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Abstract

Rationale: Effective and rapid bacterial clearance is a fundamental
determinant of outcomes in sepsis. DJ-1 is a well-established reactive
oxygen species (ROS) scavenger.

Objectives: Because cellular ROS status is pivotal to inflammation
and bacterial killing, we determined the role of DJ-1 in bacterial sepsis.

Methods:We used cell and murine models with gain- and loss-of-
function experiments, plasma, and cells from patients with sepsis.

Measurements and Main Results: Stimulation of bone
marrow–derived macrophages (BMMs) with endotoxin resulted in
increased DJ-1 mRNA and protein expression. Cellular and
mitochondrial ROS was increased in DJ-1–deficient (2/2) BMMs
compared with wild-type. In a clinically relevant model of
polymicrobial sepsis (cecal ligation and puncture), DJ-12/2mice had
improved survival and bacterial clearance. DJ-12/2 macrophages

exhibited enhanced phagocytosis and bactericidal activity in vitro, and
adoptive transfer ofDJ-12/2 bonemarrow–derivedmononuclear cells
rescued wild-type mice from cecal ligation and puncture–induced
mortality. In stimulated BMMs, DJ-1 inhibited ROS production by
binding to p47phox, a critical component of theNADPHoxidase complex,
disrupting the complex and facilitating Nox2 (gp91phox) ubiquitination
and degradation. Knocking down DJ-1 (siRNA) in THP-1 (human
monocytic cell line) and polymorphonuclear cells from patients with
sepsis enhanced bacterial killing and respiratory burst. DJ-1 protein levels
were elevated in plasma from patients with sepsis. Higher levels of
circulating DJ-1 were associated with increased organ failure and death.

Conclusions:These novelfindings revealDJ-1 impairs optimalROS
production for bacterial killing with important implications for host
survival in sepsis.

Keywords: DJ-1/PARK7; reactive oxygen species; sepsis; bacterial
clearance; NADPH oxidase
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Sepsis with accompanying organ
dysfunction remains one of the leading
causes of morbidity and mortality in
intensive care units (1). Despite recent
advances, no specific therapies are
available to reduce the burden of illness
(2, 3). Traditional approaches including
resuscitation, antibiotics, source control,
and supportive care have improved
outcomes (4, 5), whereas strategies to
blunt the inflammatory response have
failed to improve survival (6, 7).
Alternative strategies that enhance host
defenses have recently gained attention (8).
Our group has used systemic administration
of bone marrow–derived mesenchymal
stem/stromal cells to reduce inflammation,

organ dysfunction, and mortality, while
enhancing bacterial clearance in
experimental models of polymicrobial
sepsis (9–13). Network analysis of global
transcriptional responses modulated by
mesenchymal stem cell administration in
sepsis identified the Kyoto Encyclopedia
of Genes and Genomes–Parkinson’s
Disease pathway as markedly altered in
septic tissues (14). Here we pursue one
of the statistically significant gene
products modulated in this pathway,
Parkinson disease (autosomal recessive,
early onset) 7 (PARK7), also known as
DJ-1.

Originally identified as an oncogene
(15), DJ-1 functions as a ubiquitous
cytoprotective protein with diverse
functions including transcriptional and
mitochondrial regulation (16–22). Its
main role, however, is providing
protection from oxidative stress (15, 16).
Loss of functional protein results in
autosomal-recessive familial Parkinson
disease (23, 24). In the case of sporadic
disease, overwhelming and/or persistent
oxidative stress results in loss of DJ-1
function, accumulation of reactive
oxygen species (ROS), and eventual
neuronal death (25–27). A recent report
has questioned the role of DJ-1 as an
antioxidant suggesting that rather
than reducing ROS, DJ-1 is required
for increased ROS production in
sepsis (28).

Cellular redox status plays a complex
and dynamic role in host innate immune
regulation and survival in sepsis. Although
excessive ROS can contribute to cell
and tissue injury, free oxygen radicals
and their oxidized substrates are key
signaling molecules involved in pathogen
recognition and clearance (29–32).
Although little is known about the role
of DJ-1 outside the nervous system,
DJ-1–deficient Caenorhabditis elegans
develop marked p38 mitogen-activated
protein kinase activation and enhanced
pattern recognition receptor expression (33).
Moreover, increased respiratory burst
occurs in DJ-1–deficient Litopenaeus
vannamei after bacterial challenge (34).
These data suggest a conserved and
protective role for DJ-1 to minimize
inflammation (ROS) during acute
infections. Here we address the role of
DJ-1 in bacterial sepsis. Some of the results
of these studies have been previously
reported as abstracts (35–37).

Methods

Plasma and Polymorphonuclear Cells
from Patients with Sepsis
The Ethics Committee at McMaster
University and St. Michael’s Hospital
approved all study protocols. Study
criteria and patient selection have
been published (38). Written informed
consent was obtained from all enrolled
patients or substitute decision
makers and from consenting adult
healthy volunteers. Neutrophil
isolation is described in the online
supplement (39).

Animals
Protocols were approved by the Animal
Care Committee at St. Michael’s Hospital.
Wild-type (WT) C57Bl/6J (Jackson
Laboratories, Bar Harbor, ME) and
DJ-1–deficient mice (targeted deletion of
DJ-1 [DJ-12/2] [40]) on a C57Bl/6J
background (20 backcrosses).

Cecal Ligation and Puncture Model
Male mice (25–30 g) were randomized to
cecal ligation and perforation (CLP) or
sham surgery (see the online supplement)
(9, 41, 42).

Plasma/Serum DJ-1 Levels
DJ-1 levels in human plasma and mouse
serum were determined by ELISA
(Cusabio Biotech Co., Ltd., Wuhan,
China), according to manufacturer’s
instructions.

Serum Biochemistry Analyses and
Measurement of Levels of
Inflammatory Mediators
VetScan Comprehensive Diagnostic
Profile (VetScan Test Panels, University
Health Network, Toronto, Ontario,
Canada) was used to perform serum
biochemistry analysis. Inflammatory
mediators were measured using Procarta
Cytometric Bead Array (Affymetrix
Panomics, Santa Clara, CA), according to
manufacturer’s instructions (see online
supplement).

Isolation of Bone Marrow–derived
Macrophages
Bone marrow–derived macrophages
(BMMs) were isolated as described (43).

At a Glance Commentary

Scientific Knowledge on the
Subject: Cellular redox status plays a
complex and dynamic role in host
innate immune regulation in sepsis.
DJ-1 (PARK7) is a well-established
antioxidant with a protective role in the
nervous system. Mutations in PARK7
result in autosomal-recessive familial
Parkinson disease. There is emerging
evidence that DJ-1 can also modulate
immune signaling pathways; however,
the role of DJ-1 in sepsis remains
largely uninvestigated.

What This Study Adds to the
Field: DJ-1 expression increases after
cecal ligation and perforation–induced
sepsis. Targeted deletion of DJ-1 in
mice resulted in increased reactive
oxygen species and proinflammatory
markers and surprisingly improved
survival in polymicrobial sepsis. These
findings are similar to those observed
for other deletion studies involving
negative immune regulators. Our
novel findings reveal that DJ-1
expression impairs reactive oxygen
species production and bacterial
clearance in sepsis. A robust innate
immune response is vital for
resolution of infection and subsequent
host survival. Our findings are in line
with the most recent sepsis-3
definition, which emphasizes the
importance of a dysregulated host
response to infection as a critical
determinant of outcomes.
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ROS Measurements
Cellular and mitochondrial ROS in BMMs
were assessed by CM-H2DCFDA and
MitoSOX (see online supplement).
Dihydrochlorofluorescein fluorescence was
measured in lung and spleens lysates using
the OxiSelect ROS/RNS assay kit (Cell
Biolabs, Inc., San Diego, CA), according

to manufacturer’s instructions. Values were
normalized to protein input.

Respiratory Burst in
Polymorphonuclear Cells
Burst measurement in septic
polymorphonuclear cells (PMNs)
is described in the online supplement (44).

Assessment of Cellular Bioenergetics,
Phagocytosis, and Bacterial Killing
See the online supplement for further details.

Loss and Gain of Function
BMMs or THP-1 cells were transfected with
mouse or human siRNA against DJ-1 (DJ-1
siRNA, loss of function), or a control
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Figure 1. DJ-1 reduces inflammation and reactive oxygen species (ROS) production in bone marrow–derived macrophages (BMMs) after endotoxin
challenge. (A) Real-time polymerase chain reaction results for changes in the expression of DJ-1 messenger RNA (mRNA) in BMMs exposed to saline or
LPS (1mg/ml) over 24 hours.Bar graphs represent fold change of DJ-1 expression over the saline control at each time point normalized to glyceraldehyde dehydrogenase
(GAPDH) expression. (B) Representative Western blot and quantification (n=5) showing increased DJ-1 protein expression in BMMs from wild-type (WT) compared
with DJ-12/2 mice after 24 hours of LPS stimulation (1mg/ml) normalized to GAPDH protein expression.Bar graphs representmeans6 SEM (*P< 0.05, Student’s t test).
(C) Intracellular and (D) mitochondrial ROS in WT and DJ-12/2 BMMs after saline and increasing doses of LPS (0.1–1 mg/ml). (E) Relative total glutathione content in WT
and DJ-12/2 BMMs after 24-hour exposure to saline or LPS (1 mg/ml). Bar graphs represent means6 SEM (*P< 0.05; ***P< 0.001; two-way analysis of variance).
(F) Levels of inflammatory mediators in LPS-treated BMMs cell lysate fromWT versus DJ-12/2 mice. BMMs were treated with or without LPS (1 mg/ml) for 24 hours, and
inflammatory mediator response was determined using multiplex ELISA. Mediators profiled: IL-1b, IL-6, IL-12 (p40), macrophage inflammatory protein (MIP)-1a, RANTES
(CCL5), MIP-2, KC (chemokine [C-X-C motif] ligand 1), and monocyte chemoattractant protein-1 (MCP-1/CCL2). Bar graphs represent means6 SEM
(n=3; *P< 0.05; **P< 0.01, two-way analysis of variance). C=control; RANTES= regulated upon activation, normal T cell expressed and secreted; Sal = saline.
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Figure 2. DJ-1 deficiency increases inflammation but improves survival and organ function after cecal ligation and perforation (CLP). (A) Serum levels of
DJ-1 protein (pg/ml) in mice 24 hours after sham or CLP surgery. Data are presented as means6 SEM (n = 8–10 per group; ***P< 0.001; Student’s
t test). (B) Levels of reactive oxygen species in lung homogenates from wild-type (WT) and DJ-12/2 mice 24 hours after CLP, presented as
dihydrochlorofluorescein (DCF) levels per microgram of protein. Data are presented as means6 SEM (n = 6–8 per group; *P< 0.05; **P< 0.01; two-way
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scrambled siRNA (ctrl siRNA; Ambion,
Foster City, CA). Alternatively, BMMs were
infected (50 multiplicity of infection)
overnight with recombinant adenovirus
overexpressing DJ-1 (Ad-DJ-1, gain of
function) or a control adenovirus (Ad-Ctrl)
(see online supplement).

Statistical Analyses
Mice were randomized (random number
generator) to treatment groups,
investigators blinded to genotype, and
evaluators blinded to group assignment.
Survival studies were analyzed using log-
rank (Mantel-Cox) tests. Based on sample
size calculation eight animals per group
would allow us to detect a significant
difference in 7-day mortality with 95%
confidence. Unless otherwise stated,
data are presented as mean6 SEM.
Differences between groups were
determined using Mann-Whitney,
Student’s t test, one-way analysis of
variance, or two-way analysis of variance
followed by Bonferroni post hoc test
to account for both “genotype” and
“treatment.”

Results

DJ-1 Reduces ROS Production and
Inflammation in BMMs after
Endotoxin Challenge
BMMs were isolated from WT and DJ-12/2

mice. DJ-1 mRNA and protein expression
were up-regulated in WT BMMs in response
to LPS (1 mg/ml) (Figures 1A and 1B).
Levels of cellular ROS and mitochondrial
ROS were comparable between genotypes at
baseline. After stimulation, both cellular and
mitochondrial ROS increased in DJ-12/2

BMMs compared with WTs (Figures 1C and
1D). Proinflammatory mediator levels were
also higher in DJ-12/2 BMM (Figure 1F). In
addition, we have previously shown DJ-1

deficiency results in Nrf2 (nuclear factor,
erythroid 2-like 2) degradation (16, 43).
Consistent with a decrease in Nrf2
transcriptional activity, glutathione, heme
oxygenase 1, glutathione peroxidase 1 (Gpx-1),
and manganese superoxide dismutase
expression was not increased in DJ-12/2

BMMs (Figure 1E; see Figure E1A). DJ-1
deficiency in BMMs had no effect on cellular
viability (see Figure E1B).

DJ-1 Deficiency Increases ROS
Production and Inflammation
after CLP
We randomized WT and DJ-12/2 mice to a
fluid resuscitated model of CLP-induced
polymicrobial sepsis versus sham surgery.
Elevated circulating DJ-1 levels were
present in WT septic mice 24 hours after
CLP (Figure 2A). ROS levels in lung lysates
were higher in DJ-12/2 mice (Figure 2B).
In the absence of DJ-1, circulating and
pulmonary levels of proinflammatory
mediators IL-1b, IL-6, tumor necrosis
factor (TNF), and macrophage
inflammatory protein (MIP)-1b and MIP-2
increased at 24 and 48 hours (except for
TNF and MIP-1b in lungs) (Figure 2C).
Increased pulmonary mediator levels were
associated with enhanced cellular
recruitment into the alveolar space by
48 hours (see Figure E2C). CLP resulted
in a twofold to threefold increase in
bronchoalveolar fluid total protein and IgM
levels in DJ-12/2 and WT mice at 24 hours
(see Figure E2C), and this was sustained in
DJ-12/2 mice at 48 hours.

DJ-1–Deficient Mice Had Improved
Survival and Organ Function in
Response to CLP
Despite evidence of increased ROS
production and inflammation, DJ-1
deficiency significantly attenuated 7-day
mortality in fluid-resuscitated, antibiotic-
treated CLPmice (81.82 vs. 18.18%;P= 0.0005)

(Figure 2E). Although WT mice became
lethargic, stopped grooming, and showed
moderate distress after CLP, DJ-12/2

mice showed no or only mild distress.
Body weight and temperature were not
significantly different between genotypes
(see Figure E2A). Resistance to CLP-induced
mortality was observed in DJ-12/2 mice
even in the absence of antibiotics (60 vs.
88.8% survival; P = 0.006) (Figure 2D) and
irrespective of perforation size (see
Figure E2B).

Assessment of serum biochemical
markers of organ dysfunction determined
lactate levels, although increased in both
CLP groups at 24 hours after CLP, were
significantly lower in DJ-12/2 mice
(Figure 2F). Albumin levels were decreased,
whereas alanine amino transferase was
increased equally in both genotypes. Total
bilirubin, blood urea nitrogen, amylase, and
glucose levels were lower in the DJ-12/2

mice (Figure 2F).

DJ-1 Impairs Bacterial Clearance and
M1 Polarization of Professional
Phagocytes
A potential explanation for improved
survival is enhanced source control. DJ-12/2

mice had significantly lower bacterial
counts in blood, lung, and spleen (12 and
24 h after CLP) (Figure 3A). Because M1
macrophages may enhance bacterial
clearance, we isolated peritoneal cells from
WT and DJ-12/2 mice 12 hours after CLP.
In addition to enhanced expression of
proinflammatory cytokines, absence of
DJ-1 resulted in an increase in the
proportion of CD80 (cell surface marker
for M1 phenotype) and inducible nitric
oxide synthase (iNOS) mRNA expression.
In parallel, CD2061 (marker for M2
phenotype) (Figure 3B) cells, and YM1
expression was significantly decreased, and
a trend toward lower arginase 1 mRNA
expression (Figure 3C). iNOS protein was

Figure 2. (Continued). analysis of variance). (C) Levels of inflammatory mediators in lung homogenates and serum from WT or DJ-12/2 mice 24 and
48 hours after CLP, presented as fold change over sham control animals. Mediators profiled: IL-1b, IL-6, tumor necrosis factor (TNF), macrophage
inflammatory protein (MIP)-1b (CCL4), and MIP-2 (CXCL2). Data are presented as means6 SEM (n = 6–8 per group; *P< 0.05; **P< 0.01; DJ-12/2

compared with WT; two-way analysis of variance). (D) Percent survival of WT and DJ-12/2 mice at 48 hours with fluid resuscitation and buprenorphine
(**P< 0.01; ***P< 0.001; log-rank/Mantel-Cox test). (E) Percent survival of WT and DJ-12/2 mice at 7 days (fluid resuscitation, and buprenorphine
and imipenem-cilastatin administration commencing at 6 h after CLP and every 24 h after that) after CLP-induced sepsis compared with sham
control animals. (F) VetScan comprehensive diagnostic profile markers of organ dysfunction measured in serum of WT and DJ-12/2 mice 48 hours
after sham (n = 5 per group) and CLP (n = 8–9 per group). Markers profiled: albumin (g/L), total globulin (g/L), alanine aminotransferase (ALT; U/L),
total bilirubin (mmol/L), blood urea nitrogen (BUN; mmol/L), amylase (U/L), and glucose (mmol/L). Serum lactate levels (mM) was measured at
24 hours after sham or CLP surgery (n = 8–10 per group; *P< 0.05; **P< 0.01). Data are presented as means6 SEM (*P< 0.05; **P< 0.01; two-
way analysis of variance).
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Figure 3. DJ-1 impairs bacterial clearance and M1 polarization of professional phagocytes. (A) Bacterial load, represented as cfu/ml, in blood, lungs, and
spleen 12 and 24 hours after cecal ligation and perforation (CLP) surgery. In the box-and-whisker plots, the median is indicated with a horizontal line in the
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increased in WT and DJ-12/2 BMMs
(Figures 3D and 3E), whereas arginase 1
protein levels were decreased. iNOS
expression was increased in DJ-12/2 lungs
and spleens 24 hours after CLP surgery (see
Figures E3A and E3B).

DJ-1 Impairs Bacterial Killing
Improved bacterial clearance in vivo was
associated with enhanced phagocytosis by
DJ-12/2 peritoneal cells in vitro. We
incubated WT and DJ-12/2 peritoneal cells
isolated 12 hours after CLP (Figure 4A;
see Figure E4A) or after thioglycollate
stimulation (see Figure E4B) with
fluorescent Escherichia coli bioparticles.
Phagocytosis of E. coli bioparticles also
increased in DJ-12/2 compared with WT
BMMs and this effect was sustained over
time (Figure 4B). Compared with WT
BMMs, increased pHrodo (pH sensitive
dye) labeled E. coli and Staphylococcus
aureus was also observed in DJ-12/2

BMMs at baseline (nonstimulated) and
after 1-hour prestimulation with LPS
(Figure 4C), consistent with acidification
of the phagolysosomal compartment.
Inhibition of ROS generation with Bay-11
7082 (an inhibitor of nuclear factor of
kappa light polypeptide gene enhancer in
B-cells inhibitor, alpha [IkB-a]) or
mitoTEMPO (a mitochondria-targeted
superoxide dismutase mimetic), attenuated
the enhanced phagocytic phenotype in
DJ-12/2 BMMs (see Figures E5A and E5B).

To determine bactericidal activity, we
infected WT and DJ-12/2 BMMs with
E. coli or S. aureus for 30 or 60 minutes and
treated with gentamicin. Bacteria that are
not engulfed (remain extracellular) are
killed by the antibiotic. After cell lysis,
the resulting bacterial colonies represent
intracellular viable bacteria that phagocytes
have failed to kill. DJ-12/2 BMMs had
significantly decreased number of viable
bacterial colonies 30 and 60 minutes
postinfection compared with WT BMMs
(Figure 4D).

Adoptive Transfer of DJ-1–Deficient
Bone Marrow–derived Mononuclear
Cells Improved Survival in WT Mice
after CLP Surgery
To demonstrate that DJ-1–deficient
phagocytes are more effective in
eliminating bacteria early in the course of
sepsis, conferring a beneficial survival
effect, we isolated bone marrow–derived
mononuclear cells (BMCs) from WT
and DJ-12/2 mice and administered to WT
mice 6 hours after the induction of CLP
(Figure 5A). Treatment with DJ-12/2

BMCs significantly improved
7-day survival after CLP surgery
compared with WT BMCs and saline
controls (Figure 5B).

DJ-1 Reduces Mitochondrial ROS
Production
It is unknown whether loss of DJ-1 affects
mitochondrial respiration in professional
phagocytes but ineffective mitochondrial
respiration generates ROS. Accordingly, we
measured mitochondrial respiration and
uncoupling in WT and DJ-12/2 BMMs.
DJ-1 partially localized to mitochondria in
unstimulated and LPS-stimulated BMMs
(Figure 5C). Basal oxygen consumption
rate, a measure of mitochondrial
respiration, was not significantly different
between DJ-12/2 and WT BMMs.
Exposure to TNF, however (6 h), unmasked
a significant decrease in oxygen
consumption rate in DJ-12/2 BMMs
(Figures 5D and 5E). No difference was
noted after 24 hours of treatment (data not
shown). Although there was a modest
increase in proton leak in DJ-12/2 BMMs
at baseline, there was no significant
difference after treatment (Figure 5F).
Furthermore, addition of carbonyl cyanide-
4-(trifluoromethoxy) phenylhydrazone,
which uncouples proton pumping from
ATP synthesis, maximized oxygen
consumption rate in WTs while DJ-12/2

BMMs remained unresponsive (Figures 5F
and 5G). Therefore, although 6 hours of
TNF treatment had profound effects on

cellular metabolic pathways (decreased
basal and maximal respiration) in
DJ-12/2 cells compared with WT
cells, ROS emission increased normally
in DJ-12/2 cells in response to a
longer exposure to TNF (24 h)
suggesting another mechanism may
explain increased ROS after
proinflammatory stimulation.

DJ-1 Reduces NADPH
Oxidase–Dependent ROS Generation
ROS generation by the NADPH
oxidase complex is critical in host
defense. The NADPH oxidase is a
multisubunit complex consisting of two
membrane proteins, p22phox and the
catalytic subunit, Nox2 (gp91phox), and
the cytosolic proteins, p47phox, p67phox,
p40phox, and Rac-1. We first assessed
whether DJ-1 deficiency resulted in
regulation of the subunits of the NOX
complex. Expression of Nox2 (gp91phox)
mRNA (Figure 6A) and Nox2 and
p47phox protein were increased in DJ-12/2

versus WT BMMs at baseline and in
response to LPS (Figure 6B). In parallel,
knockdown of DJ-1 expression (see
Figure E6A) in WT BMMs resulted in
increased Nox2 and p47phox protein
expression after LPS stimulation (Figure 6B).
Conversely, overexpression of DJ-1
(see Figure E6A) attenuated Nox2 and
p47phox expression (Figure 6C).
NADPH oxidase activity (see Figure E7A)
was also increased in DJ-12/2 BMMs.
Treatment with diphenyleneiodonium,
an inhibitor of NADPH oxidase,
normalized ROS burst in WT and DJ-12/2

BMMs (see Figure E7B). Phosphorylation
of p47phox mediates interaction of the
various NADPH complex and Nox2
activation (45). Phosphorylation of p47phox

is enhanced in DJ-12/2 BMMs after
stimulation with LPS or live E. coli
bacteria (EB) (Figure 6D). This was
replicated in WT BMMs treated with
DJ-1 siRNA (see Figure E7C).

Figure 3. (Continued). variance). (B) Flow cytometric analysis and bar graph of activation surface markers on M1 and M2 macrophage subsets. F4/80-
positive wild-type (WT) (black) and DJ-12/2 (gray) peritoneal cells were assessed for CD80 and CD206 receptor expression. (C) Real-time polymerase
chain reaction results for changes in the expression of mRNA for inducible nitric oxide synthase (iNOS), arginase 1 (Arg1), and Ym1 normalized to
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in WT and DJ-12/2 bone marrow–derived macrophages (BMMs) 24 hours after LPS. Data are
presented as means6 SEM (n = 3 per group; *P< 0.05; **P< 0.01; two-way analysis of variance). (D) Representative Western blot showing iNOS and
Arg1 protein expression in WT and DJ-12/2 BMMs after 8 and 24 hours of LPS treatment. Gels are normalized to b-actin expression. (E) Densitometry
analysis showing quantification of iNOS protein expression at 8 and 24 hours. Data are presented as means6 SEM (n = 3 per group; *P< 0.05;
**P< 0.01; two-way analysis of variance). C = control; cfu = colony-forming unit; FITC-A = fluorescein isothiocyanate–A; PE-A = phycoerythrin-A.
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Figure 4. Effect of DJ-1 deficiency on bacterial clearance and phagocytosis. (A, top) Representative images of wild-type (WT) and DJ-12/2 peritoneal cells
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Figure 5. Adoptive transfer of bone marrow–derived mononuclear cells (BMCs) and role of DJ-1 in mitochondrial respiration. (A) Schematic of adoptive
transfer of DJ-1–deficient BMCs in wild-type (WT) mice exposed to sham or cecal ligation and perforation (CLP) surgery. (B) Percent survival of WT mice at
7 days (fluid resuscitation, and buprenorphine and imipenem-cilastatin administration) after CLP-induced sepsis with administration of WT and DJ-12/2

BMCs 6 hours after sham or CLP surgery (*P< 0.05; Student’s t test comparing CLP1WT BMCs vs. CLP = DJ-12/2 BMCs). (C) Representative
fluorescent images of DJ-1 expression (red), mitochondria (green), merged (yellow), and with nuclear (blue) immunostaining at baseline and after 24 hours
of LPS (1 mg/ml) treatment (captured on Olympus Upright Microscope at magnification of 360). Assessment of cellular energetics and oxidative stress.
(D) Representative oxygen consumption rate (OCR) curve in WT and DJ-12/2 bone marrow–derived macrophages (53 104) after 6 hours of saline or
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DJ-1 Binds to p47phox Disrupting
NADPH Oxidase Complex and
Promoting Nox2 Degradation
We investigated if DJ-1 inhibits ROS
production by binding to components of
the NADPH oxidase. P47phox subunit
coimmunoprecipitated with DJ-1 at
baseline and after LPS stimulation in
both BMM and RAW cells (Figure 6E)
indicating DJ-1 binds to p47phox. We did
not observe binding of DJ-1 with the
Nox2 or p67phox subunits. We postulated
binding of DJ-1 to P47phox could result in
decreased ROS production because of
loss of complex stability. After inhibition
of de novo protein synthesis with
cycloheximide, Nox2 protein levels
decreased over time in WT while
remaining stable in DJ-1 BMMs exposed
to E. coli bacteria (Figure 6F; see Figure
E7D). Absence of DJ-1 reduced Nox2
ubiquitination after E. coli treatment
(Figure 6G; see Figure E8E). The role
of DJ-1 in complex disassembly was
further supported by the evidence that
cotreatment with the proteasome
inhibitor, MG132, partially prevented
decreased Nox2 protein expression in
DJ-12/2 BMMs (Figure 6H).

Absence of DJ-1 Also Protects from
Pseudomonas aeruginosa Peritonitis
To address whether absence of DJ-1 was
protective in other bacterial infection
models, we administered Pseudomonas
aeruginosa intraperitoneally to WT and
DJ-12/2 mice. In line with our previous
results, DJ-12/2 mice were resistant
to Pseudomonas-induced mortality
compared with WT mice (Figure 7A).

DJ-1 Expression Modulates Bacterial
Killing and Respiratory Burst in
Human Phagocytes
We further investigated the role of DJ-1 in
human cells. DJ-1 protein expression was
increased in THP-1 (human monocytic)
cells exposed to LPS and in PMNs from
patients with sepsis (Figures 7B, 7D,
and 7E). Knockdown of DJ-1 in phorbol
12-myristate 13-acetate-activated THP-1
cells (see Figure E6B) resulted in increased
E. coli or S. aureus bacterial killing
(Figure 7C). Similarly, DJ-1 knockdown in
PMNs from patients with sepsis (n = 5)
modestly increased baseline respiratory
burst in septic PMNs (Figure 7F). This
increased after administration of phorbol
12-myristate 13-acetate, an activator
of respiratory burst (Figure 7F).
Conversely, 1 hour pretreatment with
diphenyleneiodonium, an NADPH oxidase
inhibitor, abolished the enhanced
respiratory burst in DJ-12/2 BMMs
(Figure 7F). Silencing DJ-1 in PMNs (septic
or healthy) did not significantly alter cell
death (apoptosis; see Figure E6C).

Circulating DJ-1 Levels Are Increased
and Correlate with Markers of Sepsis
Severity and Organ Dysfunction in
Patients
To determine if increased DJ-1 levels were
also associated with poor outcomes in
humans, we further identified elevated
circulating levels of DJ-1 in patients with
sepsis (n = 60) compared with healthy
control subjects (n = 12) (Figure 8A).
Higher DJ-1 protein levels were associated
with increased mortality (Figure 8B),
documented bacteremia (Figure 8C), and
higher multiorgan dysfunction scores on

day of study enrollment (Figure 8D).
Specific components of the multiorgan
dysfunction score also showed significant
correlations with DJ-1 levels (see Figure
E9). Collectively, these findings indicate
DJ-1 is a potent antioxidant that plays a
critical role in human sepsis and clinical
outcomes.

Discussion

Our findings reveal a role for DJ-1 in the
innate immune response to bacterial sepsis
and pathogen clearance. Patients with sepsis
who die or develop significant organ
dysfunction have increased circulating DJ-1.
Absence of DJ-1 in vitro and in vivo
resulted in increased ROS and
inflammatory mediator expression. Despite
an increased proinflammatory and
prooxidant state, DJ-1 deficiency confers
striking resistance to polymicrobial sepsis
in a resuscitated and antibiotic-treated
clinically relevant animal model of sepsis.
Even in the absence of antibiotics, absence
of DJ-1 protects against polymicrobial
sepsis-induced mortality by inducing ROS-
mediated effective and rapid bacterial
clearance. Moreover, adoptive transfer of
DJ-1–deficient BMCs can confer resistance
to bacterial sepsis to WT mice. Here we
demonstrate that in innate immune cells,
DJ-1 expression increases after an
inflammatory (LPS) or bacterial stimulus.
Available DJ-1 then binds to p47phox

disrupting NADPH oxidase complex
assembly and/or contributing to Nox2
degradation thereby decreasing ROS
production. Phagocytes that lack DJ-1 are
consequently more efficient at engulfing
and killing bacteria.

Figure 6. (Continued). (n = 3–6 per group; **P< 0.01; two-way analysis of variance). (B, left) Representative Western blot showing increased p47phox and
Nox2/gp91phox protein expression in DJ-12/2 BMMs compared with WT BMMs after 24 hours of saline or LPS treatment. (B, right) DJ-1 silencing in
WT BMMs using short interfering RNA against DJ-1 (DJ-1 siRNA) increased expression of p47phox and Nox2 protein expression 24 hours after LPS
administration compared with silencing with control scrambled RNA (ctrl siRNA). (C, left) Representative Western blots showing decreased expression of
p47phox and Nox2 (gp91phox) in WT BMMs overexpressing adenovirus DJ-1 vector (Ad-DJ-1) compared with control adenovirus vector (Ad-Ctrl) after
24 hours of saline or LPS treatment. (C, right) Increased expression of p47phox and Nox2 in DJ-12/2 BMMs is mitigated after reconstitution of DJ-1
levels with Ad-DJ-1 compared with Ad-Ctrl. Gels are normalized to GAPDH expression. (D) Representative Western blot showing anti-p47phox

immunoprecipitated from WT and DJ-12/2 BMMs and probed with antiphosphoserine antibody in samples treated for 24 hours with LPS (left) and 4 hours
with Escherichia coli bacteria (EB) (right). (E) Representative Western blot showing anti–DJ-1 and negative control (NC) IgG immunoprecipitated (IP)
from WT BMMs (left) or RAW 264.7 cells (right) and probed with anti-p47phox, p67phox, or Nox2 antibody in 24-hour control- or LPS-treated samples.
(F, left) Representative Western blot expression of Nox2 and p47phox protein over time (0–4 h) in EB-treated samples after pretreatment with
cyclohexamide (CHX, 10 mg/ml). (F, right) Anti–ubiquitin protein ligase E3 component n-recognin 7 (UBR7) immunoprecipitated from WT and DJ-12/2

BMMs and probed with anti-Nox2 antibody in samples treated with EB with and without CHX at 4 hours. (G) Representative Western blot showing UBR7
immunoprecipitated from WT and DJ-12/2 BMM lysates treated with EB for 4 hours and probed with anti-Nox2 antibody or reciprocal blot showing
Nox2 immunoprecipitated from cell samples and probed with UBR7. (H) Representative Western blot showing Nox2 protein expression at 4 hours with
EB-treated samples with and without pretreatment of CHX (10 mg/ml) and proteasomal inhibitor MG132 (10 mM).
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Regulating ROS balance is vital
for mounting an appropriate immune
response without excessive oxidative
damage to resident host tissues. In
macrophages and neutrophils, bacterial
phagocytosis results in NADPH oxidase 2
complex assembly at the phagosomal

membrane. Membrane (gp91phox/Nox2 and
p22phox) and cytosolic (p47phox, p67phox,
p40phox, and Rac1) subunits come
together leading to an activated complex
capable of generating ROS (46). Generation
of ROS (specifically superoxide)
constitutes a fundamental pathway for

pathogen clearance (31, 46–48). In
this study, we demonstrate that DJ-1
expression impairs host defense against
bacterial infection by substantially
limiting ROS production by the NADPH
oxidase complex. DJ-1–deficient BMMs
had enhanced expression and activity
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Figure 7. DJ-1 expression modulates bacterial killing and respiratory burst in human phagocytes. (A) Percent survival of wild-type (WT) and DJ-12/2 mice
at 7 days with fluid resuscitation and buprenorphine (**P< 0.01; log-rank/Mantel-Cox test) after intraperitoneal (i.p.) injection of Pseudomonas aeruginosa

infection. (B) Representative Western blot showing increased DJ-1 and oxDJ-1 protein expression in THP-1 cells with increasing concentration of LPS
(0.1–10 mg/ml) and tumor necrosis factor (TNF; 1–50 ng/ml) stimulation normalized to b-actin protein expression. (C) Measurement of bacterial killing
activity in phorbol 12-myristate 13-acetate (PMA)-activated human monocytic (THP-1) cells with control siRNA or DJ-1 siRNA by gentamicin protection
assay at 60 minutes after Escherichia coli or Staphylococcus aureus infection. Data are presented as means6 SEM (n = 5 per group; *P< 0.05; **P< 0.01;
analysis of variance). (D and E) Representative Western blot and quantification showing increased DJ-1 protein expression in polymorphonuclear cells
(PMNs) collected from healthy donors or patients with sepsis normalized to b-actin protein expression (**P< 0.01). (F) Respiratory burst in septic PMNs at
24 hours transfected with control or DJ-1 siRNA at baseline (no treatment), or after treatment with PMA, or 1 hour pretreatment with diphenyleneiodonium
(DPI). Data are presented means6 SEM (n = 5 per group; *P< 0.05 compared with control baseline; #P< 0.05 compared with DJ-1 baseline; $P< 0.05
compared with groups treated with PMA only for respective genotypes). CFU= colony-forming unit; Ctrl = control; siRNA = short interfering RNA.
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of the NOX complex. DJ-1 has been
previously shown to regulate Nox4 in
renal proximal tubule cells (49), further
reinforcing the critical role of DJ-1 in
regulating redox status in cells. Moreover,
here absence of DJ-1 also results in
decreased expression of Nrf2-dependent
genes. This is in keeping with our
previous data showing DJ-1 protects
Nrf2 from Keap-1-mediated
degradation (43).

In addition to the NADPH oxidase,
the mitochondrial electron transport
chain is an alternative contributor of ROS.
Mitochondrial ROS are recognized as
critical in innate immune activation and
facilitation of antibacterial activity (50, 51).
ROS emission per unit O2 consumed is
highest when OXPHOS flux is lowest,
because membrane potential is high.
Our observations of impaired cellular
bioenergetics in DJ-12/2 BMMs are
consistent with previous findings (52, 53).
In our study, treatment with Bay-11 7082
(specific inhibitor of inflammasome
activation in macrophages) and
mitoTEMPO (to reduce mtROS) seems
to reverse the enhanced phagocytosis
observed in the DJ-12/2 BMMs. Possible
crosstalk between mitochondrial ROS
and NADPH oxidant generation may
contribute to a positive ROS feedback loop
in DJ-12/2 mice (26, 54).

Most studies to date have focused on
the role of DJ-1 as an ROS scavenger
(55, 56). DJ-1, however, has a variety of
other functions including protein
chaperone, protease, RNA binding, and
regulator of autophagy (17, 18, 20, 52,
57–62). It is unclear whether multiple or
specific functions of DJ-1 are also involved.
In addition to its intracellular functions,
DJ-1 is secreted into extracellular
regions (63, 64) but its extracellular role
remains enigmatic. Further studies will
elucidate the role of extracellular DJ-1 in
sepsis.

The role of DJ-1 in the host immune
response has only been recently recognized.
DJ-12/2 mice exhibit augmented passive
cutaneous anaphylactic reactions and
antigen-stimulated mast cell degranulation
(65) suggesting a role for DJ-1 in adaptive
immune response modulation. In addition,
CD32/2 T-cell migration is increased in
DJ-12/2 mice. DJ-12/2 Th1 and Th17
CD31 T-cell subsets had increased
production of IFN-g and IL-17 (66). Lack

of DJ-1 leads to enhanced ROS production,
higher Sgk1 (serine/threonine-protein
kinase Sgk1 or serum glucocorticoid-
regulated kinase 1) expression, and
development of regulatory T cells (67).
DJ-1 deficiency modifies the CD41/CD81

T-cell ratio (67). These data are in keeping
with our findings that absence of DJ-1
promotes early M1 polarization. We
speculate that the enhanced bacterial killing
phenotype conferred by DJ-1 deficiency
may be one explanation for the
conservation of this mutation through
evolution.

Our results differ from those of a
recent report that DJ-1 binding to p47phox

is required for NADPH oxidase-
dependent ROS production (28).
However, those findings are surprising
given the well-established antioxidant role
of DJ-1 highlighting increased ROS and
proinflammatory markers in various
DJ-1–deficient models of inflammation
(25, 40, 49, 58, 68). DJ-1–deficient
astrocytes, for instance, have increased
ROS, IL-6, and iNOS after LPS
stimulation (69). Likewise, bone
marrow–derived mast cells and mice
lacking DJ-1 have higher ROS and TNF
levels after DNP-specific IgE stimulation
(65). These findings and the consistency
of our in vivo and in vitro data establish
DJ-1 as a negative regulator of ROS
production with implications for host
immunity (70, 71). Here we show that
binding of DJ-1 to p47phox acts to inhibit
p47phox phosphorylation, preventing
subsequent activation of the complex and
ROS production. Phosphorylation of
p47phox is a key event in the assembly and
translocation of the cytosolic components
as well as the activation of the NOX
complex (45, 72). Furthermore, in the
absence of DJ-1, Nox2 ubiquitination was
reduced after exposure to LPS or E. coli
bacteria, suggesting that DJ-1 regulates
the stability of the NADPH oxidase
protein. Treating cells with the
proteasome inhibitor MG132 prevented
Nox2 degradation in DJ-1 competent
BMMs. A schematic diagram of our
proposed mechanism is presented in
Figure 8E.

Importantly, human monocytes and
PMNs from patients with sepsis can be
made more efficient in bacterial
phagocytosis and killing by transfection
with an anti–DJ-1 siRNA. Based on our

findings, DJ-1 contributes to a critical
cell protection negative feedback
mechanism to prevent excessive
oxidative stress and inflammation.
Reduced ROS production, however,
significantly affects bacterial killing and
clearance resulting in early mortality
from bacterial sepsis. Interestingly,
deletion of other negative regulators of
ROS and innate immune signaling,
such as NRROS, KLF, and ATF3, also
results in improved outcomes in
acute bacterial infection models
(70, 73, 74). Here we also highlight how
targeting endogenous mechanisms to
maximize early clearance of bacteria
may be beneficial for host survival.
Collectively, our results challenge the
paradigm that morbidity/mortality are
determined by degree or severity of
inflammation alone. These findings
demonstrate dissociation between
sepsis outcomes (organ injury and death)
and inflammation. They also emphasize
that therapeutic strategies designed to
simply decrease ROS and inflammation
in early sepsis may be ultimately
detrimental. This is in accordance with
the current Sepsis-3 definition, which
emphasizes the need to screen and
identify underlying infection, and to
distinguish infection-related organ
dysfunction from that of noninfectious
insults, such as trauma and burns (75).

In summary, our data show that loss
of DJ-1 enhances ROS, inflammatory
responses, and bacterial clearance, resulting
in improved survival from CLP-induced
sepsis. DJ-1 binds to the NADPH oxidase
complex affecting its stability and its ROS-
generating capacity, thereby impairing
optimal ROS production for bacterial
clearance. Furthermore, these observations
provide novel insights into the host response
during systemic bacterial infection that
challenges the conventional paradigm that
outcomes in sepsis are primarily determined
by the severity of the host inflammatory
response. n
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