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Abstract: In the absence of accessible, effective vaccines, the fight against parasitic disease relies mostly on 
chemotherapy. Nevertheless, the considerable side effects, high costs and growing number of refractory cases 
comprise substantial drawbacks. Thus, the search for new antiparasitic compounds remains a high priority. The 
polyamine biosynthesis, conversion and transport pathways offer different targets for selective chemotherapy. 
Polyamine analogues and other antagonists may provide tools in the search for new lead compounds. Light and 
electron microscopy techniques may encompass valuable approaches to elucidate the possible mechanisms of 
action of different antiparasitic compounds, allowing the identification of subcellular target compartments, pre-
sumably establishing the basis for a more rational drug design and/or planning of therapeutic strategies. 
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1. INTRODUCTION 
 Parasitic diseases still comprise the etiology of huge morbidity 
and mortality in many parts of the globe, particularly low resource 
countries. Thus, citizens of wealthy nations, whenever infected in 
developing countries, for military, commercial or touristic pur-
poses, must join the Third World neglected patients and rely on old-
fashioned drugs, often faced with resistant pathogens and associated 
with severe side effects [1-3]. Nevertheless, Chagas disease and 
leishmaniasis are spreading with the wider distribution of the vec-
tors led by global warming [4] and host migrations [5]. Further-
more, tropical diseases such as malaria may be acquired in airplanes 
or airport neighborhoods. Nowadays microbes fly much more rap-
idly and longer, reaching distant nations in a few hours. In a global-
ized world, we must consider a globalized epidemiology. 
 Polyamines (PA) such as spermidine (N-(3-aminopropyl)bu-
tane-1, 4-diamine), spermine (N, N'-bis(3-aminopropyl)butane-1, 4-
diamine) and the diamine putrescine (1, 4-diaminobutane) are ubiq-
uitous, biogenic, low molecular weight, aliphatic polycations that 
play pivotal and pleiotropic roles in processes such as genome tran-
scription, translation, protein regulation, orchestrating cell division, 
differentiation and general functioning [6-7].  
 Spermidine (Spd) and spermine (Spm) were named after their 
early discovery in the human semen. Anthony van Leuwenhoek 
(1632-1723) observed Spm crystals in human semen [8]. Putrescine 
(Putr) and cadaverine (pentane-1, 5-diamine) were so termed for 
their detection in decaying (putrid) material such as corpses (ca-
daveric tissues). However, these rather versatile molecules are 
strongly associated to living organisms [6-7], rather than being 
putrid material, PA are particularly abundant in proliferating cells 
[9], which are, by definition, viable.  
 This fact accounts for the remarkable interest in PA biology in 
cancer cells [10] and parasites [11]. Tumor cells and parasitic or-
ganisms share a number of features [12-13], including evasion  
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mechanisms’ invasive and proliferation capacities and tumors may 
be considered metabolic parasites [14]. 
 Many of these properties are largely regulated by polyamine 
levels, leading to the successful use of anticancer drugs in antipara-
sitic chemotherapy [15] and vice versa [16-18]. Thus, polyamine 
conversion and transport pathways are studied in both cancer and 
parasitic disease models.  

2. POLYAMINES IN CELLS ARCHITECTURE AND FUNC-
TION 
 Conciderable differences in PA distribution are observed 
among mammalian tissues and organs as well as among species [6], 
but most of its biological roles are evolutionarily conserved. 
 PA electrostatic binding to anionic sites on cell membranes may 
stabilize cell surfaces and cytoplasmic organelles such as mito-
chondria, lysosomes etc. [19]. PA binding to phospholipid polar 
head groups and anionic domains of proteins can stabilize red blood 
cell plasma membranes and membrane skeleton, reducing deform-
ability and fragmentation [8, 20]. PA also regulate vesicle traffick-
ing [21], mast cell granule fusion [22-23], but PA per se are also 
able to promote membrane fusion [24]. Polyamines can bind to 
anionic sites in proteins and were shown to modulate the activity of 
ion channels such as glutamate receptors [25], Na+, K+-ATPases, 
phospholipases [19] etc. 
 Microtubule structure is highly conserved in eukaryotes, but 
their functioning is largely modulated by post-translational modifi-
cation, such as acetylation or phosphorylation (also observed in 
other proteins), detyrosination/tyrosination, polyglutamylation, and 
polyglycylation [26]. The covalent binding of spermidine and pu-
trescine to proteins, termed as “polyamination”, has been known for 
over three decades [27], but its biological significance was then 
mostly speculative. Although this intriguing, recently disclosed 
post-translational modification remains largely overlooked, it is 
recognized as a modulator of microtubule stability and resistance to 
Ca2+ as well as low temperatures [28]. Transglutaminase-catalyzed 
polyamination of several glutamine residues on both α and β tubu-
lins stabilizes microtubule in nerve cells. Transglutaminases such as 
TG2 help nucleate and stimulate tubulin polymerization, promoting 
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axon microtubule stability, neurite growth [29], as well as stabiliza-
tion of neuronal connections [30]. 
 The functional role of these polycations in cytoskeleton func-
tioning [31-33] may explain at least in part the role of PA in 
theregulation of cell migration and microvascular sprouting [32, 
34]. DFMO was shown to inhibit epithelial cell migration and this 
effect was reversed by exogenous PAs [35]. PA effects on cell mi-
gration may be brought by cell attachment to extracellular matrix 
[36], focal adhesion kinase signaling [35], cytoskeleton functioning 
influencing both microtubules [33, 37] and actin microfilaments 
[38-39] as well as Rho-dependent responses [35]. 
 Interestingly, polyamine deprivation alters the ER cisternae and 
Golgi apparatus organization affecting actin microfilaments but not 
microtubules [40]. Cell migration may be also modulated by potas-
sium channels [35, 41]. Spermidine/spermine N1-acetyltransferase 
(SSAT) binds to the cytoplasmic portion of α9β1 integrins, where it 
catalyzes the PA acetylation and consequent degradation or excre-
tion. This metabolic event can revert the PA-mediated blockage of 

Kir 4.2 inward-rectifier potassium channels and therefore the in-
ward K+ movement can promote cell migration [42]. 
 Sharp increases in polyamine levels usually precede the cell 
proliferation onset, including cancer, embryo tissues and parasites 
[8]. Polyamine biosyntesis increases are preceded by abruptly en-
hanced activity of enzyme ornithine decarboxylase (ODC, EC 
4.1.1.17), required for liver regeneration [43] and pancreatic integ-
rity [44]. The amino acid L-ornithine may be internalized from the 
extracellular milieu through surface transporters or obtained from 
L-arginine by the action of arginase (EC 3.5.3.1) (Fig. 1). The 
short-lived ODC catalyzes the rate-limiting decarboxylation of 
ornithine giving rise to Putr, which receives an amminopropyl 
group from decarboxylated S-adenosyl-L-methionine (dc-AdoMet), 
forming Spd. The addition of another amminopropyl gives rise to 
Spm. These reactions are catalyzed by aminopropyltransferases 
termed as spermidine synthase (EC 2.5.1.16) and spermine synthase 
(EC 2.5.1.22), respectively. The rapid turnover of ODC, its an-
tizyme and antizyme inhibitor as well as transport and conversion 
systems allow the fine-tuning of polyamine levels [6, 45]. High 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Polyamines pathways within the cell.  
Biosynthesis begins with the decarboxylation of internalized L-ornithine by ODC (1), giving rise to Putr, which receives an aminopropyl group form AdoMet 
in a reaction catalyzed by Spd synthase (2). The formed Spd receives another aminopropyl via Spm synthase (3) forming Spm. Alternatively ornithine may be 
generated from L-arginine by arginase (4). This amino acid may also be a substrate in the NO synthesis. The cytoplasmatic PAs bind to RNA (5) and DNA (6). 
Preformed extracellular polyamines are transported via surface permeases (7), or ingested through caveolae and addressed to acidic vesicles in the cytoplasm 
(8) and bind to surface proteins and lipids (9). The PA are released from receptors by the action of NOS2 and exit the vesicles by pH elevation resultant of 
VATPase inhibition (10). Cytoplasmic PA bind and are incorporated by mitochondria regulating Ca2+ accumulation (11). PA bind to lysosomal membranes 
(12). PA are acetylated by spermidine/spermine N1-acetyltransferase (SSAT) and transferred to peroxisomes (13). The peroxisomal enzyme N1-
acetylpolyamine oxidase (APAO) catalyzes the oxidation of N1-acetylated Spm (14) and Spd (16) generating Spd and Putr, respectivelly. The acetylation of 
Spd by SSAT forms the substrate for APAO (15). The oxidation of N1-acetylpolyamines by APAO (14, 16) produces aldehydes such as 3-acetoaminopropanal 
and H2O2 and the latter in turn leads to the formation of ROS (17). Under stress conditions PA promote the formation (18) of autophagic vacuoles (AV). The 
H2O2 may lead to the formation of hydroxyl radicals via Fenton-like reactions (19). This may cause MPT and thus trigger apoptosis via cytochrome c release 
(20). 
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cellular polyamine levels upregulate the antizyme that inactivates 
ODC, which is targeted to ubiquitin-independent degradation by the 
26S proteasome [46].  
 The polyamine oxidase1* (PAO)-dependent interconversion 
pathway may also furnish Putr and Spd from the higher polyamines, 
i.e. Spd and Spm, respectively [45, 47, 48]. 
 Mice ODC and AdoMet decarboxylase gene knockouts are 
lethal at early embryonic development. Spermidine synthase defi-
ciency causes severe disorders (vide infra), reduced longevity, 
whereas spermine and spermidine may promote longevity reducing 
aging outcomes [49]. Also, nona/centenarians display higher sper-
midine and spermine blood levels [50] and it has been proposed that 
in addition to endogenous biosynthesis, the polyamines required for 
longevity maybe obtained from food [51], and from gut bacteria 
[50, 52]. Nevertheless, probiotic microrganisms such as Lactobacil-
lus rhamnosus GG can via arginine deiminase diminish PA biosyn-
thesis by gastric cells, preventing neoplastic transformation of the 
mucosa [53]. Thus, different human diseases are produced by un-
balanced polyamine metabolism (vide infra), demonstrating that 
polyamines are required for normal mammalian physiology  
[54-55].  
 Although polyamines are usually associated with rapidly prolif-
erating cells, non-dividing villus tip enterocytes display high ODC 
activities [56], indicating different functions for these small versa-
tile molecules. These authors suggested a role for the endogenous 
polyamines in the mitochondrial function (vide infra). In this regard 
putrescine may function as energy source for Escherichia coli [57] 
via ɤ-glutamylputrescine synthetase [58]. 
 The amine positive charges of these molecules at physiological 
pH mediate their electrostatic binding to acidic sites on macromole-
cules including nucleic acids and proteins, as well as phospholipids, 
accounting for their involvement in multiple phenomena of remark-
able relevance in the living cell [6, 59].  
 Cytochemical staining revealed polyamine binding to con-
densed chromatin in dividing cells [60-61], indicating the role of 
these polycations in chromatin compaction via charge neutralization 
[62]. Later polyamines were demonstrated by immunocytochemis-
try in nuclei and nucleoli of different cell types [63].  
 The DNA-binding via phosphate groups lead to the formation 
of DNA-PA aggregates which may play a role in DNA physiology 
[64-66] and may account for its properties in gene expression regu-
lation and a “polyamine modulon” was described in Escherichia 
coli, but similar functions are played in mammalian genes including 
c-Myc and c-Jun [54], activating stress response sequences by in-
duction of stress responsive regulons. The polyamine regulon acti-
vates the production of several transcription factors and other mole-
cules required for cell growth [6]. Chromatin condensation is 
modulated by DNA-binding by Pas [67] and ODC activity is able to 
regulate histone acetyltransferase leading to chromatin histone hy-
peracetylation and influencing gene expression and possibly car-
cinogenesis [68-69]. 
 Spd is the precursor of hypusine, involved in hypusination, a 
post-translational modification of the elongation factor eIF5A, 
regulating protein synthesis [70].  
 Most of the polyamine molecules may be found in association 
with transporter and ribosomal RNA [6] and these polycations can 
regulate the functioning of tRNA, rRNA and mRNA [71]. 
 PA bound to free and endoplasmic reticulum (ER)-bound ribo-
somes were revealed by electron microscopy immunolocalization to 
be mainly found in rough ER cisternae [72-74], whereas the nuclei 
were not labelled, indicating a role in active ribosome stabilization, 
thus regulating protein synthesis, regulating the aminoacyl tRNA 

                                                
1*More recently termed N1-acetylpolyamine oxidase (APAO) 

formation, initiation, extension and translation fidelity [8]. In this 
regard, Spd modulates ribosome subunit dissociation [75]. Both 
Mg²� and Putr may influence RNA stability [76]. The biological 
role of Spm is largely unclear, but it may comprise a Spd storage 
molecule. 

3. TRANSPORT  
 The regulation of cytoplasmic PA relies largely on cell surface 
transporters in both microbial [77] and mammalian cells [78]. In 
mammals, the polymine source is mostly nutritional. Foods such as 
meat are rich in spermine whereas cheese and fruit are rich in putre-
scine [79]. 
 Enteric microbiota also comprises a major PA source and its 
synthesis by murine intestinal bacteria such as Bifidobacterium 
animalis lactis were shown to delay senescence [52], and PA can 
prevent memory impairment in a autophagy-dependent mechanism 
[80-81]. Therefore, diverse organisms evolved PA transport sys-
tems. PA permeases were characterized in Trypanosoma cruzi, 
Leishmania (vide infra) and yeast cells [82]. 
 Different mammalian cell types employ multiple PA transport 
mechanisms. These polycations may be incorporated both via cell 
membranes solute carrier transport system [83] and via lipid raft 
caveolae [84].  
 PA were shown to bind strongly via electrostatic charges to 
proteoglycans such as the glycosylphosphatidylinositol-anchored 
surface heparan sulfate glypican-1, which mediate their uptake by 
mammalian cells [85-86]. PA histochemical detection revealed 
intense cytoplasmic labeling of human granulocytes and secretory 
cells [87-88]. Soulet et al., using BODIPY- and [3H]-labelled Spd, 
demonstrated that PA are incorporated via receptor-mediated endo-
cytosis [89] and accumulated in acidic membrane-bounded com-
partments also largely stained by the lysosome probe lysotracker. 
Afterwards the incorporated PA is released from a putative receptor 
by the action of NO and then transferred to the cytoplasm upon 
vacuolar ATPase inhibition-mediate pH elevation [90]. Amine ac-
cumulation within lysosomes cause osmotic imbalance resulting in 
water entry into the organelle and the pressure exerted on the or-
ganelle lipid bilayer may culminate in lysosomal disrupture, trigger-
ing distinct cell death subroutines (vide infra). Furthermore, 
lysosomes generate ROS via Fe2+ or Fe3+ in the presence of H2O2 
by the Fenton reaction (vide infra) as well as via electron carrying 
in a redox chain involving NADH, FAD, ubiquinone and cyto-
chrome b, keeping the reduced state and proton gradient of the or-
ganelle [91]. 
 Neuron mitochondria and lysosomes were not immunocyto-
chemically stained for PA [72-73]. Nevertheless, mitochondria 
uptake PA (vide infra) and mast cell granules which are considered 
‘‘secretory lysosomes’’ accumulate polyamines [23]. It is notewor-
thy that PA are able to regulate membrane fusion [24, 92] and mast 
cell secretion [93]. In order to act in mammalian neuromodulation 
upon N-methyl-D-aspartate receptors, Spd and Spm are transponted 
into vesicles in neurons and astrocyres via a vesicular polyamine 
transporter (VPAT), encoded by the SLC18B1 gene [94]. In addi-
tion, besides its anti-oxidant properties, PA may exert lysosomal 
stabilization [19] accounting at least in part for its anti-
inflammatory effects [95]. Furthermore, PA, particularly Spd regu-
late cystine efflux from lysosomes [19]. In addition, proteomic 
analysis showed that polyamines are pumped into the acidocalci-
somes, organelles conserved from bacteria to humans [96] and at 
least in a protozoan parasite may be related to lysosomal compart-
ments (vide infra). 
 Remarkably, Putr [97] and PA [98] analogues may be lysoso-
motropic. Different amines [99] and amine-containing drugs [100] 
were reported to be lysosomotropic and amines were detected in 
compartments formed by the endosome-lysosome fusion [101]. 
Synthetic and endogenous amines, including the polyamine me-
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tabolite 3-aminopropanal (3-AP) may be trapped within lysosomes 
[101-102]. The 3-AP accumulation may lead to lysosomal disrup-
ture and therefore either apoptotic or necrotic cell death [69-103], 
including human cells [104]. In this regard, the polyamine oxidase 
inhibitor MDL-72, 527 induces apoptosis of hematopoetic cells by 
lysosomotropic effects [105]. 
 PA may enter the cytoplasm via gap junctions regulating cell 
functions such as astrocytic coupling [106], epithelial cells prolif-
eration and stress response [107] and skin pattern formation in the 
zebrafish Danio rerio [108]. Interestingly the microtubule function 
influenced by PA may promote gap junction formation [37]. It is 
noteworthy that PA are required for actin filaments and microtu-
bules organization [33, 38]. The role of PA such as Spm on cancer 
cell migration may rely not only on the polycation effects on cy-
toskeleton, but also mitochondrial function [109]. 

4. POLYAMINES IN MITOCHONDRIA 
 A new field in biomedical sciences, termed mitochondrial 
medicine [110-112] exploits the understanding of this pivotal or-
ganelle functioning in health and pathologic conditions as a strategy 
in designing and developing innovative therapeutic interventions 
[29, 113, 114].  
 The polyamine role in mitochondrial function may be inferred 
from the transport of these cations in and out the organelle [115] 
and preferential effects of antagonists upon this compartment. 
DFMO causes mitochondrial damage which is reverted by spermine 
addition [56]. Methylglyoxal bis(guanylhydrazone) (MGBG), a 
competitive inhibitor of S-AdoMet decarboxylase, blocks PA bio-
synthesis affects mitochondrial function [59], and thus diminishes 
cell proliferation [116]. In addition mitochondrial polyamine trans-
porters may be targeted by polyamine-conjugated compounds [117-
119]. 
 PA were shown to stabilize mitochondrial membranes [120], by 
different mechanisms i.e. crosslinking anionic groups at phosphol-
ipids and proteins [121], quenching ROS [122] and inhibition of the 
the activity of phospholipase A2, so Spd can repair rat liver mito-
chondria [123]. PA also protect the organelle nucleic acids, as dem-
onstrated by the depletion of mitochondrial DNA by the PA ana-
logue N1, N12-bis(ethyl)spermine [124].  
 PA antioxidant activity may regulate mitochondrial function 
and it was also shown that spermine can scavenge free radicals 
within the organelle [121] promoting oxidative stress resistance 
(vide supra). PA also regulate the Ca2+ and phosphate transport into 
the organelle [19]. Cytoplasmic Ca2+ homeostasis is regulated by 
endoplasmic reticulum, mitochondria and mitochondria-associated 
ER membrane (MAM), wich plays several roles in cell signaling 
and function, including Ca2+ transport, ER stress, mitochondrial 
morphology, autophagy, apoptosis and inflammatory signaling 
[125]. Spm and Spd may enhance Ca2+ accumulation from the cy-
toplasm and even regulate mitochondrial permeability transition 
(MPT) [126] and ODC inhibition may trigger apoptosis [127].  
 The polyamine effects on mitochondria may orchestrate the cell 
death by triggering multiple apoptotic pathways in mammalian 
cells. Polyamines and its oxidation products may respectively pre-
vent and promote MPT [115]. Besides cytochrome c, MPT Result-
ing from megachannel opening leads to the release of endonuclease 
G and Apoptosis Inducing Factor (AIF) [115]. 
 It is noteworthy that MPT is a common event in autophagic, 
apoptotic and necrotic cell death processes [128]. The diamine ag-
matine is incorporated by mammalian mitochondria modulating the 
MPT and thus apoptosis [129]. Polyamine biosynthesis prevents 
tumor necrosis factor α-induced apoptosis by reducing the oxidative 
stress [130]. Nevertheless polyamine deficiency was reported to 
inhibit the release of cytochrome c, preventing camptothecin [131] 
and ischemia-induced apoptosis [132].  

 Tyrosine kinases such as epidermal growth factor receptor and 
Src family kinases were shown to translocate to mitochondria in 
response to different proliferative stimuli. These processes are regu-
lated by mitochondrial PA and oxidative stress as phosphotyrosine 
phosphatases may be inhibited by ROS production [133]. 
 Polyamines appear to be necessary for mammalian cell mito-
chondria functioning and integrity [56], control the mitochondrial 
metabolic rates [126] protect Saccharomyces cerevisiae from oxy-
gen toxicity and preserve mitochondrial function of grown anaero-
bically yeast cells [134]. 
 PA also regulate mitochondrial protein synthesis as Spm pro-
motes fMet-tRNA binding to mitochondrial 55S ribosomal particles 
leading to initiation of RNA translation in the organelle [135]. Spm 
molecules bind to ATP molecules [136], keep high ATP cellular 
levels by down modulating the F1-ATPase activity [115]. PAs were 
preferentially found in the mitochondria-rich midportion of sper-
matozoa [137]. Nevertheless, polyamines may also down regulate 
mitochondrial function [138]. Putr addition enhanced the ATP syn-
thesis in DFMO-treated mammalian cells [139-140]. 
 Different lines of evidence indicate that mitochondria comprise 
valuable targets in chemotherapy for different disorders, including 
cancer [141-142], ischemia-reperfusion injury [143] and parasitic 
diseases [144-146]. Therefore, a better understanding of the mecha-
nisms underlying mitochondrial transport systems and their role in 
cell homeostasis may elucidate the action of lead compounds and 
furnish new strategies for rational drug design, based on the parasite 
cell biology [147-150]. In this regard, the leishmanial drug resis-
tance is a complex, multifactorial phenomenon loc. cit. [151], but it 
is worth mentioning that Leishmania mexicana resistance to pen-
tamidine involves exclusion of the drug from the protozoan single 
mitochondrion [152]. Synthetic naphthoquinones exert trypanocidal 
effects caused by mitochondrial dysfunction [147]. Mitochondrial 
damage or destruction was also observed in parasites incubated 
with sterol biosynthesis inhibitors [153, 154].  

5. POLYAMINES IN STRESS 
 PA are not only implicated in cell proliferation [8], but also can 
regulate cell death by regulating programmed cell death in animal 
and plant organisms [155]. Several cell death mechanisms were 
discovered and characterized in the last decade [156] and many 
signaling events build a complex network encompassing cross-
talking pathways that ultimately determine cell fate [84, 155, 156, 
157]. Polyamines may take part in different steps of these mecha-
nisms namely necrosis [158] and apoptosis [133], which may in-
volve distinct cell organelles [159]. Therefore, PA may be involved 
in mechanisms of cell stress triggered by lysosomal [160], mito-
chondrial [133], peroxisomal [161] or endoplasmic reticulum [162] 
pathways.  
 PA may also play an important role in programmed cell death 
mechanisms [6, 163, 164] such as the p53-dependent apoptosis of 
intestinal epithelial cells [165] or in transgenic pancreatitis apopto-
sis and necrosis [166, 167] and programmed necrosis [168]. 
 Furthermore polyamine oxidation leading to H2O2 production 
may cause mitochondrial uncoupling and cytochrome c release 
[169] (vide infra). Such properties motivate its exploitation for 
chemotherapy and/or chemoprevention [170-172]. Interestingly 
polyamine levels can switch cell death from apoptosis to necrosis 
[173]. In addition, polyamines may trigger autophagy [174] that 
may either lead to cell death or enhance cellular and organismal 
lifespan [175-176]. In this regard, Spm was shown to trigger auto-
phagy by p53 activation in HT1080 cells [177]. 
 Polyamines may be considered “stress molecules” [178], play-
ing multiple roles in response to drug-induced [179-181], tempera-
ture [182-183], radiation [184], UV irradiation [185] acid [186] or 
osmotic stress [187] as well as biotic and abiotic stress tolerance in 
plants [188-189]. In addition, PA were shown to inhibit the assem-
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bly of stress granules in intestinal epithelial cells modulating apop-
tosis [190].  
 Cells are continuously exposed to oxidative stress as the pro-
duction of Reactive Oxidative Species (ROS) is not completely 
counterbalanced by antioxidant mechanisms involving detoxifying 
molecules such as Glutathione (GSH) and GSH-dependent enzymes 
(e.g. glutathione peroxidase), superoxide dismutase etc. ROS may 
be endogenously produced by H2O2 breakdown. H2O2 is produced 
not only by mitochondria, but also by peroxisomes, endoplasmic 
reticulum P450 system and cytoplasmic oxidases. In peroxisomes 
there are several oxidases [91], including polyamine oxidase 
(PAO).  
 The H2O2 entering lysosomes can in the presence of iron un-
dergo a Fenton reaction leading to the production of hydroxyl radi-
cals (HO•-), which may damage lysosomal membrane [91, 160]. 
Disruption of lysosomal membranes may enhance oxidative stress 
[191] and cause cell death by both apoptosis [192] and necrosis 
[193]. Lysosome-released cathepsins B and D may carry out Bid 
cleavage and so mitochondrial apoptosis. Alternatively, cathepsin D 
may interact directly with proapoptotic Bax triggering apoptosis 
[160]. The macrophage cell death induced by the lysosomal mem-
brane permeabilization was reported to be mediated by apoptosis or 
necrosis, in partial or extensive lysosomal rupture, respectively 
[194]. 
 The basicity of polyamines at physiological pH indicates its 
antioxidant properties within living cells and these molecules act as 
a free radical scavenger quenching ROS [195-197]. Therefore these 
ubiquitous polycations may play a protective role under oxidative 
stress conditions, preventing lipid peroxidation [181, 198, 199], in 
animals [178], plants [200] and microbes [134], including Fungi 
[201].  
 Thus, polyamines may be required for aerobic growth as dem-
onstrated in Saccharomyces cerevisiae [67], reverting oxygen toxic-
ity [134]. 

6. POLYAMINES IN HUMAN PATHOLOGIES  
 Polyamine uptake and metabolism are often associated with 
stress responses in numerous experimental models on both animal 
[202] and plant cells [200-203], regulating amino acid metabolism 
[204]. 
 Changes in PA metabolism was directly linked to solely one 
human disease, i.e. Snyder-Robinson Syndrome (SRS, OMIM 
#309583), an X-linked Mental Retardation Syndrome (MRXSSR) 
caused by mutation on chromosome Xp22, associated with a de-
crease in human Spm Synthase Gene (hSMS) expression and so 
elevated Spd/Spm ratios, SRS may be caused by mutation in hSMS. 
 SRS is characterized by alterations such as mild-to-moderate 
intellectual disability, facial asymmetry, marfanoid habitus, un-
steady gait, thickened lower lip, narrow or cleft palate, nasal dysar-
thic speech, kyphoscoliosis, osteoporosis, hypotonia etc. [205]. 
Spm deficiency provokes Gy (gyro) phenotype in mice also associ-
ated with severe neurological injury [70].  
 The almost complete absence of PA deficiency mutations indi-
cate these polycations are required for life maintenance. Although 
there is only one disease directly interrelated to PA metabolism, 
there is a plethora of diversified connections between PA and nu-
merous diseases. There are over 40 human diseases resulting from 
oxidative stress or displaying oxidative stress involvement in its 
pathogenesis and/or etiology [133]. They include pathologies such 
as cancer, cardiovascular disease [206] HIV Infection [207], neu-
rodegenerative diseases, ulcerative colitis, Down’s syndrome [208], 
autoimmune diseases etc. [209]. Altered PA levels were reported in 
genetic diorders such as psoriasis, Beckwith-Wiedemann Syndrome 
(BWS) and sickle cell anemia [55].  

 Elevated systemic PA during pregnancy and malignancy are 
conceivably associated with cell proliferative activity, whereas 
hyperpolyaminemia is implicated in a number of disorders such as 
liver and renal insufficiencies, infections, rheumatoid arthritis, sys-
temic lupus erythematous etc. [55]. 
 Enhanced putrescine concentration was reported following 
brain ischemia and may play a role in cell damage and neurodegen-
eration [210]. Hypoxia leads to the activation arginase that hydro-
lyzes L-arginine into urea and L-ornithine. Ischemic events shift 
arginine consumption to the formation of ornithine, the polyamine 
precursor, rather than nitric oxide (NO) formation, an adaptation for 
preventing cell damage. Under low pO2 conditions, endothelial 
cells display enhanced protein kinase C (PKC)-α activity, which 
inhinbits nitric oxide synthase (NOS) and stimulates arginine entry 
to polyamine biosynthesis. The TNFα produced during hypoxia 
leads to the formation of ROS that inhibit NOS activity and may 
also stimulate arginase expression. In early reperfusion the poly-
amines produced trigger Ca2+ overload, whereas at late reperfusion, 
the increased NO production may be associated with low PA bio-
synthesis, resulting in cell damage [211].  
 Polyamines may be implicated in the pathophysiology of auto-
immune diseases [212], possibly elevated polyamine synthesis can 
block cellular methylation by competing for S-adenosylmethionine 
(SAM) impairing normal epigenetic control [213]. 
 The formation of reactive aldehydes such as 4-hydroxy-2-
nonenal, malondialdehyde, acrolein are mutagenic causing DNA 
damage t[1]hat take part in the pathophysiology of different human 
diseases [214]. Acrolein is enhanced and may comprise biochemi-
cal markers for cerebral stroke [215], nephritis [216], neurodegen-
erative disorders, including Alzheimer’s disease and Parkinson’s 
disease [217]. 
 Another human disease linked to PA metabolism is keratosis 
Follicularis Spinulosa Decalvans (KFSD), an eventually severe 
dermal disorder affecting skin and eyes, characterized by inflamma-
tory hyperkeratotic lesions in many parts of the tegument.  
 KFSD is a condition caused by mutations enhancing the activity 
of the Sat1 gene coding for spermidine/spermine-N1-acetyltrans-
ferase [54]. Curiously, polyaminergic genes including sat1 may be 
associated with mood disorders, anxiety, and even suicide attempts 
[218-219].  
 Increased polyamine blood and/or urine levels have been impli-
cated in several pathological conditions [220] and particularly neo-
plasisc diseases [221]. Polyamines not only take part in tumor cell 
proliferation but also in metastatic spreading. PA deficiency de-
creases the expression of matrix metalloproteinases, required for 
invasion and diminished the lymphocyte function-associated anti-
gen-1 (LFA-1), inhibiting adhesion and tumoricidal, immune re-
sponses [222]. 

7. POLYAMINES IN PARASITES 
 Different parasitic organisms display remarkably high poly-
amine levels, reaching the mM range and play multiple roles. PA 
exert much the same functions in protozoa and metazoan, as well as 
prokaryotic cells to that in mammalian cells, taking part in cell 
division and chromatin organization. These organic cations also 
regulate mitochondrial function and organization (vide infra). PA 
were found in evolutionary conserved acidocalcisomes [96], which 
may have a lysosome or endosome-related origin in Leishmania sp. 
[153, 154, 223]. Besides parasites (vide infra) polyamines may play 
important roles in free-living amoebae [224]. 
  For comprising stress molecules, PAs may play fundamental 
roles in regulation of pathogen-host interactions [178]. Several 
relevant aspects of parasite PA were focused in this Hot Topic Issue 
as well as in previous comprehensive reviews [225-227].  
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 Microbial polyamines can be instrumental in proliferation 
[228], stress responses [229-231] and pathogenesis and/or virulence 
regulation in Trypanosoma cruzi [232-233], Cryptosporidium par-
vum [234]; Trichomonas vaginalis [235-236] and Leishmania sp. 
[237-239].  
 In this regard, the Leishmania-infected sand flies regurgitate 
proteophosophoglycans that raise L-arginine catabolism and there-
fore the synthesis of polyamines required by the rapidly proliferat-
ing parasites [240].  
 Parasite proliferarion relies on deoxyhypusination of eIF5A in 
Trypanosoma brucei cells [241]. The authors also showed that 
TbeIF5A is required not only for cytokinesis, but also for parasite 
normal morphology and flagellar-cell body attachment. In Tricho-
monas vaginalis, Putr is required for eIF-5A expression, which was 
inhibited by the putrescine analogue 1, 4-diamino-2-butanone 
(DAB). 
 Interestingly DAB enhances T. vaginalis adherence to vaginal 
epithelial cells in vitro, but reduces its cytotoxic activity, by down-
regulating the expression of parasite 65-kDa (TvCP65) and 39-kDa 
(TvCP39) cysteine proteinases [236, 242, 243] both implicated in 
the cytotoxicity. The authors also reported the role of putrescine in 
the TvCP39 cellular distribution. Interestingly the Trichomonas 
vaginalis intracellular infection with Mycoplasma hominis increase 
Putr levels threefold [244].  
 The reviewed effects of PA as autophagy stimulants may cul-
minate in significant effects on parasitic diseases. Induction of 
autophagy leads to diminished macrophage leishmanial invasion 
[245], but enhanced L. amazonensis intracellular proliferation 
[246]. On the other hand, autophagosome formation promotes host 
cell parasitism by T. cruzi [247], and the autophagosome marker 
LC3 was detected in the parasitophorous vacuole, whereas PA de-
pletion downregulates autophagy in mammalian cells diminishing 
T. cruzi intracellular survival [248].  

8. TRANSPORT SYSTEMS 
 The cell surface transporter proteins have been implicated in 
both uptake and extrusion of drugs. In this regard, malaria parasites 
display versatile transport system. P. falciparum Chloroquine (CQ) 
Resistance Transporter (PfCRT) pumps CQ from the parasito-
pharous vacuole in a H+-coupled antiport mechanism also envolved 
in the uptake of nutrientes such as polyamines and amino acids 
[249]. 
 Drug efflux pumps have a major role in drug resistance, but 
there are multiple mechanisms depending on different genes caus-
ing resistance to diverse drugs as reported for Leishmania parasites 
[250] and different agents may target distinct sites within the para-
site cell, as assessed by electron microscopy [147, 150]. 
 Abnormal Leishmania cell organization and cytokinesis may 
arise from drug-mediated pressure [251]. Interestingly polyamines 
may regulate the microtubule [37] and microfilament functioning 
and thus the cytokinetic machinery. Hence there is mounting evi-
dence that polyamine levels regulate microtubule-associated protein 
4 (MAP4), impeding microtubule assembly and the microtubule-
associated filaments were disorganized in Leishmania promas-
tigotes with MDR phenotype [251].  

9. POLYAMINE TRANSPORT 
 Biogenic amine transport systems may comprise valuable tar-
gets in antiparasitic chemotherapy [252]. Besides polyamine 
trasporters or permeases, these organic polycations may be uptaken 
by endocytosis (vide supra), but this processes has not been de-
scribed in parasitic protozoa. Important contributions have been 
made towards characterizing parasite polyamine transportes or 
permeases, however their contribution towards the polyamine con-
tent of these cells in situ is poorly understood. 

 Putr and Spd transport was reported in Leishmania donovani 
and L. mexicana [253-254]. PA transport was shown to be pH-
dependent and promastigotes and amastigotes transporters display 
pH optima of 7.4 and 5.5, respectively [254]. 
 The diamidine pentamidine, used as a secondary drug of choice 
in leishmaniasis chemotherapy, inhibits the putrescine and sper-
midine uptake non-competitively [254-255]. Not only dia-
mine/polyamine incorporation can lead to drug resistance, but It has 
also been demonstrated that ornithine incorporation by the Try-
panosoma brucei amino acid transporter gene, TbAAT6 
(Tb927.8.5450), results in eflornithine resistance [256]. 
 Although mammalian PA transport was identified earlier, the 
first polyamine transporter identified, was the high-affinity putre-
scine-spermidine transporter LmPOT1 in Leishmania major cloned 
and characterized by Hasne and Ullman [255]. The transporter was 
unequivocally detected by immunoflourescence on both the flagel-
lar and cell body plasma membrane of the promastigote surface.  
 Interestingly parasites cultured with polyamine biosynthesis 
inhibitors such as DFMO displayed enhanced polyamine transport 
in a physiological balanced system. 
 DFMO treatment was reported to enhance putrescine incorpora-
tion by mammalian cells [257-258] and parasitic protozoa such as 
Trichomonas vaginalis [259], Leishmania infantum [260], L. mexi-
cana [261] as well as by the monoxenic trypanosomatid Crithidia 
fasciculata [262]. 
 Multiple mechanisms may be involved in not only the parasite 
response to polyamines, but also the mode of action of polyamine 
analogues. Besides the pro-oxidant effects [263], DAB was re-
ported to inhibit ODC activity in different organisms, such as En-
tamoeba sp. [264-265] as well as in Escherichia coli and Dictyoste-
lium discoideum [266]. This analogue not only blocked L. ama-
zonensis ODC, but also impaired [3H]putrescine uptake [267]. Para-
site preincubation with the diamine analogue remarkably enhanced 
[3H]putrescine incorporation in a protein synthesis-dependent 
mechanism.  
 Culturing of T. cruzi epimastigotes under putrescine-free condi-
tions enhances the diamine transport into parasites by increasing 
Vmax of TcPOT1.1 and decreasing the kM of TcPOT1.2 [268]. The 
putrescine transport enhancement can also be mediated by trans-
porter redistribution to the parasite cell surface [268]. The high-
affinity TcPOT1-mediated diamine transport is required for massive 
intracellular parasitism [269]. The polyamine incorporation from 
the extracellular milieu can play a role in leishmanial in vivo infec-
tion. Nevertheless, Spd synthase activity was shown to be required 
for Leishmania donovani virulence [237]. Although little is known 
about the biological role of Putr, exogenous Putr was demonstrated 
to restore L. donovani virulence in vivo [238]. Therefore, it is rea-
sonable to infer that polyamine transporter up-regulation also take 
place during mammalian host infection. Thus, not only ODC activ-
ity [270] (see also article by Roberts & Ullman in this issue) but 
also PA synthesis and transport mechanisms are required for 
leishmanial virulence.  
 As Trypanosoma cruzi is devoid of both arginase that produces 
ornithine from arginine and ODC activity [271] as well as of argin-
ine decarboxylase, which produces putrescine from arginine it is 
auxotrophic for exogenous putrescine, which is incorporated from 
the extracellular milieu [272]. Thus the DAB effects are presuma-
bly caused by transport impairment.  
 Putr auxothrophy is also observed in Toxoplasma gondii [273] 
and spermidine auxiotrophic metabolism in Giardia, Trichomonas, 
Toxoplasma, Cryptosporidium, Entamoeba and Microsporidia, 
which lost enzymes, involved in spermidine biosynthesis [274]. 
Therefore, these protozoa rely on transport and/or interconversion 
mechanisms [275]. In this regard, the macrophages endogenous PA 
levels are sufficient to support T. gondii intracellular proliferation 
[276]. 
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 Trypanosoma cruzi epimastigotes express two putrescine and 
cadaverine transporters termed TcPOT1.1 and TcPOT1.2 [268]. 
The receptor molecules were immunolocalized primarily at the 
flagellar pocket region. Light microscopy detection produced lim-
ited bona fide localization, whereas the electron microscopy clear 
immunogold labeling images presented demonstrate the presence of 
the transporters at the Golgi apparatus, on the contractive vacuole 
membrane as well as in the spongy associated structure named 
spongiome. Similarly, P. falciparum trophozoites isolated from red 
blood cells incorporate tritiated putrescine and spermidine [277].  

10. PARASITE POLYAMINES AND OXIDATIVE STRESS 
 Immune responses effector mechanisms are largely mediated by 
ROS generated mostly by polymorphonuclear leukocytes, eosino-
phils and macrophages. Bacteria [278], protozoal parasites [279] 
and helminthes [280] evolved antioxidant mechanisms to evade 
oxidative stress. Microbial escape from oxidative stress mediated 
by putrescine/polyamine was reported in E. coli [281], Streptococ-
cus pneumonia [282]. DFMO and DAB in combination with am-
photericin B enhance ROS production and the antibiofilm activity 
Candida albicans [283]. Putrescine was shown to regulate the for-
mation of Escherichia coli persister cells resistant to aminoglyco-
side antibiotic netilmicin [284]. Disruption of the gene-encoding 
PAO in odc mutants of the maize pathogenic fungus Ustilago may-
dis indicates that although not required for cell growth, dimorphic 
transition, putrescine is necessary for protection against salt and 
osmotic stress and possibly virulence [285].  
 Nevertheless, the putrescine accumulation leads to oxidative 
stress-dependent apoptotic murine myeloma cell death [286]. It was 
previously reported that putrescine overproduction leads to rat 
nervous system damage [202] and plant cells hyperexpressing 
transfected mouse odc gene, enhanced putrescine catabolism may 
lead to reduced glutathione levels and enhanced H2O2 production 
[287]. Therefore, polyamines may play an anti-oxidant role, 
whereas their metabolites may be prooxidant. 
 It was previously suggested that polyamines produced in high 
concentrations by the anaerobic protozoan Trichomonas vaginalis 
could play an antioxidant role [288] and neutralize the vaginal 
acidic pH [229]. Oxidative stress produced by pro-oxidant com-
pounds such as H2O2/Fe2+ or nifurtimox may be detoxified by poly-
amines that prevent lipoperoxidation in T. cruzi [230]. Similarly, 
putrescine exerts protective functions on E. coli [289]. Therefore, 
the oxidative stress and protozoal antioxidant defenses may provide 
numerous chemotherapy targets [279]. Although PA may protect T. 
cruzi from oxidative stress [230], rather than damaging, the oxidant 
environment can be useful to some microbes [290] and promotes 
the T. cruzi infection in vivo [291].  
 DFMO treatment alters mitochondrial function in Trypanosoma 
rhodesiense [292] and T. brucei [293]. Spermidine and spermine 
are transported to the mitochondrial matrix, but little is known 
about the participation of putrescine in mitochondria, but the dia-
mine was shown to protect T. brucei respiratory function during 
mitochondria purification, suggesting a possible stabilizing function 
[294]. Putrescine-mediated mitochondrial membrane stabilization 
may comprise a selective strategy for chemotherapy, since in 
mammalian cells spermine was shown to be more effective [120].  
 Putrescine may be involved in stress resistance as suggested by 
the solvent tolerance of Pseudomonas putida expressing redundant 
putrescine catabolism [295]. The diminished lipid peroxidation 
following down modulated reduction of 3-(4, 5-dimethylthiazol-2-
yl)-2, 5-diphenyltetrazolium bromide (MTT), in the DAB-treated 
trypanosomatid parasites Trypanosoma cruzi [296] and Leishmania 
amazonensis [267] maybe, at least partially, explained by the O2

•- 
radical- mediated DAB pro-oxidant effect [263]. As mitochondria 
are O2

•--producing compartments [279-297], mitochondrial destruc-
tion may be part of an antioxidant strategy, controlling cell damage 
[298]. The mitochondrial down modulation may take place in mito-

phagy [299] and/or mitoptosis-like phenomena [300] and the mito-
chondria-produced ROS regulates the autophagy [301] and may 
produce matrix degradation, assessed by EM as observed in T. cruzi 
[296] and L. amazonensis [267] or in Aedes aegypti muscle [302]. 
In this regard, the analogue could simulate putrescine overproduc-
tion triggering the amine oxidase activity and consequent H2O2 and 
toxic aldehtde production as reported in the Rhodococcus opacus 
putrescine homeostasis [303]. It could be associated to reduction of 
glutathione levels and impaired cytoplasmic Ca2+ regulation, caus-
ing multifactorial oxidative damage. The mitochondrial membrane 
location of monoamine oxidase as well as the ROS production by 
this redox organelle, is potentially a target for DAB, and could ex-
plain at least in part the preferential destruction of this compart-
ment. The possibility that DAB effects could be at least in part me-
diated by polyamine/diamine oxidase(s) is supported by the par-
tially reverted lipid peroxidation by aminoguanidine in DAB-
treated G. lamblia trophozoites [304]. It remains to be determined 
whether this analogue was directly oxidized by the enzyme(s) 
and/or altered putrescine catabolism.  
 ROS production within mitochondria, cannot only orchestrate 
cell death, but also inflammatory cytokine production [305]. Thus, 
chemotherapeutic agents targeting polyamine metabolism may 
accomplish extensive effects, not only upon the parasites but also 
on mammalian hosts.  

11. POLYAMINE METABOLIC PATHWAYS AS CHEMO-
THERAPY TARGETS 
 The biosynthesis and conversion pathways as well as transport 
systems differ considerably, between mammalian and parasite cells, 
with some missing steps in the latter, providing several potential 
targets for chemotherapy [225-226] (vide infra). Similarly, the try-
panothione system also poses several possibilities for che-
motherapic interventions [306-307]. 
 Contrary to several bacteria and viruses that infect humans, 
bona fide vaccines are generally not available for parasitic diseases. 
Therefore, chemotherapy remains a crucial tool in controlling these 
infections. Yet, the drugs used for chemotherapy are often not ef-
fective and associated with adverse effects [308]. Thus, innovative 
approaches such as in silico designed and/or combined antiparasitic 
drugs may reveal novel lead compounds, although some of the hi-
tech results have been disappointing in the development of new 
drugs. PA-based approaches for developing new antiparasitic and 
antitumor compounds are largely supported by experimental data 
[309-310].  
 The polyamine metabolic pathways are considerably distinct 
not only between human cells and parasitic protozoa [225-226], but 
also as compared to helminthes [311] and fungi [201], providing 
potential targets for different chemotherapy interventions [228]. 
 The similar properties observed in cancer cells and parasites 
[12-13] indicate that different drugs may have dual use for both 
anticâncer and antiparasitic treatment [312], it should be noted that 
DFMO is effective for the treatment of HAT [313-316] despite 
being developed for câncer chemotherapy, where it is still used for 
prevention of metastasis [310]. Furthermore the inflammatory re-
sponses triggered by viruses, bacteria, protozoa [317] and helmin-
thes [317-320] may lead to carcinogenesis. 
 The striking observation that ODC inhibition by DFMO 
blocked Trypanosoma brucei proliferation and is trypanocidal in 
vivo was seminal in chemotherapy research [321]. Furthermore, this 
drug was shown to cross the blood-brain barrier and was effective 
in human infection by T. gambiense [322]. Therefore the physicians 
of the international philanthropic organization Doctors Without 
Borders/‘Médecins Sans Frontières’ named the compound “resur-
rection drug”. Nevertheless, its production was discontinuated by 
the manufacturer due to its elevated costs. Later eflornithine pro-
duction was restarted for cosmetic purposes [323]. Besides T. 
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brucei, DFMO was shown to inhibit the proliferation of Giardia 
lamblia [324], Trichomonas vaginalis [325], Leishmania infantum 
[326] Plasmodium falciparum [327-328], P. berghei [329] and 
Pneumocystis carinii [330]. 
 The understanding of putrescine synthesis and/or transport is 
required since this diamine incorporation from the extracellular 
milieu or production by ODC, is the first and limiting step in poly-
amine metabolism. As putrescine concentrations in parasites are 
often much higher than in mammalian tissues this versatile mole-
cule may play varied roles [331-332]. 
 Polyamine metabolism may be involved in leishmanial drug 
resistance as proteome analysis showed that antimony resistance in 
L. panamensis is associated to SAMS overexpression [333]. Simi-
larly trypanothione and ODC overexpression were reported in drug-
resistant Leishmania sp. [334]. Thus trypanothione functioning 
provides possible targets for chemotherapy [335]. In addition poly-
amines may be involved in Escherichia coli multiple antibiotic 
resistance [336]. 
 A quantitative proteomic analysis indicates that DFMO resis-
tance by Leishmania donovani may result from the upregutated 
expression of PA metabolic enzymes [337]. Parasites of the Try-
panosomatidae family present a PA-derivative with a central role in 
protozoa redox control. The Spd-glutathione adduct bis-glutathionyl 
Spd, termed trypanothione is a unique species of these pathogens 
[338], indicating that enzymes such as trypanothione reductase may 
comprise selective targets for drug development [339]. 
 Interestingly parasites such as T. cruzi and Toxoplasma gondii 

are unable to synthesize, so are auxiotrophic for putrescine, rely on 
the diamine incorporation from the extracellular milieu and or 
backconversion of internalized Spd/Spm [273]. Thus, chemother-
apy interventions may focus PA transport. In addition the poly-
amine concentrations and presumably function differ considerably. 
Spm and Spd concentrations reach mM levels in mammals, whereas 
Putr levels are much lower (~1µM) [115], corroborating that PA 
and Putr transport and/or synthesis may comprise valuable chemo-
therapy targets. Arginine metabolism may also furnish useful tar-
gets for drug development.  
 Mammalian host cells both synthesize and uptake arginine, 
which may be used as substrate in two different macrophage path-
ways nitric oxide synthase (NOS) and arginase, respectively associ-
ated to M1/M2 phenotype dichotomy, and so, Th1- and Th2-
dependent responses [340-342]. This dichotomy can determine the 
fate of the intracellular trypanosomatids Trypanosoma cruzi [343-
344], Leishmania sp. [239, 345] as well of the apicomplexan 
Toxoplasma gondii [346]. 
 Arginase may supply L- ornithine for ODC activity permitting 
Leishmania amastigote proliferation within the parasitophorous 
vacuole [239]. Visceral leishmaniasis progression is promoted by 
STAT6-dependent host arginase 1 expression [347]. Trypanosoma 
brucei growth maybe induced by host arginase activity triggered by 
parasite release of kinesin heavy chain [348].  
 The increased arginase activity was reported in cutaneous 
leishmaniasis lesions [349] and may be involved in the poor out-
come of Leishmania-HIV coinfections [350] and comprise a marker 
for visceral leishmaniasis progression [351]. Furthermore, natural 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). HLPC of untreated control (upper panel) and DAB-treated (middle panel) Tritrichomonas foetus parasites. The standards are shown in the lower 
panel. Kindly provided by Dr. Nigel Yarlett.  
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products with arginase antagonistic activity such as flavonoids puri-
fied from Cecropia pachystachya or dietary sources may comprise 
leishmanicidal compounds causing mitochondrial DNA disorgani-
zation [352-353].  
 In the case of the extracellular intestinal parasite Giardia lam-
blia (synm. G. intestinalis, G. duodenalis) this competition may 
compromise host cell fuction and tissue architecture. Arginine con-
sumption by the trophozoite reduce the proliferation and differen-
tiation of intestinal epithelial cells [354]. It also diminishes the NO 
production by enterocytes.  
 DAB is reported to inhibit the proliferation of fungi [355-356], 
Entamoeba invadens [265], Entamoeba histolytica [264] and inter-
estingly the E. histolytica ODC is sensitive to DAB, but not to 
DFMO[357-358]. In an early study we noticed that DAB inhibits 
the in vitro proliferation of the trichomonad parasite Tritricho-
monas foetus [359], remarkably reducing the cellular levels of Putr, 
Spd and Spm (Fig. 2). 
 Interestingly, DFMO was only effective upon Trichomonas 
vaginalis parasites cultured in a semi-defined medium [288], 
whereas DAB inhibited the growth of the protozoan even in com-
plex medium [235], presumably because the analogue blocked the 
surface permeases as reported in Leishmania amazonensis [267], in 
which DAB, not only inhibited ODC activity, but also the 
[3H]putrescine incorporation. Thus, such analogues comprise useful 
tools to study putrescine metabolism in pathogens. DAB was also 
reported to inhibit ODC in Escherichia coli [281]. We have noticed 
that besides T. foetus [359]. DAB affects other parasitic protozoa. 
The analogue also diminished the axenic proliferation of Giardia 
lamblia [304], L. amazonensis [267] and Trypanosoma cruzi [296], 
indicating the compound is able to affect both aerobic and anaero-
bic/microaerophilic protozoa. DAB was also shown to inhibit the 

fungal differentiation [360], proliferation/growth of fungi such as 
Candida albicans [357]. 
 Although DAB could be termed a “wide-spectrum microbicide” 
[263] and we have studied its microbicidal activity on different 
parasite species, little is known about its mechanisms of action 
upon distinct cell types. It was previously shown that DAB can 
undergo aerobic oxidation catalyzed by Fe2+ and Cu2+ ions produc-
ing NH4

+ ion, H2O2 and 4-amino-2-oxobutanal (oxoDAB) [263]. 
The superoxide radical(O2

•-)-mediated DAB oxidation may explain, 
at least in part, the extensive mitochondrial damage observed in the 
DAB-treated trypanomasomatids T. cruzi [296] and L. amazonensis 
[267] as part of the oxygen entering this organelle is converted to 
O2

•- [361]. Therefore, DAB could play a double role both producing 
ROS and hampering polyamine-mediated antioxidant mechanisms 
(Fig. 3). 
 The polyamine metabolism of Plasmodium falciparum may 
provide useful targets for antimalarial chemotherapy [328]. ODC 
antagonists such as DFMO used either alone [329, 362, 363] or in 
combination [364, 365] may show microbicidal activity against 
Plasmodium sp. both in vitro and in vivo but are mostly cytostatic 
leading just to growth arrest. It is noteworthy that P. falciparum 
erythrocytes treated with 10 mM DFMO for 73 h presented para-
sites with numerous hemozoine crystals in the cytoplasm [366], 
indicating that PA-deficiency may lead to destabilization of the 
lysosome-like digestive vacuole (or food vacuole), triggering para-
site programmed cell death [367].  
 Thus, the elucidation of Plasmodium polyamine biosynthesis 
and/or transport mechanisms may offer promising new therapeutic 
strategies for malaria [327, 367]. 
 For all that, the search for effective, low costs anti-parasitic 
drugs remains a priority. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The Putr analogue 1, 4-diamino-2-butanone (DAB) is able to inhibit both putrescine transport from the extracellular milieu (1) or its biosynthesis (2) 
by ornithine decarbpxylase (ODC). The diminished spermidine levels (3) may reduce trypanothione production (4), leading to enhanced accumulation of reac-
tive oxygen species (ROS) such as H2O2 and O2

•- (5). Putrescine and/or its analogue may be catabolized via mitochondrial diamineoxidase (DAO), giving rise 
to ROS (6). DAB per se was also shown to produce ROS (7), which may lead to lipoperxidation with formation of malondialdehyde or propanedial (8), ROS-
mediated DNA damage (9), autophagy (10). In addition, the diminished polyamine pool can modulate apoptosis triggering (11) as well as Ca2+ transport to 
mitochondria (12).  
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 Electron microscopy was shown to be useful in improving our 
understanding not only of the protozoan parasite cell biology [149, 
368], but also of the mode of action of diverse antiparasitic com-
pounds [147, 150, 369, 370], including natural products and deriva-
tives permiting for the first time a structure-activity relationship at 
the subcellular level [371]. The ultrastructural analysis permits 
determining the not only the subcellular target sites, but the fashion 
by which they are altered may help elucidating mechanisms of ac-
tion of drugs leads on parasite specific targets and, ultimately, the 
pathogen death [150, 372]. Interestingly ultrastructural analysis of 
drug-treated parasites may expand gene expression data, permitting 
a detailed understanding of action mechanisms at cellular and sub-
cellular levels [373].  

CONCLUSION 
 Taken together the present discussed data indicate that poly-
amines not only take part in pivotal metabolic pathways, but also 
play different roles in cellular organization of both mammals and 
eukaryotic protozoa. It is also demonstrated that ultrastructural 
analysis may be useful in the elucidation of mechanisms of action 
of chemotherapeutic agents. �
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