
362 www.thelancet.com/infection   Vol 13   April 2013

Series

Tuberculosis 2013: 2

Tuberculosis biomarkers discovery: developments, needs, 
and challenges 
Robert S Wallis, Peter Kim, Stewart Cole, Debra Hanna, Bruno B Andrade, Markus Maeurer, Marco Schito, Alimuddin Zumla 

Biomarkers are indispensable to the development of new tuberculosis therapeutics and vaccines. The most robust 
biomarkers measure factors that are essential to the underlying pathological process of the disease being treated, and 
thus can capture the full eff ects of many types of interventions on clinical outcomes in multiple prospective, 
randomised clinical trials. Many Mycobacterium tuberculosis and human biomarkers have been studied over the past 
decade. Present research focuses on three areas: biomarkers predicting treatment effi  cacy and cure of active 
tuberculosis, the reactivation of latent tuberculosis infection, and the induction of protective immune responses by 
vaccination. Many older, non-specifi c markers of infl ammation, when considered in isolation, do not have suffi  cient 
predictive values for clinical use in tuberculosis. Although no new accurate, tuberculosis-specifi c biomarkers have yet 
been discovered, substantial progress has been made in some areas. However, the qualifi cation of biomarkers as a 
surrogate for a clinical endpoint in tuberculosis is very challenging, and, for biomarkers that are non-culture-based, 
impossible to pursue without the availability of well characterised biobanks containing biospecimens from patients 
who have had adequate follow-up to establish long-term treatment outcome. We review progress in tuberculosis 
biomarker development and eff orts being made to harness resources to meet future challenges.

Introduction
Over the past 5 years, increased donor, governmental, 
and corporate investment for the diagnosis, 
treatment, prevention, and control of tuberculosis 
have led to substantial advancement in the develop-
ment of new diagnostics, drugs, and vaccines.1,2 
Accelerated drug development is leading to a new 
portfolio of promising drugs against tuberculosis 
and regimens for drug-susceptible and drug-resistant 
disease, some of which are now under evaluation; 
however, discovery of tuberculosis biomarkers has 
lagged behind. Over the past decade both human 
and Mycobacterium tuberculosis biomarker studies 
have focused on three specifi c areas of research:  
biomarkers predicting treatment effi  cacy and cure of 
active tuberculosis, the reactivation of latent tuber-
culosis infection, and the induction of protective 
immune responses by vaccination. The non-specifi c 
markers of infl ammation such as C-reactive protein, 
when considered in isolation, do not have suffi  cient 
predictive values for clinical use.

Biomarkers are objective characteristics that indicate a 
normal or pathogenic biological process, or a pharma-
cological response to a therapeutic intervention or 
vaccination.3 Thus they can provide information about 
disease status, risk of progression, likelihood of response 
to treatment or of drug toxicity, and protective immunity 
after vaccination (panel 1). Biomarkers can be the basis 
for surrogate endpoints in a clinical trial, replacing 
typical clinical endpoints that describe how a patient 
feels, functions, or survives. The biomarker-endpoint 
association can be shown by trials of antiretroviral 
therapy in which a biomarker (plasma HIV RNA) forms 
the basis of a surrogate endpoint (eg, the proportion of 

patients with undetectable plasma HIV RNA by week 48). 
The value of such an endpoint lies in its use for the 
prediction of clinically meaningful events (eg, 
opportunistic infection or mortality) in short trials with 
few patients, thus accelerating clinical research.

The most robust biomarkers measure factors that are 
essential to the underlying pathological process of the 
disease being treated, and thus can capture the full eff ects 
of many types of interventions on clinical outcomes in 
multiple prospective, randomised clinical trials. This 
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Key messages

• Many Mycobacterium tuberculosis and human biomarkers 
have been studied over the past decade; current research 
is focused on three areas: the cure of active tuberculosis, 
the reactivation of latent tuberculosis infection, and the 
induction of protective immune responses by 
vaccination 

• Although no new accurate, tuberculosis-specifi c 
biomarkers have yet been discovered, substantial progress 
has been made in some areas

• The qualifi cation of biomarkers as a surrogate for a clinical 
endpoint in tuberculosis remains very challenging

• The validation of a putative surrogate endpoint in 
tuberculosis remains extremely challenging, and for 
biomarkers that are non-culture based, requires the 
establishment of well characterised biobanks with 
biospecimens from patients who have had adequate 
follow-up to quantify recurrent disease

• Accelerated tuberculosis biomarker research and 
development is anticipated with several funding agencies 
increasing investment into tuberculosis biomarker research
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proposed highest level of certainty is indicated for month 2 
sputum culture status and interferon γ release (table). 
Prediction of outcomes in natural history (non-
interventional) studies confers an intermediate level of 
certainty. The simple detection of a treatment eff ect not 
yet related to a clinical outcome has the lowest level of 
certainty, because it depends solely on biological 
plausibility for its interpretation. Biomarkers inevitably 
overlap with diagnostics, which, by contrast, inform 
present rather than future health status. Some 
biomarkers can have a dual role (eg, plasma HIV RNA, 
which can be used to both diagnose HIV-1 infection and 
monitor its treatment), whereas others cannot (eg, HIV 
antibody). In some situations, markers that have 
confi rmed prognostic value when used to assess disease 
extent before treatment initiation can nonetheless fail as 
surrogate endpoints when used after treatment has 
started; they therefore cannot capture the eff ects of 
treatment. One such situation is quantitative detection of 
M tuberculosis DNA in sputum, which correlates with 
bacterial burden at the time of tuberculosis diagnosis, 
but, like the acid fast smear, cannot distinguish live from 
dead bacteria as treatment progresses.68 

Several candidate biomarkers derived from 
M tuberculosis or human infl ammatory immune 
responses have been studied over the past decade (table), 
describing the reactivation of latent tuberculosis 
infection, its durable eradication (relapse-free cure) in 
patients with active disease, and the induction of 
protective immune responses by vaccination. 69,70 With the 
exception of month 2 culture status, the size of these 
studies falls far short of research needs. Many older, non-
specifi c markers of infl ammation, when used alone, can 
have insuffi  cient predictive value for clinical use in 
tuberculosis, although a combination of the biomarkers 
highlighted in the table has a theoretical potential to help 
assessment of clinical cure, or risk of relapse or 
reactivation. For example, high levels of neopterin (a 
non-specifi c marker of macrophage activation) that 
persist despite appropriate tuberculosis treatment are 
associated with increased risk of relapse or reactivation, 
but only in people without concomitant HIV-1 infection 
or other complicating medical conditions.42 Although no 
new accurate, tuberculosis-specifi c biomarkers have yet 
been discovered, substantial progress has been made in 
some areas since this subject was last reviewed in this 
journal.71 In this Series paper we discuss this progress. 

Prediction of relapse-free tuberculosis cure
Sputum culture
The introduction of rifampicin and pyrazinamide nearly 
50 years ago transformed tuberculosis treatment, 
allowing the necessary duration of treatment to be 
shortened from 18 months to 6 months without an 
increase in the rate of recurrence due to relapse. 
Tuberculosis treatment is poised for a second such 
transformation,4 with development underway of several 

Panel 1: Predictive roles for tuberculosis biomarkers

Prediction of tuberculosis cure
• Emergence of resistance
• Recurrence due to relapse
• Drug toxicity

Prediction of tuberculosis reactivation
• Progression from primary infection to disease
• Reactivation of latent infection
• Eradication of latent infection

Prediction of protective immunity
• Vaccine effi  cacy
• Adjunctive immunotherapy effi  cacy
• Recurrence due to reinfection

Associated outcome Proposed 
level of 
certainty*

Month 2 culture status Required duration of treatment4

Relapse5

III
III

Mycobacterium tuberculosis  DNA 
(GeneXpert MTB/RIF assay)

Treatment eff ect6

Extent of disease at start of treatment7,8

I
I

M tuberculosis RNA Treatment eff ect9–11 I

Liquid culture time to positive in 
automated liquid culture

Treatment failure12

Treatment eff ect13–16

Relapse17

I
I
I

Early bactericidal activity, 7–14 days Inability to distinguish curative vs non-curative treatment18

Inability to distinguish 6 vs 18 month regimens19

Inability to detect curative eff ect of linezolid20

No role†
No role†
No role†

Serial colony counts, 1–2 months Treatment eff ect
Correlation with month 2 status21,22

I
I

PET/CT imaging Treatment eff ect23 I

Sputum Ag85 Treatment failure and relapse16–18 II

Antiphospholipid antibody Treatment eff ect24 I

Urine lipoarabinomannan Treatment eff ect25 I

Urine tuberculosis DNA Treatment eff ect26 I

Antialanine dehydrogenase 
antibody

Treatment failure27 II

Volatile organic compounds Active tuberculosis28–30 I

Interferon γ release assay (ELISPOT 
or whole blood)

Latent infection treatment (no eff ect)31,32

Latent infection eff ect33

Treatment failure34

Subsequent active tuberculosis 35–37

No role†
I
I
III

Whole blood bactericidal activity Treatment eff ect38,39

Correlation with month 2 status40

II
II

Neopterin Treatment eff ect41

Relapse42

II
II

Soluble intercellular adhesion 
molecule-1

Treatment eff ect43 I

Soluble interleukin-2R Treatment eff ect44 I

Soluble tumour necrosis factor 
receptor, granzyme B

Extent of disease at start of treatment45 I

Sputum interferon γ Treatment eff ect46 I

C-reactive protein Treatment eff ect, death47–49 I

Soluble urokinase plasminogen 
activator receptor 

Death50

Correlation with month 2 status51

II
II

(Continues on next page)
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promising drugs with entirely novel mechanisms of 
action. A report qualifying month 2 sputum culture 
status as a biomarker for relapse has helped with early 
testing of new regimens containing these compounds.72 
However, that analysis, which showed that changes in 
treatment that aff ected relapse risk were highly likely to 
also aff ect month 2 culture status (p<0∙00001), did not 
directly inform the necessary duration of these new 
regimens—a potential stumbling block if they are to be 
effi  ciently made available to patients in greatest need. 

No full synthesis has been done for the role of month 2 
culture status as a biomarker predictor of required 
duration of treatment, although an analysis in which 
regimens were classifi ed according to inclusion of 
rifampin and pyrazinamide suggested the problem could 
be addressed with modelling.4 Researchers investigated 
the connection between relapse risk, treatment duration, 
and month 2 culture status using meta-regression 
analysis (Wallis RS, unpublished). The model built from 
this study indicated an upper 80% prediction limit for 
relapse of less than 10% for a hypothetical phase 3 trial 
with 680 patients per group for a new regimen with a 
month 2 culture positive rate of 1%. The fi nding was 
proposed to support accelerated regulatory approval 
of new regimens for patients with drug-resistant 
tuberculosis.

By contrast with the month 2 endpoint, trials of early 
bactericidal activity (EBA) of 1–2 weeks in duration have 
repeatedly failed to capture important diff erences in 
clinical outcomes between treatment groups in 
prospective, randomised controlled trials, because they 
cannot distinguish between eff ective versus ineff ective 

treatments (rifampicin plus isoniazid vs isoniazid alone) 
or regimens requiring 6 months versus 18 months for 
cure .18,19 The absence of sustained EBA of linezolid 
contrasts starkly with its ability to cure extensively drug-
resistant tuberculosis.20,73 The discrepancy does not seem 
to be due to variability in measuring sputum colony 
counts, because independent EBA trials of a similar 
design have yielded similar results.74 Instead, EBA seems 
mainly to measure eff ects of treatment on extracellular 
myco bacteria in large lung cavities, which seem to play 
only a small part in relapse. 

Automated liquid culture systems such as mycobacterial 
growth indicator tube are increasingly used worldwide for 
tuberculosis diagnosis. These standardised systems are 
attractive platforms for biomarker development, 
particularly because they routinely report the time interval 
needed for detection of growth—a variable that is strongly 
inversely correlated with inoculum size when tested with 
laboratory stock cultures (Pearson’s correlation coeffi  cient 
-0∙970; p=0∙006).75 The correlation is reduced but remains 
signifi cant when tested with sputum samples obtained 
during tuberculosis treatme nt.13–15 This correlation 
increases the feasibility of quantitative modelling of 
treatment eff ects in large clinical trials. Research suggests 
that the most informative time for this modelling will be 
during the second month of treatment.19 Questions 
remain about the optimum methods for specimen 
collection (pooled over 12–16 h vs spot) and processing 
(decon tamination with sodium hydroxide variably 
decreases mycobacterial viability). 

Other culture-based methods have been described  
with resuscitation-promoting factors to help with the 
detection of otherwise non-culturable mycobacteria that 
become more frequent in sputum as treatment 
progres ses—eg, Mukamolova and colleagues76 used 
resuscitation-promoting factors in a preliminary study. 
The prognostic signifi cance of such cultures is unknown. 
Further studies of the ability to resuscitate or recognise 
live but dormant non-replicating bacilli, and mechanisms 
behind relapse, could lead to improvements in existing 
culture-based detection systems, making them more 
powerful as possible intermediate endpoints in 
tuberculosis drug trials.

Molecular alternatives to culture 
PCR-based methods for quantitation of viable mycobacteria 
are feasible. The GeneXpert MTB/RIF assay (Cepheid, 
Sunnyvale, CA, USA) was developed as an automated, 
highly sensitive, and rapid molecular diagnostic for 
pulmonary tuberculosis.77,78 PCR amplifi cation with real-
time detection using molecular beacon probes to detect 
M tuberculosis DNA is used in the assay. As such, the assay 
amplifi es DNA from both live and dead bacteria in clinical 
sputum samples. The test indirectly gives quantitative 
measures of M tuberculosis DNA as cycle thresholds of 
PCR amplifi cation, showing a high degree of accuracy and 
reproducibility in serially diluted laboratory specimens 

Associated outcome Proposed 
level of 
certainty†

(Continued from prevous page)

Natural killer T cells Extent of disease at start of treatment28 I

Mycobacterial growth inhibition 
assays

Vaccine eff ect52,53

Revaccination (no eff ect)54

Correlation with other markers52,53,55–59

II
II
II

Interleukin 18 Subsequent active tuberculosis60 II

Natural killer and CD4 T cells Subsequent active tuberculosis60 II

Bcl2 Subsequent active tuberculosis60 II

Whole blood interferon γ release 
assay

Subsequent active tuberculosis35,61

Diagnosis of subclinical tuberculosis36

II
II

Transcriptomics Diagnosis of active tuberculosis vs latent infection62,63

Treatment eff ect62,87

I
I

Proteomics Diagnosis of active tuberculosis vs other chronic 
infl ammatory diseases65

I
I

Metabolomics Diagnosis of active tuberculosis vs latent disease66 I

microRNA Diagnosis of active tuberculosis vs latent disease67 I

ELISPOT=enzyme-linked immunosorbent spot assay. *Data do not support a role as biomarker. †III=high certainty, 
capturing differences in clinical outcomes across treatment groups in prospective randomised trials; II=intermediate 
certainty, predicting differences in outcomes in patients in non-interventional studies; and  I=low certainty, biological 
plausibility without association with clinical outcome. 

Table: Candidate biomarkers in tuberculosis
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and pretreatment sputum sam ples.7 Studies are in 
progress to establish whether viable and non-viable 
M tuberculosis bacilli can be distinguished by pretreatment 
with propidium monoazide, which enters damaged 
mycobacteria, covalently binding DNA after light exposure, 
and thus preventing DNA amplifi cation.6 Other, manual 
methods to measure viable mycobacteria in sputum based 
on amplifi cation of RNA have been described that generally 
correlate well with colony-forming unit counts during 
early treatment.9–11

Serological alternatives
Lipoarabinomannan is a major constituent of the 
mycobacterial cell wall that can be detected in a patient’s 
urine by commercial ELISA. Although the sensitivity of 
this assay is adequate for tuberculosis diagnosis only in 
patients with far-advanced HIV infection, its performance 
might be improved by combination with DNA detection 
or by modifi cation of test var iables.79,80 Results of a study 
by Wood and colleagues 25 showed that concentrations of 
lipoarabinomannan decreased slowly, after 1–2 months 
of combined tuberculosis and HIV treatment, in a small 
set of patients with positive urine lipoarabinomannan 
results at start of treatment. Further studies of 
lipoarabinomannan as a candidate biomarker might be 
of interest, especially since new assays with lower 
detection thresholds could make the approach more 
widely ap plicable.81 Ethambutol acts by blocking 
lipoarabinomannan synthesis,82 and so more studies will 
be needed to establish whether its eff ects are 
overestimated by the monitoring of lipoarabinomannan. 

Imaging
Imaging of lung lesions during treatment by combined 
PET and CT can infl uence early tuberculosis drug and 
regimen development and increase the accuracy of 
predictions of relapse in individual patients. Combined 
imaging allows the superposition of two types of data: 
structural data from CT (which diff erentiate lesions 
according to x-ray densities), and functional data from 
PET (which, when undertaken with 18fl uorodeoxyglucose 
[¹⁸F-FDG], detect metabolic activity of mammalian 
infl ammatory cells). Studies in the rabbit tuberculosis 
model show distinct types of lesions with diff erent 
natural histories and diff erent early responses to 
che motherapy.83 ¹⁸F-FDG intensity reaches a maximum 
in the rabbit model 5 weeks after infection, but stabilises 
or decreases during the next month as the infection 
reaches a chronic stage. Individual lesions in the same 
animal have very diff erent fates at this stage, ranging 
from complete resolution to striking progression. 
Chemotherapy with either isoniazid or rifampicin 
reduces ¹⁸F-FDG uptake and, more slowly, CT lesion 
density and volume. Findings from one study showed 
reduced ¹⁸F-FDG uptake after 1 month of tuberculosis 
treatment in 19 of 2 1 patients.23 Of the two PET non-
responders, one had delayed sputum culture conversion 

(still positive at 3 months), and the other was later 
shown to have lymphoma. Clinical studies are underway 
to examine the link between changes in PET and CT 
scans and clinical outcomes during tuberculosis 
treatment. Despite the high costs associated with this 
approach, it could be an indicator of drug activity and an 
aid to dose and regimen selection in early drug trials, 
and a predictor of relapse risk at the end of treatment in 
appropriate settings. 

Gene expression profi les
Changes in tuberculosis-specifi c gene and protein 
expression profi les (transcriptomics) could be of value in 
assessment of the early response to tuberculosi s 
treatment.84–86 A study by Berry and colleagues62 showed 
that a multitranscript interferon-driven neutrophil 
signature diff erentiated patients with tuberculosis from 
controls, correlated with radiographic extent of disease, 
and diminished in seven patients after 2 months of 
ultimately successful tuberculos is treatment. A similar 
study assessed interferon-driven signatures earlier 
during treatment in 29 patients.87 Changes in gene 
expression levels were readily detectable after 2 weeks of 
treatment (fi gure).

A study of 27 patients with pulmonary tuberculosis 
assayed at diagnosis and during treatment showed 
signifi cant changes in expression of more than 4000 genes 
in blood during treatment.88 Rapid, large-scale changes 
were detected, with downregulated expression of 
1261 genes within the fi rst week, including infl ammatory 
markers such as complement components C1q and C2. 
Subsequent changes include B-cell signalling pathways. 
These results indicate the possibility that measurement 
of host factors such as gene expression profi les during 
the fi rst few weeks of treatment could be suitable for 
biomarkers of treatment effi  cacy and would have benefi ts 
for early-phase and mid-phase clinical trials, providing 
more information about clinical outcome than would 
quantitative sputum microbiology. Further studies are 
warranted to assess the prognostic signifi cance of these 
signatures for tuberculosis reactivation and cure. 

Prediction of reactivation of latent infection
Interferon γ release
In most instances, infection with M tuberculosis is 
contained by the host immune response, preventing the 
progression to active disease. Tests for latent tuberculosis 
infection such as the tuberculin skin test and tuberculosis 
antigen-stimulated interferon γ release assay detect 
sensitisation to mycobacterial antigens, but do not 
diff erentiate between persistent and resolved latent 
infection. For example, two studies of latent infection 
treatment with isoniazid did not show a consistent eff ect 
on early secretory antigenic target-6 and culture fi ltrate 
protein-10-induced interferon γ responses with whole 
blood culture or enzyme-linked immunoa bsorbent 
spot.31,32 As a result, interferon γ release assays cannot 
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specifi cally identify those with highest risk o f 
reactivation.89,90 In one meta-analysis, the predictive value 
of a positive interferon γ release assay for subsequent 
progression to active tuberculosis increased to 8–15% if 
testing was not restricted to individuals with a positive 
tuber culin skin test.91 Findings from some studies have 
shown substantial increases in interferon γ release 
shortly before the diagnosis of act ive tuberculosis,35–37 
suggesting that a higher threshold for positivity might 
improve its predictive value, at least in people who are 
not overtly immunocompromised.

Interleukin 18
The largest prospective study of individuals at high 
tuberculosis risk (defi ned as recent household contacts 
of active tuberculosis cases) who were not overtly 
immunocompromised identifi ed only 26 incident 
tuberculosis cases in 2348 contacts over 4312 person-
y ears of follow-up.60 Most cases occurred within the fi rst 
year after study entry. Samples of plasma and viable cells 
were available for analysis to identify predictors of 
disease progression in more than half of these cases. 
Increased concentrations of interleukin 18, a marker of 
innate immune activation, diff erentiated those who 
developed tuberculosis from controls, as did signifi cantly 
higher expression of chemokine (c-c motif) receptor 
(CCR7) and lower expression of Bcl2 in RNA extracted 
from blood. Interleukin 18 concentrations are increased 
in patients with active tuberculosis, in proportion to 
radiographic extent of disease.92 In tuberculosis and 
other chronic infl ammatory diseases, interleukin 18 
supports T-cell activation and interferon γ production. 
CC chemokines have an important role in the homing of 
lymphocytes to sites of infl ammation, and are likely to 

be involved in the early responses to M tuberculosis 
infection. These fi ndings support the notion that latent 
infection reactivation might, at least in some cases, be a 
relatively slow, gradual process, in which measurable 
changes in the immune system precede the development 
of active disease by a long interval. The signifi cance of 
reduced expression of Bcl2, an inhibitor of apoptosis, is 
uncertain, since antigen-driven T-cell apoptosis is 
increased in tuberculosis, both in blood and at the  site of 
infection.64,93 Diff erential Bcl2 expression in monocytes 
and T cells might account for the contrary fi ndings at 
gene and cellular levels. 

These fi ndings emphasise the importance of innate 
immunity in defences against tuberculosis and identify a 
set of biomarkers indicating potential tuberculosis risk. 
The fi ndings also show the logistical challenges faced in 
the conduct of prospective, longitudinal studies of the 
natural history of M tuberculosis infection. Most such 
studies have been hampered by identifi cation of relatively 
more coprevalent cases than incident cases, even in high-
risk individuals in tuberculosis households. Such 
coprevalent cases, sometimes termed subclinical 
tuberculosis, are uncovered by careful history, chest 
radiography, and sputum culture using liquid medium; 
patients generally have reduced symptoms and limited 
extent of disease compared with index cases.94 Subclinical 
cases occur in patients both w ith and without HIV.94–97 
The extent to which these cases represent a stable disease 
phenotype is uncertain, particularly in people with HIV 
with low CD4 T-cell counts. Data from the pre-
chemotherapy era in the USA indicate a distinct natural 
history in tuberculosis cases with minimal radiographic 
extent of disease, with two-thirds of individuals showing 
apparent spontaneous resolution of the illness (so-called 

Figure: Changes in gene expression profi les during early tuberculosis treatment 
(A) Profi le plot of all detectable transcripts (15 837), obtained without any fi ltering, in the treated patients with active tuberculosis in the South Africa 2011 cohort. Gene expression changes after only 
2 weeks of treatment. Normalised expression at 0 months. (B) Temporal molecular response showing the quantitative response to antituberculosis treatment in a 664-gene transcript using linear mixed 
models (dots represent mean and bars show 95% CI). Reproduced from Bloom and colleagues,87 by permission of PLoS One.
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arrested tuberculosis) within 3 years.98 Nonetheless, 
using this population is an attractive alternative for 
researchers exploring the identifi cation of early bio-
markers of tuberculosis risk, because these patients 
represent an intermediate stage between the two 
traditional categories of latent and active infection that is 
amenable to study by host signatures. The study of 
subclinical cases to inform early tuberculosis reactivation 
is further supported by serological studies indicating 
diff erential recognition of stage-specifi c mycobacterial 
antigens  in subclinical cases.99–102 

MicroRNA and metabolomic profi les
Patient classifi cation by gene expression or other profi les 
is inevitably imperfect. For example, the study by Berry 
and colleagues62 of transcriptional tuberculosis signatures 
misclassifi ed about 10% each of cases and controls. The 
misclassifi ed tuberculosis cases had minimally abnormal 
chest radiographs and minimally abnormal gene 
expression profi les. A reasonable question would be 
whether the misclassifi ed controls represent early events 
in the process of reactivation of latent infection. A study 
of microRNA profi les in 29 patients with tuberculosis, 
29 people with latent infection, and 18 controls identifi ed 
17 micro-RNAs that were diff erentially expressed among 
the groups.67 Two individuals with latent infection 
showed profi les similar to those with tuberculosis. 

Similarly, Weiner III and colleagues66 explored the 
metabolomic profi les of more than 400 small molecules 
in serum of 46 people with latent infection with no 
clinical signs of tuberculosis and 44 patients with clinical 
signs of pulmonary tuberculosis. The investigators noted 
increased activity of indoleamine 2,3-dioxygenase 1, 
decreased phospholipase activity, increased abundance 
of adenosine metabolism products, and indicators of 
fi brotic lesions in patients with active disease compared 
with those with latent infection. They recorded that 
20 metabolites were suffi  cient for robust but imperfect 
discrimination of patients with tuberculosis from healthy 
individuals. Furthermore, researchers have found that 
systemic concentrations of haemeoxygenase-1 (HO-1) 
were increased in individuals with active pulmonary and 
extrapulmonary tuberculosis (BB Andrade, unpublished). 
HO-1 concentrations eff ectively dis criminated active 
from latent tuberculosis and there was a marked 
reduction in HO-1 levels in active tuberculosis cases after 
antituberculous therapy, but not in those for whom 
treatment was unsuccessful. 

The misclassifi ed latent infection cases in these series 
could simply be due to test error, but they could represent 
early events in the reactivation process. Findings from 
further cross-sectional studies of these markers in people 
with latent infection, subclinical tuberculosis, and overt 
active disease will help to assess their potential value in 
prediction of both tuberculosis cure and reactivation; 
prospective longitudinal trials will ultimately be needed 
for their qualifi cation. 

Prediction of protective immunity induction by 
vaccination
Much data have been published on the role of CD8+ and 
CD4+ adaptive T-cell responses directed against 
M tuberculosis.103 Advances in response analyses showed 
that immune responses in infections are impaired and 
T cells express specifi c exhaustion markers, including 
PD-1 (programmed cell death protein 1) or TIM-3 (T-cell 
immunoglobulin and mucin domain-c ontaining 
molecule 3).104 By contrast with the generally accepted 
model, TIM-3+ T cells show stronger immune eff ector 
functions, defi ned by Th1 and Th22 cytokine prod-
uction, cytotoxic T-lymphocyte function, and reduced 
M tuberculosis repl ication in macrophages.105 Decreased 
cellular immune responses in patients with tuberculosis 
have also been associated with altered SOCS3 (suppressor 
of cytokine signalling 3) expression. SOCS3 regulates 
cytokine signalling and aff ects T-cell polarisation. SOCS3 
is increased in M tuberculosis-specifi c T cells; it could 
therefore represent an exhaustion biomarker,106 or 
enhance expansion of interleukin-17-producing immune 
cells, or both.107 Perhaps the most surprising fi nding was 
identifi cation of the antimicrobial activity of mucosal-
associated invariant T cells. In individuals without active 
disease they express as the invariant TCRα (T cell 
receptor α) chain VA7.2-Ja33, are restricted by the MR1 
(MHC class 1 related) antigen, can display M tuberculosis-
spec ifi c eff ector functions,108 and are enriched in the lung 
(compared with the peripheral circulation in patients 
w ith active tuberculosis).109

16 new tuberculosis vaccine candidates have been 
clinically trialled in the past decade.110 In most instances, 
their development has proceeded by evaluation of 
protective effi  cacy in an animal model, and then 
assessment of immunogenicity in people by measure-
ment of T-cell frequencies and cytokine profi les. 
However, studies showing the poor correlation of these 
measures (including polyfunctional T-cell responses) 
with protection against tubercul osis after BCG 
vaccination111 have focused attention on the need for 
other indicators of vaccine-induced protection. 

Bactericidal or viral neutralisation assays have eased 
development of all other licensed vaccines. Several such 
assays have been described for M tuberculosis with 
mononuclear c ell or whole blood culture.52,55,112,113 
Immune control of growth in these assays is inferior in 
people who are tuberculin-skin-test-negative and in 
young children enhanced by BCG vaccination or 
vitamin D; impaired by chemokine receptor blockade, 
T-cell depletions, or HIV infection; and restore d by 
antiretroviral therapy.52,53,55–59,113–16 These fi ndings indicate 
their plausibility as correlates of protection. Fletcher 
and col leagues54 examined the ability of whole blood and 
mononuclear cell growth inhibition assays to detect 
eff ects of BCG vaccination in 30 British adults with or 
without a previous history of BCG vaccination. They 
used time to detection in mycobacterial growth indicator 
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tube rather than colony-forming unit counting to assess 
mycobacterial viability in assays. Volunteers were 
followed up for 6 months to assess the reproducibility of 
growth inhibition and to examine the evolution of 
responses over time. A single BCG vaccination is 
protective in this population, particularly against severe 
forms of tuberculosis,117 whereas  repeated vaccination is 
not.118–122 The study results showed that both assays were 
suffi  ciently reproducible, and investigators noted 
incremental vaccine-induced growth inhibition only in 
patients without a previous history of BCG vaccination. 
Furthermore, although T-cell frequencies increased 
after vaccination, they did not correlate with growth 
inhibitory activity. Further studies of these assays after 
vaccination in people in tuberculosis-endemic regions 
are warranted to assess the potential correlation with 
clinical outcomes. 

Future of tuberculosis biomarker research
Whereas several possible biomarkers of treatment 
response, cure, and relapse have been proposed from 
small, geographically restricted patient cohorts, none 
has been validated, largely due to unavailability of well 
characterised biobanks  for biomarker research.  What 
is required are central biobanks (collections of bio-
specimens—eg, cells, tissue, blood, serum, sputa, 
DNA—with associated clinical and laboratory data and 
information from large cohorts of patients who have 
had adequate follow-up through to cure, relapse, or 
recurrent disease). Availability of these biobanks will 
allow a com prehensive set of analyses to be done using 
routine and advanced techniques. This will enable 
better under standing of tuberculosis pathogenesis 

(panel 2) and identifi cation and evaluation of new 
biomarkers. Thus, the main barrier to the development 
of biomarkers into validated surrogates of treatment 
response has historically been insuffi  cient funding 
rather than scientifi c knowledge. Further funder 
investments into research that overcome barriers to the 
development of novel tuberculosis biomarkers and to 
building biobanks for providing well characterised 
samples for the validation of these biomarkers are 
needed.123 Several funding agencies have increased 
investment into biomarker studies, including the US 
National Institutes of Allergy and Infectious Diseases 
(NIAID), US Food and Drug Administration (FDA), 
British Medical Research Council, European Developing 
Countries Clinical Trials Partnership, and Bill & Melinda 
Gates Foundation. Ten new projects funded by the Gates 
Foundation include several new areas of research, such 
as studies of M tuberculosis small RNAs,124 disease-
specifi c cytokine profi les,125–127 and analysis of 
mycobacterial constituents released by exosomes of 
cells in infected tissues.128 The NIAID has also published 
an initiative to expand fundamental understanding of 
latent tuberculosis infection, especially in the setting of 
HIV co-infection.129,130

An optimum setting in which putative surrogates of 
treatment response could be eff ectively assessed is 
within clinical drug trials or in non-interventional 
observational cohorts in which participants are well 
characterised and followed in a rigorous and 
standardised way. Cross-sectional studies of close 
tuberculosis contacts without HIV with minimally 
symptomatic subclinical disease could provide 
important information about candidate biomarkers, and 
inform the biological basis and stability of this 
phenotype. Ideally, such prospective studies, inter-
ventional or not, would have the following components: 
detailed clinical, radiographical, and micro biological 
participant characteristics; strict observation of 
treatment dosing; culture confi rmation of tuberculosis 
at baseline and all treatment and follow-up timepoints; 
and, most importantly, systematic follow-up of study 
participants for at least 6–12 months after treatment 
completion. Additionally, clinical trials provide 
randomisation or assignment to investigational or 
standard-of-care antituberculosis regimens allowing 
comparisons of two therapies with diff erent effi  cacies, 
and as such are ideally suited to establishment of 
surrogate capabilities of a biomarker. 

As investment and activity in biomarker research 
increases, rapid communication of crucial fi ndings and 
coordination of broad research activities are essential to 
avoid duplication of eff orts, maximise resources, and 
accelerate the translation of basic discovery to clinical 
applications. Eff orts are underway to establish collaborative 
and harmonised prospective cohort studies in several 
high-prevalence countries. Proper cooperation and 
collaboration will allow the creation of an international 

Panel 2: Priorities for biomarker research

• Increase research funding for accelerating biomarker 
research

• Maximise and optimise biomarker research through 
coordination and increased collaborations between basic 
(fundamental) scientists, clinical triallists, pharmaceutical 
industry, and end users

• Establish central biobanks of well characterised 
biospecimens from well defi ned patient and contact cohorts 
with long-term follow-up 

• Delineate the specifi c mechanisms of protective immune 
networks between people (host) and Mycobacterium 
tuberculosis (pathogen)

• Identify specifi c single biomarkers or combinations of 
biomarkers that can distinguish latent tuberculosis infection 
versus subclinical versus active tuberculosis disease; identify 
those who are at highest risk for progression to disease; 
predict treatment effi  cacy and cure; predict reactivation of 
tuberculosis; and predict protective immunity

• Validate new biomarker discoveries and translate new 
biomarker discoveries into functional point-of-care use
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network of coordinated prospective cohorts that can not 
only facilitate biomarker discovery, but also allow the 
validation of candidate markers between diff erent 
epidemiological settings and populations with samples 
and data collected in a standardised way. Any analytical 
technique used to measure a biomarker will probably need 
adaptation for routine clinical use, because the biomarker 
might prove to be useful for both clinical trials and clinical 
monitoring. Additionally, as the number of potential 
biomarkers grows, understanding the profi le of desired 
characteristics (ie, target product profi le) for each of the 
three biomarker research areas will be important. 

In an eff ort to establish a tuberculosis biobank to be 
used in biomarker evaluation, the Global TB Alliance, the 
AIDS Clinical Trials Group, and the TB Trials Consortium 
have joined together to create the Consortium for TB 
Biomarkers (CTB2) whose goal is to collect specimens of 
sputum, serum, urine, and other tissue from people with 
culture-c onfi rmed pulmonary tuberculosis.128 The project 
is led by the TB Alliance and funded by the US FDA and 
NIAID. The biobank is the fi rst federally funded biobank 
of its type, and is expected to gather a core set of biological 
samples from an estimated 1000 patients with culture-
confi rmed pulmonary tuberculosis enrolled in clinical 
trials and observational cohort studies done by the three 
tuberculosis networks and other partners. Representatives 
from participating networks, partners, FDA, and the 
NIAID have formed a governing body to determine 
procedures and criteria for access to the specimens and 
data for biomarker development. 

Any analytical technique used to measure the 
biomarkers should be adaptable for routine clinical use, 
because the biomarker might prove to be useful for both 
clinical trials and clinical monitoring. The qualifi cation 
of a putative surrogate endpoint in tuberculosis is very 
challenging, and, for biomarkers that are non-culture-
based, impossible to pursue without the availability of 
well characterised biobanks with bio specimens from 
patients who have had adequate follow-up to quantify 
recurrent disease. Shortfalls of ongoing biomarker 
studies have included: poor defi nitions for active 
tuberculosis, latent tuberculosis, and relapse; small 

sample numbers in cohorts studied; variations between 
study cohorts, and geographical location of study; poor 
quality-control of standard laboratory techniques and 
platforms, and their reproducibility; and heterogeneous 
datasets. We have an opportunity to coordinate the 
qualifi cation of new tuberculosis biomarkers with the 
confi rmatory phase 3 trials of new tuberculosis drugs; 
we should do our utmost to make this eff ort succeed.
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