
and 90% B for 5 min).

The Orbitrap mass spectrometer was controlled by Tune 2.6.0
and Xcalibur 2.1 software and was set to operate in data dependent
acquisition (DDA) mode to automatically switch between full scan
MS (60,000 resolution, 500 ms accumulation time, AGC 1 x10°
ions, range 300-2000 m/z) and MS/MS acquisition. The top 10 most

intense ions were selected for fragmentation by low resolution
CID-MS/MS (35 normalized collision energy; 10ms activation
time; 100 ms accumulation time; AGC 10% ions).

Data analysis

Database

Protein sequences from suborder Serpente were downloaded
from Uniprot on March 03, 2013 and EST sequences from suborder
Serpente were obtained in NCBI on March 03, 2013. Nucleotides
sequences were translated to amino acid sequences using EMBOSS
Transeq - EMBL-EBI (http://www.ebi.ac.uk/Tools/st/emboss_tran-
seq/) [36] and all translated frames were incorporated to Uniprot
database as well as 127 protein sequences of common MS
contaminants. For all inputs, reversed decoy sequences were
generated and included in database, totalizing 147,956 sequences.

Peptide spectrum matching (PSM)

Data were analyzed comparing experimental MS2 against
theoretical spectra generated from an in-house database using
ProLuCID v1.3 search engine [37]. Searches were performed with
the following parameters: carboxamidomethylation of cysteines as
fixed modification, oxidation of methionine and glutamate at N-
terminal position to pyroglutamate as variables modifications, full
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Fig. 1. Schematic representation of proposed experimental and data analysis pipeline for the venom of C. durissus terrificus.
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Table 1

147

Protein families identified by peptide spectral matching (PSM) and similarity sequencing searching (SSS) reported in maximum parsimony mode (PTN) and protein group (PG)
for each experimental condition: venom in solution digestion (ISD), proteins bounded to combinatorial peptide ligand library (CPLL) in all pHs (Bound), flow through proteins
to CPLL in all pHs (FT), and venom digested peptides isoelectrical focused (IEF). Protein names of identified protein family subgroups are italicized.

Protein family ISD CPLL IEF
Bound FT
PSM SSS PSM SSS PSM SSS PSM SSS
PIN PG PIN PG PIN PG PIN PG PIN PG PIN PG PIN PG PIN PG

Toxin
Bradykinin-potentiating and C-type natriuretic peptides 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
Cysteine-rich secretory protein — CRISP 1 1 1 1 0 0 0 0 1 1 2 2 2 1 1 1
Crotamine 1 1 1 1 0 0 0 0 0 0 1 1 1 1 6 1
Ecto-5'-nucleotidase 1 1 2 1 3 1 3 1 1 1 2 1 1 1 2 1
Hyaluronidase 3 1 2 1 4 1 3 1 4 1 2 1 2 1 3 1
L-amino-acid oxidase 6 1 3 1 11 2 11 1 8 1 4 1 6 1 10 1
Phosphodiesterase 3 2 2 2 3 3 3 3 5 2 4 1 4 3 4 3
Phospholipase A2 - Crotoxin acid and basic subunit 20 1 30 1 29 2 29 1 36 2 39 1 25 1 66 1
Phospholipase B 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1
Snake venom C-type lectin 4 4 3 3 4 4 6 4 4 4 3 3 4 4 4 2

Convulxin subunit alpha/beta 2 2 2 2 2 2 4 2 2 2 2 2 2 2 4 2

Crotocetin 2 2 1 1 2 2 2 2 2 2 1 1 2 2 0 0
Snake venom metalloproteinase 5 1 14 1 32 1 22 1 21 1 24 1 8 1 14 1
Snake venom nerve growth factor 2 1 2 2 0 0 1 1 0 0 4 1 7 1 7 1
Snake venom serine proteinase 27 1 17 1 15 2 15 2 22 2 19 2 31 1 51 1
Snake venom vascular endothelial growth factor 4 2 4 2 1 1 0 0 5 2 2 1 4 2 2 1

Non-toxin

Acid alpha glucosidase

Acid ceramidase

Actin

Aminopeptidase N

Angiotensin-converting enzyme

Annexin

Calreticulin

Carboxypeptidase E

Cathepsin

Cellular repressor of E1A-stimulated genes 1 - CREG1
Cystatin

Deoxyribonuclease-2-alpha

Dipeptidase 2

Dipeptidylpeptidase 4a

Endoplasmic reticulum aminopeptidase 1
Endoplasmic reticulum resident protein
Exostosin

Ganglioside GM2 activator

Glia-derived nexin

Glutaminyl-peptide cyclotransferase
Glutathione peroxidase

Glutathione S-transferase
Growth/differentiation factor 5-like protein
Heat shock protein

Immunoglobulin M heavy chain constant region
Lipase A

Lysosomal alpha-mannosidase-like protein
Myosin

N-acylsphingosine amidohydrolase

Neural proliferation differentiation/control protein 1
Nucleobindin-2

Protein disulfide isomerase

Peptidyl-prolyl cis-trans isomerase
Peroxiredoxin-4-like

Phospholipase A2 inhibitor subunit B

Plasma alpha-L-fucosidase

Proactivator polypeptide

Prolyl 4-hydroxylase subunit alpha-1

Protein FAM3C
Protein-L-isoaspartate(D-aspartate) O-methyltransferase protein
Pyruvate dehydrogenase complex - component X
Renin-like aspartic protease

Serine carboxypeptidase CPVL

Serum albumin

Snake venom C3 complement

Sodium-and chloride-dependent amino acid transporter B
Sphingomyelin phosphodiesterase

Transferrin

Triosephosphate isomerase

Villin-1

Total
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tryptic hydrolysis, maximum of two missed cleavages, 70 ppm
precursor (MS) mass tolerance, 550 ppm fragments (MS/MS) mass
tolerance, XCorr as primary score, and ZScore as secondary score.

Peptides from search results were processed and evaluated
using the Search Engine Processor (SEPro) v3.2.0.2 [38]. Based on
the scores generated by PSM search, a cutoff score was set to accept
1% of false-discovery rate (FDR), at protein level, based on the total
number of identified labeled decoys. In addition, only peptides
with more than six amino acid residues were accepted. In a post
process step only peptides with less than 10 ppm deviation from
theoretical peptide precursor were considered and identified
proteins shown in maximum parsimony mode [39].

Sequence similarity search (SSS)

Raw data were extracted to .mgf format using Proteome
Discoverer 1.4 (Thermo Scientific) and submitted to a cleanup of
common contaminant spectra against a background library of
usual LC-MS contaminants using Eagle Eye software [40]. Filtered
spectra present in each sample were loaded in Peaks Studio 6
software (Bioinformatics Solutions Inc.) to perform de novo
sequencing. The following parameters were applied: carboxami-
domethylation of cysteines as fixed modification, oxidation of
methionine as variable modification, and no enzyme digestion. We
then used PepExplorer [29] to process all peptides (Peaks ALC score
higher than 50 and sequences with 6 or more amino acid residues)
and perform a sequence similarity search against a database
consisting of Uniprot entries from suborder Serpente plus 127 most
common MS contaminants. For all gene products a reverse decoy
sequence was created yielding a final database containing 33,004
sequences. The similarity search used the PAM30MS substitution
matrix to score the alignments and 13 and 5 were set for open gap
and extended gap penalties, respectively. Finally, PepExplorer
grouped the identifications according to the maximum parsimony
approach [39]. Only peptides having alignments with at least 65%
of sequence identity against a sequence from the database were
accepted and proteins were filtered at 1% of FDR.

Protein quantification

Label free protein quantitative analysis was performed accord-
ing to the normalized spectral abundance factor (NSAF) [41]
provided by Search Engine Processor (SEPro) [38].

Results and discussion
Proteomic approaches

The aim of this work was to perform a deep exploration of the
venom of the Brazilian rattle snake; for this we introduce an
extended venomics pipeline that combines different bottom-up
approaches (in-solution digestion, peptide pre-fractionation by
isoelectric focusing, and combinatorial peptide ligand library
technique) and two orthogonal types of protein identification
(peptide spectrum match and de novo sequencing coupled with
similarity sequence search) in a unique pipeline (Fig. 1).

In solution digestion and quantification

Triplicate analyses of digested Cdt venom performed by nano
LC-MS/MS in DDA mode using an LTQ Velos Orbitrap led to the
identification of a total of 96 proteins, by PSM, in maximum
parsimony mode. Proteins could be clustered in 35 groups and 28
protein families, 14 of them classified as snake toxins. The SSS
identified 94 proteins, which were clustered into 29 protein
groups, and 24 protein families (Table 1). All 14 toxin families were
identified by both SSS and PSM techniques. Four protein families
were detected only by PSM (cathepsin, CREG1, HSP and neural

proliferation differentiation and control protein 1) and one only by
SSS (acid ceramidase) summing up 29 protein families (Table 1).
PSM is the proteomics gold standard for protein identification; it is
much more sensitive than de novo sequencing, therefore,
obtaining more identifications by PSM was already expected.

With a single in-solution venom digestion and LC-MS/MS
analysis, we were able to pinpoint 29 protein families, which
represents 163.6% more identifications than the sum of protein
families described in previously proteomics studies performed by
Calvete et al. [33] and Georgieva et al. [31] with Cdt venom,
summing up 11. We attribute this to the methodological differ-
ences between the three studies and possibly from venom profile
variations. Venom intraspecific variation was previously reported
in Cdt [42], and it is vastly recorded in snake toxinology literature
for other species. Different venom composition was observed
among individuals of the same species and genders [43], with
different feeding diets [44,45], between juveniles and adults
[33,46] with diverse geographical location [47,48], and amid
venom glands of a single individual [49].

The NSAF was used to obtain rough protein quantity estimates
for each toxin family in Cdt venom. NSAF has been shown to be
effective in accounting for variation from run to run [50] and for
reporting rough absolute quantitation estimates. This is because
larger proteins tend to contribute more peptides and therefore
more spectra; NSAF's formula accounts for this by considering the
number of spectral counts (Sc) from a given protein divided by the
number of amino acids (L), then dividing this value by the sum of
Sc/L for all identified proteins. As such, this normalization strategy
significantly improves analysis of proteins from multiple indepen-
dent assays compared to spectral counting alone [51]. According to
this method, 98.5% of the venom proteome is composed of toxins
while only 1.5% are considered non-toxins. The major protein
family detected was phospholipase A2 (PLA2) including crotoxin,
basic and acid subunits, responsible for 69.3% of total venom
proteins (Fig. 2). This result is aligned with Calvete et al.’s [33] and
Georgieva et al.’s [31] studies that also reported crotoxin as the
major venom component (Table 2). The elevated amounts of
crotoxin in Cdt venom is one of the reasons for its high toxicity
(LDsp 0.06-0.09mg of venom/g of mice) and for causing
neurological disturbances when injected in mice [52] or in human
envenomation [31].

The second most abundant protein family detected was snake
venom serine proteinase (SVSP) with 13.4% of total venom’s NSAF,
the same value recorded by Georgieva et al. [31]. On the other
hand, Calvete et al.’s study [33] found crotamine to be the second
most abundant venom component and SVSP as the third most
intense; this discrepancy can occur by the presence of different
concentrations of crotamine in the venom, which can be crotamine
positive or negative [42] or even to the different strategies for
inferring absolute quantitation. Again, NSAF is a rough estimate for
absolute quantitation. Another reason could be that Calvete et al.’s
group studied a crotamine-enriched venom whereas Georgieva
et al. and this study used crotamine-less or negative venoms.

In addition of the two most intense components, 6 toxin
families with a middle range concentration between 1 and 3% of
total venom proteins were detected: L-amino-acid oxidase (LAAO)
3.0%, snake venom metalloproteinase (SVMP) 2.9%, snake venom
vascular endothelial growth factor (SVVEGF) 2.8%, snake venom C-
type lectin (SnaClec) 2.7% composed of two distinct proteins,
convulxin, alpha and beta chain (2.1%), and crotocetin, (0.6%),
phosphodiesterase (PDE), 1.2%, and crotamine (CRO) 1.0%. The
recently described hyaluronidase (HYA) family for Crotalus genus
was identified in Cdt venom and represents 0.8% of total venom
proteins. This protein class is closely related to the increase in
crotoxin toxicity [53] and was not identified in previous proteo-
mics studies.
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Fig. 2. Overall composition of C. durissus terrificus venom according to protein families (in percentages). Phospholipase A2 (PLA2 including crotoxin), snake venom serino
proteinase (SVSP), L-amino-acid oxidase (LAAO), snake venom metalloproteinase (SVMP), snake venom C-type lectin (SnaCLec), snake venom vascular endothelial growth
factor (SVVEGF), phosphodiesterase (PDE), crotamine (CRO), hyaluronidase (HYA), ecto-5’-nucleotidase (5’END), snake venom nerve growth factor (SVNGF), cysteine-rich
seceretory protein (CRISP), phospholipase B (PLB), bradykinin-potentiating and C-type natriuretic peptides (BNP), glutaminyl-peptide cyclotransferase (GPCT),
deoxyribonuclease-2-alpha (DNase), peptidyl-prolylcis-trans isomerase (PPI), transferrin (TF), proactivator polypeptide (PSAP), serine carboxypeptidase CPVL (CVLP),
protein disulfide isomerase (PDI), cellular repressor of E1A-stimulated genes 1 (CREG1), angiotensin-converting enzyme (ACE), neural proliferation differentiation/control
protein 1 (NPDC), serum albumin (SA), heat shock protein (HSP), phospholipase A2 Inhibitor (PLI), and cathepsin (CTS).

Table 2

Overview of the relative occurrence and comparison with previously studies of protein families identified by in solution digestion of Cdt venom and quantified by normalized
spectral abundance factor — NSAF (in percentage of the total proteins). Protein names of identified protein family subgroups are italicized.

Protein family

Percentage of total venom proteins

This study Calvete et al. [33] Georgieva et al. [31]

Toxin
Phospholipase A2 - Crotoxin acid and basic subunit — PLA2 69.3 59.5 48.5
Snake venom serine proteinase — SVSP 13.4 8.2 253
L-amino-acid oxidase - LAAO 3.0 4.5 -
Snake venom metalloproteinase - SVMP 2.9 4.8 3.9
Snake venom vascular endothelial growth factor - SVVEGF 2.8 - -
Snake venom C-type lectin - SnaCLec 2.7 1.7 -

Convulxin alpha/beta subunits 2.1 - -

Crotocetin 0.6 - -
Phosphodiesterase - PDE 12 - 19
Crotamine - CRO 1.0 19.0 -
Hyaluronidase - HYA 0.8 - -
Ecto-5'-nucleotidase - 5’END 0.4 - 7.8
Snake venom nerve growth factor - SVNGF 0.4 - 19
Cysteine-rich seceretory protein — CRISP 0.2 - -
Phospholipase B - PLB 0.2 - -
Bradykinin-potentiating and C-type natriuretic peptides - BNP 0.2 2.3 -
Non-toxin
Glutaminyl-peptide cyclotransferase - GPCT 0.6 - 1.0
Deoxyribonuclease-2-alpha - DNase 0.1 - -
Peptidyl-prolylcis-trans isomerase — PPI 0.1 - -
Transferrin - TF 0.1 - -
Proactivator polypeptide — PSAP 0.1 - -
Serine carboxypeptidase CPVL - CPVL 0.1 - -
Protein disulfide isomerase — PDI 0.1 - -
Cellular repressor of E1A-stimulated genes 1 - CREG1 0.1 - -
Angiotensin-converting enzyme - ACE 0.05 - -
Neural proliferation differentiation/control protein 1 - NPDC 0.05 - -
Serum albumin - SA 0.03 - -
Heat shock protein - HSP 0.03 - -
Phospholipase A2 Inhibitor — PLI 0.03 - -
Cathepsin - CTS 0.02 - -
Non identified sequences - - 9.7

Several low-abundant proteins were identified and quanti-
fied such as 5 toxin families with less than 0.5% of the total
venom proteins. They are: ecto-5'-nucleotidase (5’END), 0.4%,
snake venom nerve growth factor (SVNGF), 0.4%, cysteine-rich
secretory protein (CRISP), 0.2%, phospholipase B (PLB), 0.2%, and
bradykinin-potentiating and C-type natriuretic peptides (BNP),
0.2%. While the majority of toxin components act directly on

killing/paralyzing the prey or in defense, low-abundance
proteins may be remnant toxins that are related to evolutionary
or ecological timescale plasticity where mutations can drive
toxins functional innovations [22]. One example is the relation
of hyaluronidase and crotoxin, where the first, present in low-
amount, acts as potentiating agent in synergism with the
crotoxin [53].



150 R.D. Melani et al. / EuPA Open Proteomics 8 (2015) 144-156

The most abundant non-toxin component noted was gluta-
minyl-peptide ciclotransferase (GPCT) that, according to NSAF,
represents 0.6% of total venom protein composition, and corre-
sponds to 39.7% of total amount of non-toxin components recorded
(Fig. 1 and Table 2). The 60.3% remaining non-toxin components,
representing 0.9% of total venom proteins, are composed of 13
protein families. The concentrations of proteins in these 13 families
range from 0.1% to 0.02%, showing that this method is more
sensitive than Calvete et al’s study [33] that found 0.5% of
bradykinin potentiating peptides and Georgieva et al.’s work [31]
with 1.0% of GPCT. Calvete group’s snake venomics approach is
based on RP-HPLC fractionation followed by SDS with protein
bands identified by mass spectrometry. Calvete’s method is less
effective at protein identification than in solution digestion as
shown by Margres et al. [54]. This result may be explained by loss
of low-abundant proteins in the diverse fractionation and
manipulation steps that require large amounts of proteins, as
well as the use of mass spectrometers with different accuracies and
resolutions. Therefore, in-solution digestion coupled to LC-MS/MS
in FT-Orbitrap instruments requires less protein than conventional
snake venomics methodology and is a more sensitive approach.

While considering that bottom-up strategies increased protein
family identification in the Cdt venome, we point out that this
approach is not capable of efficiently identifying isoforms and
proteoforms [18]. A single amino acid change or a post-
translational modification in a peptide may result in a new toxin
with different biological action. In order to identify isoforms/
proteoforms, it is possible to use top-down proteomics or for
bottom-up approaches, alternative pre-fractionation and LC-MS/
MS methods are necessary.

Isoelectric focusing (IEF) pre-fractionation.

IEF pre-fractionation of digested venom peptides allowed the
identification of 117 proteins by PSM, which were grouped in 39
protein groups and clustered into 34 protein families. A total of 193
proteins were identified by SSS, which were then clustered into 34
protein groups and 30 protein families. IEF allowed for the
identification of 14 toxin families observed in the in-solution
digestion analysis and 21 non-toxin families, a total of 35
identifications, comprising 6 more different protein families not
related to toxins: myosin (only detected by SSS), acid ceramidase-
like, endoplasmic reticulum aminopeptidase 1 protein, glutathione
peroxidase, renin aspartic protease, and immunoglobulin M heavy
chain constant region (Table 1). The use of IEF before LC-MS/MS
analysis increased the number of protein families identified by

Table 3

more than 20%. This highlights the advantage of pre-fractionation
prior to LC-MS/MS venom analysis, and corroborates previous
findings in which 1D PAGE protein pre-fractionation increased the
number of protein identifications from C. atrox venom [18].

Combinatorial peptide ligand library approach (CPLL)

Exploration of proteomes with a large dynamic range, like the
venom of Cdt — which has an overwhelming amount of crotoxin - is
challenging, as abundant proteins overshadow the identification of
those in lower abundance [21,55]. One way to access this “hidden
proteome” is the use of a CPLL approach combining distinct pH
buffers [22], in-bead digestion [35], and the analysis of bound
proteins and flow through proteins [22]. By combining these three
strategies, we identified 62 protein families, 28 more protein
families than in solution digestion and IEF experiments. SSS
approach provided 7 and PSM 6 new protein family identifications
being the remainder 15 protein families identified by both search
approaches (Table 1). Protein families identified only by the CPLL
approach were classified as non-toxins and probably are present in
less than 0.02% of total venom proteins, representing a dynamic
concentration range equal or greater than 4 orders of magnitude.
These protein families could only be detected thanks to the
depletion of the major components, mostly PLA2, in the sample as
well as the enrichment in concentration of these low abundance
molecules [21]. Our bottom-up proteomics CPLL approach
increased the total number of protein families by more than
77%, owing to in-solution digestion and IEF. The gel-based CPLL
approach utilized by Calvete and collaborators to explore the
proteome of C. atrox identified only two new low abundance
protein classes (peroxiredoxin and glutaminyl cyclase), which
corresponded to 22% of increase compared to the previous C. atrox
venom prospection [21]. A similar increase, about 20% in protein
families identified, was obtained by us with a simple pre-
fractionation of venom peptides in pH 3-10 IEF strips.

Even after using three different pH buffers aiming to maximize
the number of proteins, we were still unable to identify crotamine
and CRISP toxins as bound to CPLL by PSM or SSS. These toxins are
present in the venom at concentrations greater than 0.2% of total
venom protein and were detected by PSM and SSS at in-solution
digestion and IEF, and by SSS in CPLL flow through. Fasoli et al. used
a similar CPLL approach with three pH buffers to analyze the
venom of Bitis arietans and were unable to identify the 5’END, and
cystatin toxin families, an isoform of kunitz-type inhibitor, and the
disintegrin bitistatin in the bound proteins [22]. Moreover, Calvete
and colleagues were unable to capture CRISP and LAAO toxin

Comparative of each different bottom-up experimental and search approaches utilized. Combinatorial peptide ligand library (CPLL), peptide spectral matching (PSM), and

similarity sequencing searching (SSS).

In solution digestion CPLL Isoelectric
focusing
Bound proteins Flow through

Total protein amount 100 pg 20 mg per pH 100 pg
Number of fractions 1 3 different pHs 5
Total runs 4 9 9 20
Total time 12h 27h 27h 60h
Total MS/MS 45,617 117,360 121,031 195,952

PSM
Total PSM 3870 7733 5024 14,486
Total peptides 878 1,312 758 983
Total proteins 96 161 198 117
Total protein families 35 59 29 39

SSS
Total matching alignments 5375 6003 7878 50,732
Total peptides 1179 1795 1397 3405
Total proteins 94 142 116 193
Total protein families 29 58 26 34
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families when using two different CPLL libraries to explore the
venome of C. atrox [21]. There are three possible explanations for
this: (I) presence of post-translational modifications that interfere
target proteins binding to the peptide library, (II) there is no
peptide ligand for these proteins in the library, and/or (Ill) the
ligand site present in CPLL suffered rapid saturation by other more
abundant competing protein. Neither neural proliferation differ-
entiation/control protein 1 nor myosin were detected in bounded
CPLL or flow through but were identified by PSM at in-solution
digestion and by SSS at IEF experiments, respectively.

Experimental approaches comparison

CPLL required the greatest amount of protein (i.e., 20 mg per pH
of capture buffer) (Table 3); 200 fold more than in solution
digestion or IEF experiments. Due to the large quantities of input
protein, CPLL enables enrichment and detection of lower-
abundance proteins, therefore resulting in the highest number
of protein and protein family identifications of any method we
tested. IEF was the most time consuming experiment due to the
high number of fractions for analysis by mass spectrometry,
although it provided the highest number of MS/MS spectra and
PSMs (Table 3). On the other hand, the fastest and less resource
consuming approach was in-solution digestion, which generated
878 peptides identifications by PSM, only 105 less peptides than
the IEF approach, and identified the same number of toxin families
as the other two experimental approaches (Table 3).

We noted a similar number of unique peptides in CPLL flow
through and in-solution digestion of the whole venom (Fig. 3A).
However, CPLL flow through did not have more low-abundance
proteins than those bound to CCPL. By analyzing a second Venn
diagram constructed with protein families identified from each
experimental approach, we verified that the unique peptides from
CPLL flow through did aid in identifying new protein families; they
originated from protein classes already identified by other
methods (Fig. 3B). Yet, these peptides helped in improving protein
coverage/confidence.

More than 100 unique peptides were found in the IEF
experiment compared to the venom in-solution digestion showing
that better peptide fractionation before LC-MS/MS and more runs
increase the number of denoted peptides and protein coverage. IEF
proved to be an efficient fractionation step by increasing protein
identification compared to methods that do not involve pre-
fractionation. Actual enrichment of peptides and new protein
families could be observed in CPLL bound proteins: 598 unique
peptides representing 24 new unique protein families. Adding

A Pepitedies

CPLL-Bound (1312)

CPLL-FT (758)

ISD (878) IEF (983)

protein families and peptides identified in all experiments gives a
total of 2097 unique peptides representing 64 unique protein
families, indicating complementarity of the experimental
approaches applied.

In summary, our results indicate that for single venom
proteome analysis the use of in-solution digestion or peptides
IEF pre-fractionation prior to LC-MS/MS is recommended. For deep
venom analysis the use of CPLL coupled to in-solution digestion
analysis is better alternative providing the identification of a large
number of protein families in a non-redundant and time saving
manner.

Peptide spectrum match (PSM) x Similarity sequencing search (SSS)

The use of PSM and sequence similarity search combined
allowed an increase of protein identifications. The first identifies
peptides in protein databases while the second permits the
identification of new proteins that have some sequence similarity
with other proteins in the database. It is an important search tool
for high variance sequences present in proteins with high number
of isoforms, as snake toxins or unsequenced organisms. On the
other hand, so far it has remained the most error-prone approach
[56]. So, these two approaches are complementary and orthogonal
and can be used to validate protein identifications with borderline
statistical confidence hits [57].

In this work, all 14 toxin families were identified in each distinct
experimental group by both PSM and SSS with high scores, high
quality de novo interpretations and alignments. Similar results
were obtained for the 33 major non-toxin families representing
73.4% of total identifications. Eight protein families were identified
only by PSM (12.5%) and 9 (14.1%) only by SSS.

Protein identification

Out of the 64 protein families identified, 14 (21.9%) of the
identifications reports toxins and 50 (78.1%) non-toxin families.
Although cDNA libraries have been analyzed from the venom
glands of many different snakes, we have used proteomics to
identify novel toxin and non-toxin protein components of Cdt
venom [58,59].

Cysteine rich secretory protein (CRISP)

CRISP family was firstly described as a snake venom component
in 1997 in the venom of Trimeresurus mucrosquamatus [60]. CRISP
toxins were widely distributed and were purified from venoms of
Elapidae, Colubridae and Viperidae snakes families [61-63]. The

B Protein groups

CPLL - Bound (59)

CPLL -FT (29)

ISD (35) IEF (39)

Fig. 3. Comparison of the peptides (A) and protein groups (B) identified by peptide spectral matching between the different bottom-up approaches. Venom in solution
digestion (ISD), proteins bounded to combinatorial peptide ligand library (CPLL) in all pHs (Bound), flow through proteins to CPLL in all pHs (FT), and venom digested peptides

isoelectrical focused (IEF).
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Fig. 4. Sequence coverage of new toxin identifications for Cdt venom. (A) CRISP peptides aligned to Catrin 1-2 sequence from C. atrox (Q7ZT99). (B) Phospholipase B (PLB)
peptides aligned to PLB sequence from C. adamanteus (F8S101). (C) Snake venom vascular endothelial growth factor (SVVEG) peptides aligned to SVVEGF sequence from C.
oreganus helleri (TIDE66) and from C. horridus (TID6M2).
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presence of CRISP in the venom of snakes of Crotalus genus was
well documented by many studies using different techniques. By
proteomics approaches this family was identified in the venom of
C. simus simus,C. simus culminatus [64], C. tigris [65], C. durissus
collilineatus, and C. durissus cascavella [47], by transcriptomics
approaches in the venom of C. viridis (Uniprot, unpublished), and C.
horridus [58], by proteomic/transcriptomic approaches in C
adamanteus [54,59] C. oreganus helleri [66] and by biochemistry
approaches catrin 1 and 2 were isolated from the venom of C. atrox
and chemically/pharmacologically characterized by Yamazaki et al.
[62].

Even with a large distribution among Crotalus genus, CRISP
family has never been identified in Cdt. In this work, we describe
for the first time, by proteomics approaches, the presence of
CRISP in this subspecies. We report 15 non-redundant peptides
from CRISP family by PSM and/or SSS in in-solution digestion,
flow through from CPLL and IEF (Table S1) experiments that
correspond to 72.4% coverage of mature catrin 1-2 toxin
(Q7ZT99) (Fig. 4A). Members of CRISP family represent a single
polypeptide chain with a molecular weight range of 23-26 kDa.
They have 16 cysteine residues strictly conserved, which form 8
disulfide bridges and 10 of these cysteines residues are clustered
in the C-terminal of the protein [62]. CRISP toxins have been
described to actuate against different types of ion channels as
cyclic nucleotide-gated channels [61], voltage-gated Ca®* chan-
nels [62,63], high-conductance calcium-activated potassium
channel [67] and voltage-gated potassium channel Kv1.3 [68].
Taken together, these results indicate that these proteins act as
neurotoxins.

Phospholipase B (PLB)

PLB toxin family was identified in all experimental procedures
performed and a total of 42 non-redundant peptides were
annotated by PSM and/or SSS (Table S2). They accounted for 57.7%
of PLB sequence coverage from C. adamanteus (F8S101) (Fig. 4B).
This toxin family was never identified in Cdt venom before it was
first described in the species and in South American rattlesnakes.
As venom component, PLB was firstly described in 1964 in Naja
naja, Pseudechis porphyriacus, and Agkistrodon piscivorus venoms
[69]. Years later, PLB was isolated from the venom of Pseudechis
colletti and partially pharmacologically and enzymatically charac-
terized [70]. Recently, PLB was detected by transcriptomic and
proteomic techniques in the venom of Drysdalia coronoides [71], C.
adamanteus [54,59], Ovophis okinavensis and Protobothrops fla-
voviridis [72] and only by transcriptome in C. horridus [58] and
Micrurus fulvius [73] venoms. Unfortunately, little is known about
this toxin family and it mature protein sequence, and its three-
dimensional structure remain unknown.

The PLB isolated from P. colletti exhibit strong hemolytic activity
in vitro for rabbit and human erythrocytes. In vivo, tests revealed
that 120 g of PLB was lethal for mice and death was preceded by
myoglobinuria [70].The main role of PLB in envenomation is
unclear, however it hydrolysis of cell membrane phospholipids
liberate intracellular contents and these intracellular components
can indirectly produce toxic effect.

Snake venom vascular endothelial growth factor (SVVEGF)

SVVEGF was previously identified in the venom of C. durissus
cascavella and C. durissus collilineatus [47], but never in the venom
of the subspecies Cdt. Toxin family was detected in all our
experimental conditions in a total of 58 non-redundant peptides
denoted by PSM and/or SSS (Table S3). Identified SVVEGF proteins
belong to two distinct groups distinguished at the C terminal
region of the proteins. Identified peptides covered 78.3% of SVVEGF
sequence from C. oreganus helleri (T1IDE66) and 61.5% from C.
horridus (T1D6M2) (Fig. 4C).

SVVEGFs are one of the most structurally diverse snake toxin
families, especially in the C-terminal, supposedly a co-receptor-
binding region as well as near the receptor-binding loops 1 and 3,
whereas the sequences of mammalian tissue VEGFs is highly
conserved [74]. SVVEGF can bind with distinct affinities to VEGF
receptors (VEGFRs): VEGFR1 and/or VEGFR2, and heparin.
Presumably, SVVEGF facilitates the access of other venom
components to their target by promoting capillary permeability
[74]. However, the complete understanding of the role it plays in
the envenomation remains unclear.

Non-toxin proteins

Out of the 64 protein families identified, 50 families were
classified as non-toxins (78.1%). These are low abundance proteins
and they represent less than 1.5% of proteins contained in the
venom. Whose presence can be due to different reasons: (I)
participation in toxin maturation, (II) regulation and self-protec-
tion processes, (III) release of cellular proteins in the gland lumen
as a consequence of glandular physiology and venom production,
(IV) venom extraction artifacts, and (V) proteins that can become
toxins.

The most abundant non-toxin protein identified was GPCT,
found in higher concentrations than some toxins; it is related to
toxin maturation. GPCT plays a crucial role in the maturation
process of many bioactive peptides/proteins present into the
venom by N-terminal pyroglutamate (pyrrolidone carboxylic acid,
pGlu) formation from glutamyl precursor. Pyroglutamate is a
common and important post-translational modification (PTM)
found in venom toxins, some examples are BPPs [75,76], metal-
loproteinase inhibitor peptides [77], some SVMP [78,79] and B and
C chains of the acidic subunit of crotoxin [80,81]. The GPCT high
concentration found in the venom compared to other non-toxin
components indicates that PTMs may be processed in venom
vesicles and GPCT is released together with mature toxins in
venom gland lumen or it may be directly released into the gland
lumen separated from immature toxins. A recent study detected
the presence of GPCT interacting with SVMP in venom gland
extracts but not in extracted venom supporting the first hypothe-
sis. On the other hand, the same study showed that SVMP are
activated in the venom gland lumen, which requires the presence
of specific proteins for toxin maturation in the venom [82].

Other classes of proteins identified are directly involved into
self-protection and regulation processes. Examples are glutathione
peroxidase (GPX), peroxiredoxin-4-like (PRX4), cystatin, and
cathepsin. GPX has peroxidase activity and plays an important
role in eliminating peroxides generated during metabolism [83].
PRPX4 was identified only as CPLL-bound protein, as well as by
Calvete and coworkers [21], and it plays a similar role as GPX.
Cystatins are cysteine—protease inhibitors that may have as
primary function protect cells from unregulated proteolytic
activity. Snake cystatins are known to have specific interactions
with lysosomal cysteine proteases cathepsins [84]. Both proteins
were identified in this study, supporting the idea that cystatin is
not a toxin family but a regulatory protein present in the venom
[84].

The exact location and process of protein maturation is still not
clear. However, heat shock protein (HSP), protein disulfide
isomerase (PDI), and peptidyl-prolyl cis-trans isomerase (PPI),
which are intracellular proteins located in the endoplasmic
reticulum and play important role in protein folding process,
were identified in the venom. The release of these proteins may be
related to cytosol extravasation during the venom vesicles fusion to
cellular membrane and/or they may be present inside the venom
vesicles.

No evidence of venom protein turnover in the glandular lumen
or ducts has been presented until now and the presence of cellular
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debris in venom suggest that cell particles of replaced old
glandular cells are not reabsorbed [85]. These observations
associated with the glandular physiology and venom production
could explain the identification of some proteins related to
housekeeping and the processing and sorting of toxins.

Snake handling and manual pressure exerted on the venom
glands during venom extraction process depending on its
intensity and frequency can cause cellular or tissue damage
releasing cellular content or body fluids in the venom gland
lumen or other venom apparatus compartments resulting in
venom contamination [34]. Some non-toxins identified in Cdt
venom, such as PLA2 inhibitor, serum albumin, IgM, transferrin,
and snake venom C3 complement were previously mapped by
bottom-up experiments in Bothrops jararaca plasma analysis [29],
a strong indication of plasma contamination or plasma presence
inside the venom gland.

Many of the identified non-venom proteins are cellular or
tissue proteins expressed in a wide variety of body tissues and
may not play a significant role at the envenomation process.
However, they are relevant to a better understanding of venom
components and molecular pathways. Moreover, it has been
recently proposed that some of these proteins present in the
venom may have become source of new biological activity
molecules by gene duplication or sub functionalization generat-
ing new toxins [86].

Conclusions

Here we present an up to date panel of Cdt venom components
analyzed by three different bottom-up methodologies. Although
Cdt venom is among the best studied snake venoms, our approach
allowed for the identification of three classes of toxin never
described in this venom as well as 50 non-venom proteins, most of
which had never been detected in snake venom samples. These
new identifications show the power of bottom-up proteomics
approaches in snake venom studies, and uncovered the complexity
of venom components.

Classic works in toxinology characterize one or a few of the
most abundant venom proteins based on assay-guided techni-
ques which are time and resource consuming, yet indispensable
for the identification of completely unknown toxins and their
pharmacological characterization. On the other hand, classical
biochemistry or protein chemistry methods are rapidly being
replaced by proteomic approaches capable to generate massive
data volume, without compromising high-mass accuracy, and in
short periods of time with lower amounts of venom. Large scale
application of the bottom-up approaches described here in the
characterization of snake venoms dig deep into complexity of
venom, and broaden our access to the therapeutic potential of
snake venoms and the identification of new toxins, as well as
provide a better understanding of the molecular complexity of
different venoms and the mechanisms of venom production and
regulation.
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