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Variation in Wolbachia effects on Aedes mosquitoes
as a determinant of invasiveness and vectorial
capacity
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Wolbachia has been introduced into Aedes aegypti mosquitoes to control the spread of

arboviruses, such as dengue, chikungunya and Zika. Studies showed that certain Wolbachia

strains (such as wMel) reduce replication of dengue viruses in the laboratory, prompting the

release of mosquitoes carrying the bacterium into the field, where vectorial capacity can be

realistically assessed in relation to native non-carriers. Here we apply a new analysis to two

published datasets, and show that wMel increases the mean and the variance in Ae. aegypti

susceptibility to dengue infection when introgressed into Brazil and Vietnam genetic back-

grounds. In the absence of other processes, higher mean susceptibility should lead to

enhanced viral transmission. The increase in variance, however, widens the basis for selection

imposed by unexplored natural forces, retaining the potential for reducing transmission

overall.
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A edes mosquitoes are competent vectors for several viral
diseases of humans. Wolbachia is a symbiont bacterium
of arthropods1, shown to manipulate the reproduction of

its hosts to facilitate invasion of carriers, and to modify host
responses to viral infections, notably in Ae. aegypti2,3, indicating a
potential role in the control of viral diseases4,5.

Wolbachia is commonly transmitted vertically from mother to
offspring. Horizontal transmission between host populations or
species is rare, but when successful the spread of the symbiont
may be facilitated by multiple mechanisms. First, there are spe-
cific forms of reproductive manipulation, such as cytoplasmic
incompatibility between sperm of male carriers and eggs of
female non-carriers, which result in unviable crosses, suppressing
non-carrier populations and, consequently, conferring competi-
tive advantage to Wolbachia carriers6. Second, Wolbachia has
been shown to confer a degree of protection against viral
pathogens7,8, which facilitates its establishment in host popula-
tions when such pathogens are present9. Third, substantial inter-
individual variation in this effect has been found10, which further
increases Wolbachia invasiveness through a process of cohort
selection11. Cohort selection (also known as survival bias) occurs
whenever there is variation and selection, irrespective of whether
the trait under study is heritable. In the case of susceptibility to
infection (i.e., probability of infection per unit of pathogen
challenge), individuals with higher susceptibility are more likely
to be affected and therefore tend to be removed from the popu-
lation at risk sooner than those with lower susceptibility, leading
to a decrease in mean susceptibility among survivors as a cohort
ages. Thus, by merely increasing variation in host susceptibility to
pathogens, Wolbachia increases the resilience of its carrier
populations and facilitates its own invasion.

Due to the second and third mechanisms above, Wolbachia
invasion implies the replacement of a host population by another
whose susceptibility to the pathogen under study is lower. These
findings support the notion that Wolbachia carriage by insect
vectors of human pathogens, such as mosquitoes, might be
manipulated to reduce disease transmission5,12.

The mosquito Ae. aegypti, primary vector of dengue, is not a
natural host of Wolbachia. Transinfection of various strains has
been performed in the laboratory and shown to reduce vector
competence, on average, when mosquitoes were challenged with
high viral doses. This has led to field releases of wMel-
transinfected Ae. aegypti in 10 countries—Australia, Brazil,
Colombia, Indonesia, Sri Lanka, India, Vietnam, Kiribati, Fiji and
Vanuatu—to evaluate its effectiveness in reducing dengue and
other mosquito-borne diseases in human populations13.

Here we explore the effects of Wolbachia on the susceptibility
distributions of two Ae. aegypti populations—Rio de Janeiro,
Brazil, and Ho Chi Minh City, Vietnam—to dengue viruses. The
wide variability in exposure doses naturally experienced by
mosquitoes prompted the adoption of dose-response experi-
mental designs4,14 for the inference of distributions of Wolbachia
effects, which were then inserted in high-dimensional mathe-
matical models to investigate the conditions for Wolbachia
invasion and its impact on dengue transmission. We find that the
symbiont increases the mean and the variance in Ae. aegypti
susceptibility to dengue infection. While higher mean suscept-
ibility alone should lead to enhanced viral transmission, the
increase in variance widens the basis for selection imposed by
unexplored natural forces, such as mosquito pathogens, which
need to be catalogued before net effects can be predicted.

Results
Susceptibility distributions of mosquitoes to dengue viruses.
Figure 1 shows the estimation of susceptibility distributions for

populations of Ae. aegypti (Wolb− denoting non-carriers of Wol-
bachia, and Wolb+ the carriers). Rio de Janeiro mosquitoes were
challenged by injection with dilutions of a serotype 1 virus previously
isolated from a patient and amplified, whereas in Ho Chi Minh City
the adopted procedure was feeding on viremic blood from multiple
infected patients. Either case provided suitable data for fitting dose-
response models15,16 as described in Methods section. Figure 1a, b
shows the data and model fittings, which resulted in the susceptibility
distributions plotted in Fig. 1c, d. Models with gamma-distributed
susceptibilities performed better than their homogeneous counter-
parts, according to model selection criteria, except in the case of
Brazilian Wolb− challenged by injection. Estimated parameters are
shown in Table 1 and model selection was performed by deviance
information criterion (DIC) (Supplementary Tables 1 and 2). Wol-
bachia consistently increased the mean susceptibility of mosquitoes to
dengue viruses (by average factors of 6.9 and 1.5 in the experiments
of Brazil and Vietnam, respectively), and in addition it increased the
variance-to-mean ratio in the trait (to 20.83 in Brazil, and 7.2 in
Vietnam). The remainder of this paper addresses the implications of
these findings on the prospects for Wolbachia to invade Ae. aegypti
populations and eliminate dengue as a human disease.

Wolbachia invasion dynamics. The first reports of Wolbachia
interfering with host susceptibility to pathogens are dated no more
than a decade ago7,8, and association studies suggest that general
mechanisms modify susceptibility to broad spectra of viruses to
similar extents17. The advent of sequence-independent techniques,
based on small RNAs produced by the host, to characterize insect
viruses18, opens exciting opportunities to study the depth of such
associations. In anticipation, a suite of unspecified pathogens capable
to infect mosquitoes is contemplated in our models by a parameter
λM, whose value can be set to any positive real number or zero, and
individual susceptibility to the pathogen ensemble is treated as being
perfectly correlated with susceptibility to dengue viruses. Moreover,
these pathogens are assumed to be host generalists11 (i.e., capable to
infect other host species), and thus their abundance is not determined
by the specific interactions with Ae. aegypti. This enables an initial
exploration of the expected impacts of Wolbachia-induced variation
in mosquito susceptibility to viruses, which may be refined if richer
pathogen-specific datasets become available. In a similar vein, pos-
sible correlations or trade-offs between viral susceptibility and other
life-history traits are not contemplated at this stage.

Figure 2 addresses the invasiveness of mosquito populations
carrying Wolbachia, upon releases in Rio de Janeiro and Ho Chi
Minh City, accounting for the susceptibility distributions estimated
here in conjunction with various demographic parameters estimated
previously (Table 2), as a function of mosquito pathogen abundance,
λM. The solid black curve in Fig. 2a, b depicts the threshold frequency
that Wolbachia carriers must attain in the population for their
invasion to be predicted19, despite specific costs associated with the
symbiosis, such as measured reductions in fecundity and lifespan20–
22. Population densities where Wolbachia is absent or fixed are also
shown for completeness. The figure reveals how mosquito pathogens,
which act as a force of selection upon susceptibility distributions, are
expected to facilitate Wolbachia invasions due to the higher variance
in the trait among carriers.

The dotted lines in Fig. 2a, b shows how the invasion
threshold would be expected to increase with exposure to
mosquito pathogens given the increases in mean susceptibility
attributed to Wolbachia in our analysis of experimental data, if
the changes in variance had been ignored. When entire
distributions are considered, the greater variance among
carriers reverses the trend and, if pathogen exposure is
sufficiently high, the threshold may eventually vanish. This is
due to cohort selection, which is disabled in mean field
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approximations. When a population with a given susceptibility
distribution is released from the laboratory to some pathogen-
richer environment, pathogen pressure determines the profile
that will be effectively established. Since pathogens affect
predominantly those individuals who are more susceptible,
mean susceptibility decays with time since release (Fig. 2c, d),
facilitating invasion. Everything else being the same, invasion
thresholds are lower for populations with higher variance. In
this process, variance-to-mean ratios also decrease, which is
consistent with the notion that the lower variances exhibited by
resident (compared to introduced) mosquitoes are a natural
consequence of previous exposure to selection.

The earlier releases of Ae. aegypti mosquitoes transinfected with
wMel occurred in Northern Queensland, Australia—first in isolated
communities (Gordonvale and Yorkeys Knob, 2011)12, and later in a
city (Cairns, 2013)23—where ongoing monitoring provides growing
datasets to test models. In these settings, the invasion threshold was
estimated to be in the range 0.2–0.35. According to our Fig. 2a, b,
thresholds in this range are expected for Rio de Janeiro and Ho Chi
Minh City Vietnam when pathogen pressure is included (λM around
0.3), but would appear too high otherwise (that is, if λM= 0). Also
notable is the lower amplitude of seasonal fluctuations observed in
Wolbachia-carrying populations (relative to non-carriers) within
release zones23, which would be predicted by cohort selection on a
population with higher variance in susceptibility (Fig. 3e, k).

Dengue transmission dynamics. Figure 3 shows the results of
further incrementing the model with dengue transmission in a
human population24, calibrating the outputs prior to Wolbachia
releases to dengue notification data in the two study cities, and then
simulating releases in 201725,26. A 4-serotype model was necessary to

meet the higher incidences observed in Brazil (Supplementary Fig. 1).
In Rio de Janeiro, where Wolbachia was estimated to increase mean
susceptibility by a factor of 6.9, dengue transmission would be slightly
increased by Wolbachia fixation in the absence of selection (Fig. 3a).
However, when selection by pathogens is present, as expected, a
population of Wolbachia-carriers with the same characteristic can
reduce dengue transmission substantially, by an extent that increases
with the intensity of pathogen exposure. In Ho Chi Minh City, the
predictions are less extreme becauseWolbachia-mediated increases in
the mean and variance of the susceptibility distribution are smaller.
In the absence of pathogens, we expect a slight reduction in dengue
transmission (Fig. 3g), despite the increase in mosquito mean sus-
ceptibility to infection to a factor of 1.5. This is due to a reduction in
infectivity (ρW/ρU= 0.45), inferred as the proportion of infected
mosquitoes that had virus in the salivary glands4. The same factor
was adopted for the Brazil simulations, although shown by itself
insufficient to reduce transmission in that setting. The effects of
Wolbachia on the reproduction number, R0, were calculated for each
scenario, resulting in factors in the ranges 0.30–4.0 for Brazil and
0.42–0.88 for Vietnam, with the amplitude of the range attributed to
the intensity of selection imposed by mosquito pathogens.

The results in Fig. 3 were obtained considering a human
population with heterogeneous risk of acquiring and transmitting
dengue infection. Little is known about risk distributions for
acquiring dengue in humans, although estimates for other
diseases indicate variance-to-mean ratios in the 4–20 range27,28.
Here we have adopted the conservative value of 4 and show, for
comparison, the corresponding results generated under variance-
to-mean ratios of 20 (Supplementary Fig. 2) and 0 (Supplemen-
tary Fig. 3). Reductions in dengue transmission appear greater
under more homogeneous human population models, although
this would not have been captured by R0 ratios alone. In Vietnam,
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Fig. 1 Susceptibility distributions estimated from dose-response curves. a, b Dose-response curves for Wolbachia-free (Wolb−, in blue) and Wolbachia-
carrier (Wolb+, in green) populations given data (dots) collected from Rio de Janeiro, Brazil (a) and Ho Chi Minh City, Vietnam (b). c, d Susceptibility
distributions estimated by fitting dose-response models to the data (c Brazil; d Vietnam) as described in Methods section. Estimated shape (α) and
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Highest probability moments: c, mean(Wolb−)= 1; variance(Wolb−)= 0; mean(Wolb+)= 6.920; variance(Wolb+)= 143.7; d, mean(Wolb−)= 1;
variance(Wolb−)= 2.776; mean(Wolb+)= 1.490; variance(Wolb+)= 10.85
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elimination of dengue is predicted under either sufficiently low
heterogeneity in the human population, or sufficiently high-
cohort selection in the mosquito population, whereas in Brazil,
where baseline incidence is higher, stable elimination is not
predicted in any of the scenarios contemplated here.

Discussion
Analysis of two independently generated sets of dose-infectivity
curves, shows that Wolbachia consistently increases the mean
and the variance in Ae. aegypti mosquito susceptibility to
dengue viruses. These effects appear greater in Brazil, where
mosquitoes were challenged by injection14, than in Vietnam,
where challenges were by ingestion of viremic blood from
infected patients4. The finding that Wolbachia increases variation
in susceptibility to a virus is compatible with a study previously
carried out in Drosophila melanogaster flies10 and demands
devoted research.

Wolbachia has often been found to protect hosts against
pathogens, but not always. There is a cumulative number of
studies, both in natural and artificial Wolbachia-host systems,
which report that Wolbachia enhances29,30 or has no noticeable
effect31,32 on specific pathogens. To what extent these dis-
crepancies are real or methodological is to be inquired. In the

Table 1 Parameter estimates from dose-response model
fitting to experimental data

Parameter p αWolbþ θWolbþ

Brazil

MAP 1.149 × 10−7 0.3332 20.77
Median 1.066 × 10−7 0.3465 26.54
95% CI 5.720 × 10−8 0.1547 2.566

1.837 × 10−7 0.8907 447.0

Parameter αWolb� θWolb� αWolbþ θWolbþ

Vietnam

MAP 0.3602 347.1 0.2047 910.3
Median 0.3652 401.9 0.2064 944.5
95% CI 0.3045 235.4 0.1677 437.7

0.4366 761.4 0.2522 2363

MAP denotes maximum a posteriori probability. In Brazil, p is the probability of infection for a
Wolb− mosquito per unit of viral challenge (TCID50), and αWolbþ , θWolbþ are the shape and scale
parameters, respectively, of the gamma distribution determining the susceptibility factors of
Wolb+ mosquitoes in relation to Wolb− (i.e., with respect to p). In Vietnam paux= 10−8 (per
log10 viral titre (RNA copies/ml)), was used as an auxiliary parameter, while αWolb– , θWolb� and
αWolbþ , θWolbþ define the distributions of susceptibility of Wolb− and Wolb+ mosquitoes,
respectively, in relation to paux
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light of our findings, a more comprehensive analysis of all
available data is warranted. First, we convey that no conclusions
can be drawn from standard single-dose experimental challenge
designs. Second, we demonstrate that inclusive dose-response
analyses may lead to results which contradict those obtained by
averaging single-dose findings. Third, we find that by consistently
increasing variation in host susceptibility to viruses, Wolbachia
transinfection creates a population whose effective mean sus-
ceptibility is highly sensitive to natural selective pressures oper-
ating in specific release sites. Given that Wolbachia appears to
modify host susceptibility to a broad spectrum of pathogens7,17,
reliable predictions of invasiveness and vectorial capacity of
transinfected mosquitoes require an informed account of natural
mosquito pathogens and their interplay with Wolbachia.

Having exposed the fundamental roles of individual variation
in host (mosquito or human) susceptibility, or exposure, to
infections in leveraging population measures, the adoption of
homogeneous models, for assessing and predicting the response
to interventions, is no longer an option. A dose-response
experimental design analogous to that performed here has
recently been adopted to assess a vaccine against a virus of
rainbow trout33, while suitable study designs on natural ende-
micity gradients34 can enable the estimation of essential hetero-
geneity parameters from field settings27,35,36, just like dose-
response experimental designs do in the laboratory.

Methods
Data preparation. We reanalyse two previously published datasets4,14, where
Aedes aegypti mosquitoes were challenged with doses of dengue virus spanning a
suitable range, and viral titres were subsequently measured to determine infection
status. The experimental challenge procedures were performed on two mosquito
populations: carrying a wMel Wolbachia strain (Wolb+); and not carrying any
Wolbachia (Wolb−). In one of the experiments14, mosquitoes from Rio de Janeiro,
Brazil, were challenged by injection, while in the other4, mosquitoes from Ho Chi
Minh City, Vietnam, were challenged by feeding on viremic blood from infected
patients. The proportions of mosquitoes with detectable virus were assessed at
various days after infection (range 3–14 in Brazil; and 7–18 in Vietnam), and data
were formatted in a dose-response manner, with dose referring to challenge and
response representing probability of infection.

Dose-response model. Adopting established formulations15,16, we denote by d the
viral challenge dose (measured in units of 50% tissue culture infective dose

[TCID50] in Brazil, and log10 viral titre [RNA copies/ml] in Vietnam) and p a
measure of infectivity to a mosquito host per unit of viral challenge; the number of
infecting units per host is assumed to follow a Poisson distribution with mean pd. If
all hosts are equally susceptible, the probability of a host remaining uninfected after
viral challenge is the zero term of the distribution, leading to a probability of
infection rhom ¼ 1� e�pd . When individual hosts vary in their susceptibility to
infection, we consider the infectivity of each unit of challenge to vary between hosts
according to a gamma distribution q xð Þ ¼ xα�1e�x=θ

ΓðαÞθα , where α and θ are the shape and
scale parameters, respectively, resulting in the modified dose-response model
rhet ¼ 1� R1

0
e�xpdq xð Þdx, or its closed form rhet ¼ 1� 1= 1þ θpdð Þ½ �α , which is

obtained by Laplace transform. The factors x are dimensionless measures of relative
susceptibility between hosts.

Susceptibility distribution estimation. Dose-response models are fitted to the
experimental data using a Bayesian Markov Chain Monte Carlo (MCMC) based
method10, implemented in Python programming language with PyMC package37,
assuming uniform priors, to estimate distributions of susceptibility of mosquito
populations to dengue viruses. The likelihood of the parameters given the data is
computed using binomial distributions written for a given dose as

P kjN; d; pð Þ ¼ N

k

� �
rk 1� rð ÞN�k; ð1Þ

where N is the number of mosquitoes being challenged, r is the probability of
obtaining a successful response from each challenge (i.e., successful infection by the
virus), which is a function of p and d, according to either homogeneous (rhom) or
heterogeneous (rhet) model formulations given above, and k is the observed number
of infected mosquitoes (i.e., with detectable viral titres).

The fit of the homogeneous model to data across D doses gives an estimate of
parameter p, whose log-likelihood is given by a sum of binomial distributions

P pj~k; ~N;~d
� �

¼
XD
i¼1

log
Ni

ki

� �
rkii 1� rið ÞNi�ki

� �
; ð2Þ

where ~k, ~N and ~d are vectors composed of ki , Ni and di , respectively, and
ri ¼ 1� e�pdi . For fitting the heterogeneous model, the log-likelihood is given by

P α; θj~k; ~N;~d; p
� �

¼
XD
i¼1

log
Ni

ki

� �
r kii 1� rið ÞNi�ki

� �
; ð3Þ

where ri ¼ 1� 1= 1þ θpauxdið Þ½ �α, and paux is treated as a fixed auxiliary parameter.
Brazilian and Vietnamese studies are analysed separately. Model formulations

where the susceptibility of individual mosquitoes is considered homogeneous or
gamma-distributed are both fitted to Wolb− data. The deviance information
criterion (DIC) is applied to select between the two formulations, favouring
homogeneous in Brazil, and heterogeneous in Vietnam (adopting paux= 1 in
Supplementary Table 1, and paux= 10−8 in Supplementary Table 2).

Table 2 Parameters for Wolbachia invasion and dengue transmission models

Symbol, definition Value Reference

Mosquito population
dynamics

a, birth rate 0.789 day−1 Dutra et al.20

b, density-independent death rate 0.025 day−1 Dutra et al.20

k, density-dependent death rate 0.0001 (insect × day) −1 This study
sh, proportion of unviable offspring in incompatible
crosses

0.995 (BR);1 (VN) Dutra et al.20;
Joubert et al.22

sf, relative fecundity reduction in Wolbachia-carriers 0 (BR);
0.15 (VN)

Dutra et al.20;
Nguyen et al.21

sl, relative longevity reduction in Wolbachia-carriers 0.33 (BR);
0.012 (VN)

Dutra et al.20;
Joubert et al.22

λM, force of selection by mosquito pathogens 0–2 day−1 This study
Human population
dynamics

μ, birth and death rate, given life expectancy≈ 75 years 1/(365 × 75) day−1 WHO, Global Health Observatory,
Life Expectancy (2015)43

γ, rate of recovery from dengue infection 1/7 day−1 Sabin (1952)44

φ, rate of loss-of-immunity 2/365 day−1 Sabin (1952)44

Transmission dynamics ρU, proportion of infected Wolbachia-free mosquitoes
who are infectious

0.6046 (mean);
0.4862 (min.);
0.7407 (max.)

Ferguson et al.4

ρW, proportion of infected Wolbachia-carrying
mosquitoes who are infectious

0.2729 (mean);
0.2102 (min.);
0.3160 (max.)

Ferguson et al.4

β, human-to-mosquito transmission rate 0–2.5 day−1 This study
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The selected model is then extended with a gamma-distributed susceptibility for
Wolb+ and fitted to the entire dataset for obtaining the final set of parameter
estimates (Table 1), which are interpreted and used in the dynamic models of
Wolbachia invasion and dengue transmission.

Wolbachia invasion model. The conditions for Wolbachia invasion are assessed
using a model that describes the population dynamics of two interbreeding Ae.
aegypti populations: a resident Wolbachia-free population, U, and an introduced
Wolbachia-carrier population, W. Wolbachia is considered to modify the
longevity of its carriers by a factor sl, the fecundity by a factor sf, and to reduce
the reproduction of U individuals via cytoplasmic incompatibility by a factor sh.
Moreover, Wolbachia is assumed to modify the general susceptibility to mos-
quito pathogens by a factor that is positively correlated with that estimated for
dengue viruses. The population dynamics is thus given by the following system

of differential equations:

duðxÞ
dt

¼ qu xð ÞaU U þW 1� shð Þ
M

� �
� bþ kMð Þu xð Þ � xλMu xð Þ; ð4Þ

dwðxÞ
dt

¼ qw xð ÞaW 1� sfð Þ � b
1� sl

þ kM

� �
w xð Þ � xλMw xð Þ; ð5Þ

where quðxÞ and qwðxÞ are the susceptibility distributions of populations U and

W, respectively, U ¼ R1
0
uðxÞdx and W ¼ R1

0
wðxÞdx represent the total Wolb−

and Wolb+ populations and M= U+W the total mosquito population. For
parameter definitions and values, see Table 2.
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Fig. 3 Projected impact ofWolbachia on dengue transmission in human populations. Colours indicate whether transmission is byWolbachia-free (Wolb−, in
blue) or Wolbachia-carrier (Wolb+, in green) mosquitoes. Left panels show dengue incidence versus transmission coefficient plotted from equilibrium
solutions of a 4-serytope dengue model (Methods section) on human populations with heterogeneous risk (variance-to-mean ratio of 4): a, d mosquitoes
parameterized from experiments in Brazil and released under different forces of selection by mosquito pathogens: a λM= 0; d λM= 0.3. g, j same as a, d,
for Vietnam. Equilibrium curves adopted mean proportions of infected mosquitoes with detectable virus in the salivary glands3, and shaded areas represent
lower and upper bounds encountered when mosquitoes were stratified by challenge dose. Dotted lines mark dengue incidence in Rio de Janeiro, and Ho Chi
Minh City, averaged over a 4-year period and scaled by an expansion factor of 5. Right panels show model simulations ofWolbachia releases taking place in
2017, starting from the conditions on the respective left panels: b, e, h, k mosquito population sizes; c, f, i, l dengue epidemics in humans (shaded areas
refer to notification data; lower bound showing the original data and upper bound the data multiplied by an expansion factor of 5). Parameter values:
β= 0.59 (c), β= 0.74 (f), β= 0.13 (i), β= 0.17 (l); A= 0.25, Β= 0.25 (b, c, e, f); A= 0.05, Β= 0.1 (h, i, k, l)
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This system of differential equations has been modified from previous studies9,11,
and maintains the essential qualitative properties. It has three non-trivial equilibrium
solutions: two stable and one unstable. The stable equilibria are referred to as the pre-
and post-invasion equilibria, where either the U or the W population, respectively, has
reached fixation. A third equilibrium can be found which accommodates both
populations. Being unstable, however, any deviation will lead to fixation of one or the
other population. Therefore, in practice, such a state does not persist, but instead sets a
threshold frequency of Wolbachia-carriers necessary for invasion19—the invasion
threshold, p̂. Spatial dimensions may be included in the model and are expected to slow
down local invasions due to reintroductions of non-carriers from neighbouring areas23.
However, this is beyond the scope of this study.

Numerical solutions of the model were obtained in Matlab by discretizing each
susceptibility distribution into 100 parts and simulating the resulting system of 200
ordinary differential equations.

Dengue transmission model. To assess the effectiveness of Wolbachia in
modifying the vectorial capacity of Ae. aegypti, we build a 4-serotype susceptible-
infected-recovered (SIR) model for the human population, with transmission
between humans mediated by mosquitoes that may carry or not the Wolbachia
symbiont. Denoting by V ¼ 1; 2; 3; 4f g the set of dengue serotypes, the model for a
homogeneous host population is formulated in set notation38 as

dS;
dt

¼ μH � β ρU
P

i2V UIi þ ρW
P

i2V WIi
� �

H
S; � μS;; ð6Þ

dSJ
dt

¼ φRJ �
β ρU

P
i2VnJ UIi þ ρW

P
i2VnJ WIi

� �
H

SJ � μSJ ; for ;≠J � V;
ð7Þ

dIJ ;i

dt
¼ β ρUUIi þ ρWWIi

� �
H

SJ � γþ μð ÞIJ ;i; for J � V; i 2 V n J ; ð8Þ

dRJ
dt

¼ γ
X
i2J

IJ ni;i � φþ μð ÞIi; for ;≠J � V; ð9Þ

and

duSðxÞ
dt

¼ qu xð ÞaU U þW 1� shð Þ
M

� �
� bþ kMð ÞuS xð Þ � xλMuS xð Þ � x

X
i2V

λHiuS xð Þ;

ð10Þ

duIiðxÞ
dt

¼ xλHiuS xð Þ � bþ kMð ÞuIi xð Þ � xλMuIi xð Þ; for i 2 V; ð11Þ

dwSðxÞ
dt

¼ qw xð ÞaW 1� sfð Þ � b
1� sl

þ kM

� �
wS xð Þ � xλMwS xð Þ � x

X
i2V

λHiwS xð Þ;

ð12Þ

dwIiðxÞ
dt

¼ xλHiwS xð Þ � b
1� sl

þ kM

� �
wIi xð Þ � xλMwIi xð Þ; for i 2 V; ð13Þ

where λHi ¼ β
P

J�Vni
IJ ;i=H, for i= 1,2,3,4, represent the force of infection of each

serotype upon mosquitoes, M=U+W is the mosquito density, given that

U ¼ R1
0
uðxÞdx, for u xð Þ ¼ uS xð Þ þ uI1ðxÞ þ uI2ðxÞ þ uI3ðxÞ þ uI4ðxÞ, and

W ¼ R1
0
wðxÞdx, for w xð Þ ¼ wS xð Þ þ wI1ðxÞ þ wI2ðxÞ þ wI3ðxÞ þ wI4ðxÞ, and H

represents the density of human host. Parameter definitions and values are in Table 2.
Heterogeneity in the risk of human hosts to acquire dengue infection is then

introduced as in previous studies39. Specifically, human hosts are segmented into two
risk groups, according to the degree of exposure to mosquito bites, such that the mean
exposure is as in the homogeneous model to allow comparison, and the variance-to-
mean ratio is a parameter initially set at 4 and varied for sensitivity analysis.

The total dimension of the complete system is 1124, consisting of the following: 62
histories of dengue infection in humans, times 2 to account for high and low-risk
groups (124); 100 susceptibility classes of Wolbachia-free mosquitoes, times 5 to
account for infection by each of the 4 dengue serotypes or none (500); 100 susceptibility
classes of Wolbachia-carrying mosquitoes, times 5 to account for infection by each of
the 4 dengue serotypes or none (500). All numerical solutions were obtained in Matlab.

In the absence of heterogeneity in human exposure or mosquito susceptibility,
and without selection by mosquito pathogens (λM= 0), the type reproduction
number40, which we denote here by R0, would be relatively straightforward to
calculate. One infected human would lead to βM=HHrecoveryþdeath infected vectors,
and one infected vector would lead to ρβ=Mdeath infected humans, where ρ is the

proportion of infected mosquitos who are infectious, Hrecoveryþdeath is the rate at
which infectious humans stop transmitting due to recovery or death, and Mdeath is
the rate at which mosquitos stop transmitting due to death. The number of human
infections generated by one infected human would then be the product of these two
numbers. With mosquito heterogeneity, the quantity becomes

R0 ¼
β
R1
0 xu xð Þdx� �

ρUβ
� �

H γþ μð Þ bþ kUð Þ ; ð14Þ

or

R0 ¼
β
R1
0 xw xð Þdx� �

ρWβ
� �

H γþ μð Þ b
1�sl

þ kW
� � ; ð15Þ

depending on the Wolbachia carriage state of the mosquito population. When the
two mosquito populations co-exist and mosquito pathogens are accounted for, the
expression needs rearrangement to accommodate the differential death rates

R0 ¼ β2

H γþ μð Þ ρU

Z1

0

xu xð Þ
bþ kM þ λMx

dx þ ρW

Z1

0

xw xð Þ
b

1�sl
þ kM þ λMx

dx

0
@

1
A: ð16Þ

Including heterogeneity in human exposure to mosquito bites requires the extra
factor ⟨κ2/κ⟩, where ⟨κ2⟩ is the second moment of the distribution of human
exposure and the first moment (or mean) is ⟨κ⟩= 1.

To assess the reduction in R0 attributed to the replacement of resident
mosquitoes by those carrying Wolbachia, we calculate the ratio

R0W

R0U
¼

ρW
R1
0

xw xð Þ
b

1�sl
þkWþλMx

dx

ρU
R1
0

xu xð Þ
bþkMþλMx dx

; ð17Þ

with w and u determined by solving the model with and without Wolbachia,
respectively, for the same transmission coefficient, β.

Dengue incidence data. Dengue incidence was approximated from case notifi-
cations in Rio de Janeiro, Brazil (2010–2013) and Ho Chi Minh City, Vietnam
(National Institute of Hygiene and Epidemiology (1995–2010) and Project Tycho,
www.tycho.pitt.edu/dev/pnas/index.php). Based on official population counts, we
adopted the approximate values of 6 million for Rio de Janeiro (Census Bureau,
Brazilian Institute of Geography and Statistics (2010–2013) and 8 million for Ho
Chi Minh City (General Statistics Office of Vietnam (1995–2010)).

Model calibration. Model calibration was performed for Rio de Janeiro, Brazil, and
Ho Chi Minh City, Vietnam, by calculating the endemic steady state as a function of the
transmission coefficient β and adjusting this parameter to the annual incidence aver-
aged over a period of 4 years (2010–2013 for Rio de Janeiro; 2007–2010 for Ho Chi
Minh City). An expansion factor of 5 was applied to the official notifications to account
for unapparent cases, as recommended by published studies in both countries41,42.
Supplementary Fig. 1 shows the coexistence equilibrium solutions of the 4-serotype
model, compared with lower dimensional versions generated with less serotypes (3, 2
or 1). The obtained incidence levels for Rio de Janeiro and Ho Chi Minh City are also
plotted, showing, among other things, the need to adopt the full 4-serotype model to
meet incidences as high as those in Brazil.

Time series model. The model described was simulated to generate time series
prior to Wolbachia introduction, to serve as a basis for projections of expected
impact after releases occur. Simulations were performed with seasonal forcing on
the transmission coefficient:

β tð Þ ¼ β0 1� B cos
2π t
365

� �� 	
; ð18Þ

where β0 is the average transmission coefficient estimated for each scenario by the
steady-state calibration above, and B is the amplitude of seasonal forcing on
transmissibility, as well as on mosquito birth rates:

a tð Þ ¼ a0 1� A cos
2π t
365

� �� 	
; ð19Þ

where a is the birth rate as in Table 2 and A is the amplitude of seasonal forcing on
birth rate.

Data availability. All data analysed in this paper are available from the cited
publications Ferguson et al.4 and Souto-Maior et al.14.
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