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Abstract

Background

Bats are a highly successful, globally dispersed order of mammals that occupy a wide array

of ecological niches. They are also intensely parasitized and implicated in multiple viral, bac-

terial and parasitic zoonoses. Trypanosomes are thought to be especially abundant and

diverse in bats. In this study, we used 18S ribosomal RNA metabarcoding to probe bat try-

panosome diversity in unprecedented detail.

Methodology/Principal Findings

Total DNA was extracted from the blood of 90 bat individuals (17 species) captured along

Atlantic Forest fragments of Espı́rito Santo state, southeast Brazil. 18S ribosomal RNA was

amplified by standard and/or nested PCR, then deep sequenced to recover and identify

Operational Taxonomic Units (OTUs) for phylogenetic analysis. Blood samples from 34 bat

individuals (13 species) tested positive for infection by 18S rRNA amplification. Amplicon

sequences clustered to 14 OTUs, of which five were identified as Trypanosoma cruzi I, T.

cruzi III/V, Trypanosoma cruzi marinkellei, Trypanosoma rangeli, and Trypanosoma dionisii,

and seven were identified as novel genotypes monophyletic to basal T. cruzi clade types of

the New World. Another OTU was identified as a trypanosome like those found in reptiles.

Surprisingly, the remaining OTU was identified as Bodo saltans–closest non-parasitic rela-

tive of the trypanosomatid order. While three blood samples featured just one OTU (T. dioni-

sii), all others resolved as mixed infections of up to eight OTUs.

Conclusions/Significance

This study demonstrates the utility of next-generation barcoding methods to screen parasite

diversity in mammalian reservoir hosts. We exposed high rates of local bat parasitism by

multiple trypanosome species, some known to cause fatal human disease, others non-path-

ogenic, novel or yet little understood. Our results highlight bats as a long-standing nexus
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among host-parasite interactions of multiple niches, sustained in part by opportunistic and

incidental infections of consequence to evolutionary theory as much as to public health.

Author summary

Bats make up a mega-diverse, intensely parasitized order of volant mammals whose

unique behavioural and physiological adaptations promote infection by a vast array of

microorganisms. Trypanosomes stand out as ancient protozoan parasites of bats. As cryp-

tic morphology, low parasitaemia and selective growth in culture have recurrently biased

survey, we used 18S ribosomal RNA metabarcoding to resolve bat trypanosomatid diver-

sity in Atlantic Forest fragments of southeast Brazil. Next to several unknown species,

our deep sequence-based detection and assignment protocol recognized multiple known

human-pathogenic trypanosomes, another linked to reptile hosts as well as a non-parasitic

kinetoplastid in the blood of various phyllostomid bats. The striking permissivity exposed

here, in a region where bat trypanosomes recently featured in a fatal case of Chagas dis-

ease, compels further research on bats’ role in the dispersal and spill-over of various

microorganisms among humans and wildlife.

Introduction

Trypanosoma cruzi is the etiological agent of Chagas disease, a complex zoonosis that contin-

ues to take dozens of human lives each day [1]. Alongside its close relative Trypanosoma cruzi
marinkellei in the Schizotrypanum subgenus, this important protozoan flagellate belongs to a

broader, inter-continental group (the “T. cruzi clade”) of ancient endoparasites found to infect

the mammalian fauna far and wide [2–3]. Infections have been reported in primates of Africa

[4], marsupials of Australia [5] and a multitude of terrestrial mammals across the Americas

[6], but most of this striking spread in host diversity tallies to few taxa within the clade (above

all to T. cruzi sensu stricto, i.e., T. cruzi, and to T. rangeli).
The majority of T. cruzi clade diversity is found in bats. Chiroptera are known to carry both

generalists such as T. cruzi and T. rangeli as well as multiple bat-restricted species—some

abundant (e.g., T. c. marinkellei, T. dionisii and T. erneyi), others rare (e.g. T. livingstonei and

T. wauwau) [3, 7–8]. Chiropteran immunity is unique with respect to other mammalian gen-

era, coincident perhaps with physiological adaptations to flying [9]. Several features of bat

immunity may predispose bats to long-term asymptomatic infections [10] with viruses [11–

12], bacteria [13–14], fungi [15–16], protozoa [17–18] and helminths [19–20], several of which

cause disease in humans and animals [21].

Given the diversity of bat-infecting T. cruzi-clade trypanosomes throughout the New and

Old Worlds, many now accredit the Chiroptera with a fundamental role in the evolution of

this parasite group [22]. In fact, the most parsimonious explanation to date for the origin and

past expansion of the T. cruzi clade suggests a common ancestral lineage of bat-restricted try-

panosomes that diversified into several independent lineages that on rare occasion switched

into other terrestrial mammal hosts [17]. Bats’ recurrent interaction with other mammals and

their various ectoparasites are thought to have afforded enough opportunity for at least five

such switching or “seeding” events, likely since the early Eocene (54 to 48 million years ago)

[7].
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Many trypanosomes from bats are morphologically indistinguishable, often described

simply as “T. cruzi-like” in the past [23]. As mixed species/genotype infections are probably

common but overlooked or mistaken, molecular barcoding presents expedient recourse in

resolving intricate trypanosomatid taxonomy and ecology. Metabarcoding couples classic

molecular barcoding with next generation sequencing techniques [24–25] to generate thou-

sands of sequence reads from a single sample [26–27]. These reads correspond to the diversity

and abundance of organisms infecting the host individual [28–30].

In this study, we applied next-generation metabarcoding methods to the most bat-diverse

(per area) biome of Brazil [31]. We focused on a degraded section of Atlantic Forest in Espı́rito

Santo (ES) state where terrestrial mammals appear reduced in abundance as well as in T. cruzi
infection. A fatal case of human T. cruzi (I-IV) and T. dionisii coinfection [32] immediately

predated the bat trypanosome survey by 18S ribosomal RNA deep sequencing in this region.

Methods

Ethical statement

The sampling procedures reported herein were authorized by the Brazilian Institute of the

Environment and Renewable Natural Resources (IBAMA) under license no. 19037–1 (23-05-

2009). Euthanasia and blood collection met guidelines set by the Federal Council of Veterinary

Medicine, Resolution 1000 (11-05-2012), in accordance to Federal Law 11.794/2008. All proce-

dures followed protocols approved by the Oswaldo Cruz Foundation (Fiocruz) Ethics Com-

mittee for Animal Research (L0015-07).

Study area, bat capture and sampling

Bat captures were carried out in two periods of 2015: June (dry season) and November (rainy

season). Mist nets were opened upon sunset for four hours on two consecutive nights at each

study location. A total of 108 bats were captured using ten mist nets (3 x 9 m, 35 mm mesh)

placed along forest edges near banana and coffee crops at three different rural locations in

Guarapari municipality, ES state, southeast Brazil: Rio da Prata (350 m a.s.l.), where a fatal case

of Chagas disease occurred in 2012; Buenos Aires (250 m a.s.l.), where reports of triatomine

invasion have increased in recent years; and Amarelos (at sea level), where triatomines have

not been reported from the domestic zone (based on records by the Zoonosis Control Center,

Guarapari municipality, ES) (S1 Fig).

Taxonomic identification by morphology followed [33] and a maximum of ten individuals

per species (per site) were kept for further sampling, as specified by law. Once anesthetized

with acepromazine (2%) in 9:1 ketamine hydrochloride (10%), these individuals were cleared

of fur in the pectoral region (by scalpel) and sterilized with antiseptic soap and iodinated etha-

nol (70%) for blood withdrawal by cardiac puncture. Within the safety area of a flame, 300 μl

blood was collected into sterile 1.5 ml vials and stabilized in two parts (i.e., 600 μl) 6 M Guani-

dine-HCl, 0.2 M EDTA solution for storage at -20˚C. All bats used in these analyses received a

collection number with the initials of the collector (RM) and were prepared for fluid preserva-

tion. This material will be subsequently deposited at the mammal collection of Museu Nacio-

nal, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

18S rRNA amplification and deep sequencing

DNA was purified from 90 guanidine-EDTA blood lysates in DNeasy mini spin columns (Qia-

gen), with each of nine extraction rounds including one negative control. Purified DNA sam-

ples were then PCR-amplified with primers 5’-TGGGATAACAAAGGAGCA-3’ (forward)
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and 5’-CTGAGACTGTAACCTCAAAGC-3’ (reverse) for 30 cycles of 94˚C (30 s), 55˚C (60 s)

and 72˚C (90 s) to target a trypanosome-specific, ~556 bp region of the 18S rRNA gene as

established in [5]. For a subset of samples, a wider, ~927 bp region (encompassing the ~556 bp

above) was first targeted with external primers 5’-CAGAAACGAAACACGGGAG-3’ (for-

ward) and 5’-CCTACTGGGCAGCTTGGA-3’ (reverse) at equivalent cycling conditions to

form a nested (two-round) PCR amplification procedure following [34]. Sterile water (2x) and

sample-free eluate from prior DNA purification (1x) were used to provide three negative

controls per 20-sample PCR reaction. Amplicons were single-end barcoded [35], purified by

agarose gel electrophoresis (PureLink Quick Gel Extraction Kit, Invitrogen), quantified by

fluorometric assay (Qubit 2.0, Thermo Fisher Scientific) and pooled to equimolar concentra-

tion for multiplexed, paired-end (2 x 300 bp) sequencing on the Illumina MiSeq platform

(Reagent Kit v2).

Species delimitation and phylogenetic analysis

Amplicon sequences were filtered to retain only full-length reads of� 99.9% base call accuracy

by windowed trimming in Sickle [36], verified for quality in FastQC [37] and mapped against

a Trypanosoma spp. reference collection from SILVA v119 [38] using Bowtie 2 [39]. Opera-

tional Taxonomic Unit (OTU) construction proceeded by UPARSE algorithm in USEARCH

[40] and BLAST-based taxonomic assignment in the QIIME environment [41], with run

parameters established during prior in silico testing on trypanosomatid 18S rRNA sequences

from NCBI. Samples were clustered to OTUs de novo at 98% sequence similarity and assigned

to extant species with a confidence threshold of 80%. Unassigned clusters were considered

valid OTUs only if present at> 300 reads in any single sample and present at> 600 reads

across all samples of the dataset.

Following OTU establishment, sequence read pairs from one representative per OTU were

merged and aligned in Clustal W (with manual refinement of misplaced reads). Phylogenies

were inferred in Mega 6 [42] by maximum likelihood (ML) tree construction under Kimura’s

two-parameter model of nucleotide substitution with gamma-distributed variation among

sites (K2 + G). One thousand bootstrap replicates were run to establish nodal support. The 50

18S rRNA reference sequences applied in phylogenetic analyses are listed with accession num-

bers in S1 Table. All sequences have been deposited in the NCBI Sequence Read Archive

(SRA) under accession numbers SRR5451077-SRR5451120.

Results

Bat abundance and diversity

Of the 108 bats captured at Amarelos, Buenos Aires and Rio da Prata study sites, 105 individu-

als represent 16 species in the Phyllostomidae family, and three individuals represent one spe-

cies (Myotis nigricans) in the Vespertilionidae family. Species and their abundances are listed

in Table 1.

Trypanosomatid abundance, diversity and distribution in bats

Standard and/or nested PCR amplified 18S rRNA gene fragments from 34 of 90 (38%) bat

blood samples. The 34 positive samples derived from 13 bat species (of 17 species analysed)

and comprised 14 distinct kinetoplastid OTUs. Five OTUs were assigned to T. cruzi I (OTU

3), T. cruzi III/IV (OTU 5), T. c. marinkellei (OTU 6), T. rangeli lineage D (OTU 10) and T. dio-
nisii (OTU 2). A further seven OTUs did not assign to any known species of the T. cruzi
clade. Phylogenetic analyses placed these seven OTUs (1, 7, 8, 11, 12, 13 and 14) within a
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monophyletic group that includes trypanosome species from bats of the New World. Finally,

two OTUs showed greater homology outside of the T. cruzi clade—OTU 4, similar to a trypa-

nosomatid species found in reptiles, and OTU 9, nearly identical to the eubodonid Bodo salt-
ans (Figs 1 and 2, S1 Table).

Most trypanosome-infected bats presented mixed infections by two to eight OTUs. Only

three positive blood samples (from D. rotundus, G. soricina and R. pumilio) contained a single

OTU (T. dionisii; OTU 2). The bat species A. lituratus, C. perspicillata, D. rotundus and P. reci-
finus presented greatest trypanosome diversity, with seven to eight OTUs per species (Fig 3).

Across the three study sites, trypanosomatid diversity and abundance broadly reflected bat

capture success rather than any feature of the capture environment (Table 1 and Fig 4).

Standard vs. nested PCR sensitivity

Nested PCR detected between one and six more OTUs than standard PCR in eight of ten sam-

ples subjected to both procedures, showing less sensitivity only in samples RM 847 and RM

2009—one and two less OTUs amplified, respectively (Fig 3).

Discussion

In this study, we exposed unforeseen bat trypanosome 18S rRNA diversity from standard cap-

ture effort in Atlantic Forest fragments of Guarapari municipality, ES, southeast Brazil. Our

metabarcoding approach identified a preponderance of coinfection, involving several human-

pathogenic and bat-associated types of the T. cruzi clade, as well as a swathe of yet undescribed

diversity closer to its base. Furthermore, we identified sequences from two divergent kineto-

plastid taxa—one similar to trypanosomatid isolates from reptiles, another matching the non-

parasitic B. saltans.
Unprecedented as they may be as complex co-infections, the diversity of individual kineto-

plastids we report is not unexpected. Every recent trypanosome survey of bats has revealed

Table 1. Bat species captured in Guarapari municipality, ES state, Brazil.

Bat species Capture sites

Amarelos Buenos Aires Rio da Prata

Anoura geoffroyi - - 3

Anoura caudifer 1 - 4

Artibeus fimbriatus - 2 1

Artibeus lituratus 9 3 4

Carollia perspicillata 17 10 12

Desmodus rotundus 9 - 1

Glossophaga soricina 3 - -

Micronycteris sp. 2 - -

Myotis nigricans 2 1 -

Phyllostomus discolor 2 - 2

Phyllostomus hastatus 1 - -

Platyrrhinus lineatus - - 2

Platyrrhinus recifinus - 1 3

Rhinophylla pumilio - - 6

Sturnira lilium 2 1 2

Tonatia bidens 1 - -

Trachops cirrhosus 1 - -

Total 50 18 40

https://doi.org/10.1371/journal.pntd.0005790.t001
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Fig 1. Phylogenetic placement of kinetoplastid OTUs detected in bats of Guarapari municipality, ES

state, Brazil. Tree construction from 18S rRNA followed the maximum likelihood (ML) method under

Kimura’s two-parameter model and gamma-distributed variation among sites (K2 + G). Numbers at nodes

indicate support from 1000 bootstrap replicates. The 14 OTUs clustered into the T. cruzi clade (OTUs 1, 2, 3,

5, 6, 7, 8, 10, 11, 12, 13 and 14), a reptile-associated region (OTU 4) and the B. saltans outgroup (OTU 9).

https://doi.org/10.1371/journal.pntd.0005790.g001
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novel parasite genotypes, host- and/or geographic range [8, 43–50], with particular surges in

discovery following intensified sampling (e.g., transcontinental archival analysis) [8] or inno-

vative approach (e.g., coalescent species delimitation) [43]. The 18S rRNA deep sequencing in

bats here identifies further diversity around the most basal T. cruzi clade trypanosomes of the

Fig 2. Phylogenetic placement of OTU 9 with Bodo saltans among a wider set of trypanosomatid genera. Tree construction from

18S rRNA followed the maximum likelihood (ML) method under Kimura’s two-parameter model and gamma-distributed variation among

sites (K2 + G). Numbers at nodes indicate support from 1000 bootstrap replicates.

https://doi.org/10.1371/journal.pntd.0005790.g002

Fig 3. Heatmap of kinetoplastid OTU distribution among bats captured in Guarapari municipality, ES state, Brazil. Each column

represents the infection profile of one infected bat individual. Cell colour denotes the sequence read intensity attributed to each OTU (left),

increasing from purple (zero reads) through yellow into red. Bat species and sample IDs are given above/below. Asterisks indicate samples

subjected to nested PCR, of which ten also underwent standard PCR (dashed lines). Phylogenetic relationships inferred from 18S rRNA by

maximum likelihood (ML) tree construction are plotted at right.

https://doi.org/10.1371/journal.pntd.0005790.g003
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New World, with seven independent and novel taxonomic units forming sister groups to

T. wauwau and Neobat species found in mormoopid and phyllostomid bats [8]. This expan-

sion of a group related more closely to trypanosomatids detected in Australian marsupials

than to those known from other neotropical mammals’ points to the Chiroptera as an ancient,

perhaps original host order of the T. cruzi clade. Our data reinforce the bat host range of T.

cruzi-clade trypanosomes across frugivorous, nectarivorous, carnivorous, generalist and hema-

tophagous phyllostomid genera (Anoura, Artibeus, Carollia, Desmodus, Glossophaga, Platyrrhi-
nus, Phyllostomus, Rhinophylla, Sturnira, Trachops) and into the (primarily insectivorous)

Vespertilionidae.

Our study provides strong, if circumstantial, evidence for the role of bats as T. cruzi reser-

voirs in ES state. Trypanosoma cruzi I and III/V found in bats of this study correspond to Dis-

crete Typing Units (DTUs) associated with a recent fatal T. cruzi–T. dionisii mixed infection

and occur in Triatoma vitticeps at the study site [32]. These DTUs were not detected in parasi-

tological or serological tests on local rodents and marsupials [32]. Triatoma vitticeps is thought

to have poor stercocarian vector competence [51] and oral transmission via insectivory may be

one of the few ways in which this species propagates disease. The apparent transfer of trypano-

some diversity en masse from bat to human host via ingestion of the vector [32] supports trans-

mission efficiency reported elsewhere in oral outbreaks [52]. Furthermore, given the low

terrestrial mammal abundance in the heavily fragmented region where the samples were col-

lected [32], bats may function here as principal reservoirs of parasites. There is growing evi-

dence of bats’ potential in the maintenance of zoonotic T. cruzi transmission elsewhere in

South America. For example, recent molecular surveys rank bats as top feeding sources of

synanthropic T. cruzi-infected triatomines throughout Colombia, emphasize bats’ bridging of

Fig 4. Kinetoplastid OTU distribution among study locations in Guarapari municipality, ES state, Brazil. Sequence reads

attributed to each OTU are color-coded by proportions obtained from bats captured at Amarelos (magenta), Buenos Aires (blue) and Rio

da Prata (violet) study sites.

https://doi.org/10.1371/journal.pntd.0005790.g004
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domestic and sylvatic transmission cycles in rural areas of Ecuador [45] (where non-volant

hosts have shown limited infection [53–54]) and implicate bats as long-term refuges for para-

sites in areas subject to transmission interventions in Argentina [46]. Evidence of a new T.

cruzi genotype associated with anthropogenic bats (TcBat) is also accumulating from around

the continent [45, 55–58]. TcBat was not, however, observed in this study.

Here, we also provide first report of T. rangeli lineage D in bats, a strain initially isolated

from Phyllomys dasythrix in southern Brazil [59]. As the ecogeographical structure of the

Rhodnius spp. complex is thought to drive lineage divergence in T. rangeli [60–61], an effi-

ciently transmitted salivarian parasite, our detection of lineage D further north and beyond the

Rodentia serves well to confirm theory. Its putative vector R. domesticus [62] occurs through-

out the Atlantic Forest, often in bromeliads [63] that rely on nectarivorous bats (e.g., the spe-

cialist flower-feeder A. caudifer) for pollination [64].

Whilst the expansion of the range of T. rangeli comes as little surprise, the presence of try-

panosomes (OTU 4) with reptilian affinities in our study population is perhaps more intrigu-

ing. Nonetheless, bats and reptiles do commonly co-occur in an arboreal niche. Ecological

host-fitting, involving opportunistic host switching mediated by vectors’ feeding patterns

within an ecological niche, is thought to be a prevailing mode of trypanosome evolution [65].

Reptilian trypanosomes are transmitted by sand fly vectors [65–66], with reports from Amazo-

nia (Viannamyia tuberculate [67]) as well as central Brazil (Evandromyia evandroi [68]).

Shared microhabitat use among bats, reptiles and sand flies potentiates spill-over of the

parasite.

Most trypanosomatid diversity observed in this study was associated with complex mixed

infections, a likely consequence of bats’ gregarious way of life. Tolerance of intracellular patho-

gens in the Chiroptera [21] suggests that multiple subclinical/asymptomatic infections may

well accumulate in these hosts before triggering pathology linked to adaptive immune reac-

tions in other non-volant mammals [69–72]. Frequent mixed infections, often coupled with

low parasitaemia, have impeded bat trypanosome surveys in the past, both in genotyping from

primary samples (e.g., low sensitivity in classic barcoding) [73] and on cultured cells (e.g.,

growth bias) [55, 61, 74]. The data presented here suggest that deep sequencing can resolve

both infection identity and complexity.

Although our study demonstrates the power of the metabarcoding approach, several caveats

are relevant. Sensitivity to contamination and errors from amplification and sequencing are of

foremost concern [27, 75]. We employed a variety of cautionary measures during sample

processing (e.g., flame-sterilized blood withdrawal, multiple negative DNA extraction/amplifi-

cation controls) and in the bioinformatic phase: prior to taxonomic inference, we sent

sequenced amplicons through a severe quality filter (99.9% base call accuracy), absorbed

potential artefactual variance into broad 98% similarity clusters and rejected unassigned OTUs

present at low to moderate depth (< 300/600 reads). Nevertheless, our study would have

benefited from the inclusion of traditional methods (e.g., microscopy, ex and in vivo culture)

for validation and follow-up. Based on subunit rRNA, OTU 9, isolated from a single bat

(D. rotundus), was assigned to B. saltans, considered the closest free-living relative of the para-

sitic trypanosomatids. This observation joins others in unsettling assumptions about putatively

free-living, yet seldom studied protist taxa. For example, 18S rRNA analysis (complemented

by microscopy and serological testing) found an apparent case of babesiosis in China to

involve erythrocytic colpodellids, the closest “free-living” relatives of the parasitic Apicom-

plexa [76].

Regrettably, our field-based study passed over visual and biochemical tests that could have

established the occurrence and viability of OTU 9 in mammalian tissue and we hesitate to

entirely rule out environmental contamination as its source. Bodo saltans belongs to the most
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widely adapted, physiologically tolerant zooflagellates on Earth [77]. It abounds in soil and

water and can also spread in aerosolized forms. As such, this eubodonid may in rare cases hap-

pen upon sampling equipment as well as resist certain antiseptic measures taken in the field.

On account of its exceptional halotolerance [78], for example, B. saltans may withstand some

iodine-based disinfection (as do other protozoans—e.g., Cryptosporidium and Giardia [79]),

though very unlikely as performed in this study (i.e., with ethanol). More importantly, how-

ever, OTU detection does not require a living organism, only its DNA. Severe contamination

from the “dead” DNA of protist flagellates has indeed preoccupied past rRNA sequence analy-

sis (e.g., see methods in [80]). In any case, we suggest additional (environmental) control sam-

ples (e.g., vials opened in the field, topical swabs around the site of cardiac puncture) and

laboratory efforts that distinguish DNA from viable cells (e.g., separation of lysed and non-

lysed cells, RNA/DNA comparisons) to help test for such possibilities in future research.

In this section of Atlantic Forest, where a rural Chagas disease fatality in all likelihood

involved a bat-feeding triatomine [32], our deep sequencing study highlights the role of the

Chiroptera as a reservoir for trypanosomiases. Furthermore, the unprecedented transfer of

T. dionisii to a human from a bat, as well as the presence of reptile-infecting and putatively

non-parasitic kinetoplastids in the same bat population, highlights the role of bats as keystone

species in parasite spill-over events. Many questions remain on how the role of sylvatic hosts

in pathogen dispersal varies in space and time, upon change to environment and at the evolu-

tionary scale. Research into these intricacies of complex zoonosis will require much further

innovation with high-sensitivity, high-throughput tools. We point to the power of next-gener-

ation metabarcoding strategies in studies of trypanosomatid ecology and evolution and

strongly commend their future complementation with non-molecular methods.
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