
B cells modulate T cells so as to favour T helper type 1 and CD8
+

T-cell responses in the acute phase of Trypanosoma cruzi infection

Introduction

Trypanosoma cruzi is an intracellular pathogen that grows

in macrophages, neurons, heart muscle cells and skeletal

muscle cells among other cells.1 Depending on the para-

site strain, the growth predominates in a given cell type.2,3

Therefore, some parasite strains may grow mainly in

macrophages, whereas other strains grow, preferentially,

in skeletal muscle cells.3 Genetic differences among

parasite strains and among hosts may account for this

variation.4,5 The immune response that controls the infec-

tion in peripheral tissue cells other than the macrophages

requires the generation of effector T cells, as these T cells

are able to migrate from lymphoid tissues to virtually

any other tissue and develop a local immune response.6,7

This immune response is usually translated as tissue

inflammation. It has been shown that both CD4+ and

CD8+ T cells are important to control the T. cruzi infec-

tion.8,9 Therefore, understanding the rules and conditions

for T-cell activation and full differentiation to become

effectors during this infection is required to comprehend

the mechanisms of resistance to T. cruzi. In other stud-

ies10,11 we have shown that natural killer (NK) and/or

Vc1+ cd+ T cells may be important in helping conven-

tional T cells to become effectors. However, it has for

long been recognized that antigen-presenting cells such as

macrophages, dendritic cells and B cells might be of cru-

cial importance for the generation and maintenance of

effector T cells.12,13 Besides that, it has being recognized

that B cells may produce different cytokines upon stimu-

lation, including interferon-c (IFN-c), interleukin (IL)-10

and IL-12.14–16 Consequently, B cells may well contribute
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Summary

In this study, we have evaluated the production of pro- and anti-inflam-

matory cytokines and the formation of central and effector memory T

cells in mice lacking mature B cells (muMT KO). The results show that

Trypanosoma cruzi infection in C57Bl/6ml MT KO mice is intensified in

relation to control mice and this exacerbation is related to low levels of

inflammatory cytokines produced during the acute infection and the

lower numbers of central and effector memory CD4+ and CD8+ T cells

generated during the acute phase of the infection. In addition, a marked

reduction in the CD8+ T-cell subpopulation was observed in muMT KO

infected mice. In agreement to this, the degree of tissue parasitism was

increased in muMT mice and the tissue inflammatory response was much

less intense in the acute phase of the infection, consistent with a deficit in

the generation of effector T cells. Flow cytometry analysis of the skeletal

muscle inflammatory infiltrate showed a predominance of CD8+ CD45Rb

low in B-cell-sufficient C57Bl/6 mice, whereas the preponderant cell type

in muMT KO skeletal muscle inflammatory infiltrate was CD4+ T cells. In

addition, CD8+ T cells found in skeletal muscle from muMT KO infected

mice were less activated than in control B-cell sufficient infected mice.

These results suggest that B cells may participate in the generation of

effector/memory T cells. In addition and more importantly, B cells were

crucial in the maintenance of central and effector memory CD8+ T cell,

as well as the determination of the T cell cytokine functional pattern, and

they may therefore account for critical aspects of the resistance to intra-

cellular pathogens, such as T. cruzi.

Keywords: Trypanosoma cruzi; B cells; IFN-c; memory; CD8

584 � 2007 Blackwell Publishing Ltd, Immunology, 122, 584–595

I M M U N O L O G Y O R I G I N A L A R T I C L E



to the regulation of the T-cell functional differentiation

into T helper 1 (Th1) or Th2 cells. The present study was

conducted in order to evaluate the role of B cells in the

recruitment of T cells to establish a peripheral T-cell

effector pool, during T. cruzi infection.

The results presented in this manuscript show that B

cells participate in T-cell activation during the acute

phase of T. cruzi infection. MuMT knockout (KO) mice

were more susceptible to T. cruzi infection, producing less

inflammatory cytokines and fewer central and effector

memory T cells than wild type mice. More strikingly,

infected muMT KO mice did not sustain their peripheral

T cell numbers, having a considerable CD8+ T cell lym-

phopenia. These findings were associated with a dimin-

ished capacity to mobilize inflammatory cells to infected

tissues, probably resulting in the observed increase in

parasite load.

Materials and methods

Animals

C57Bl/6 and C57Bl/6 muMT KO mice (1–2 months old)

were from our animal house or from the Institute of Bio-

medical Sciences (Department of Immunology), Univer-

sity of São Paulo (USP), São Paulo, Brazil. The C57Bl/6

muMT KO original founding colony was kindly provided

by Dr Carlos A. Martinez (Centro de Biologia Molecular,

Universidad Autonoma de Madrid, Spain). The animals

were kept in microisolators and were manipulated

according to institutional ethical guidelines. All the proto-

cols used in this study were approved by the Committee

for Ethics in Animal Experimentation of the University of

São Paulo and of the Oswaldo Cruz Foundation.

Parasites and infection

Groups of 5–10 mice were infected intraperitoneally with

5 · 102 or 5 · 103 blood-form trypomastigotes of the

Tulahuem strain of T. cruzi in 0�2 ml of 0�15 M phos-

phate-buffered saline (PBS). Control mice received the

same volume of PBS. The numbers of parasites were eval-

uated in 5 ll of blood, as previously described.17

In vitro cell culture

Splenocytes were cultured in triplicates at a density of

107 cells/well in 24-well plates (Nunc, Roskilde, Den-

mark) in RPMI-1640 (Gibco, Grand Island, NY) supple-

mented with 10% fetal bovine serum (FBS, Hyclone,

South Logan, UT), 50 mM 2-mercaptoethanol and 1 mM

HEPES (Sigma-Aldrich, St. Louis, MO). Cells were

cultured at 37� and 5% of CO2 for 48 hr in complete

medium alone. Supernatants were kept at )70� until

further experiments.

Cytokine enzyme-linked immunosorbent assay (ELISA)

The levels IL-4, IL-10, IL-12, IL-18 and IFN-c were quan-

tified, by two-site sandwich ELISA assays. Monoclonal

and polyclonal antibodies were obtained from R & D sys-

tems (Minneapolis, MN). The ELISA assays were per-

formed according to manufacturing instructions. The

lower limit detection of IL4, IL-10 and IFN-c in these

tests was 0�01 ng/ml, 0�02 ng/ml, 0�01 ng/ml, 0�005 ng/ml

and 0�1 ng/ml, respectively.

Flow cytometric analysis

The animals were analysed from day 0 to day 30 after

infection. Spleen cells were isolated as described17 and

placed in ice-cold PBS supplemented with 5% FBS and

0�1% sodium azide. Staining was done as previously

described.11 The fluorochrome-conjugated monoclonal

antibodies used (purchased from BD Biosciences-

Pharmingen, San Diego, CA) were: fluoroscein isothiocya-

nate-conjugated anti-mouse CD4 and anti-mouse CD8,

phycoerythrin-conjugated anti-CD44 and anti-CD45RB

and biotin anti-CD62L. Biotin-conjugated antibodies were

revealed by streptavidin-cychrome (Cy). After staining,

the cells were fixed with 1% paraformaldehyde in PBS

and analysed using a FACScan (BD Biosciences, San Jose,

CA). Twenty thousand events were recorded per sample

in an appropriately gated region (lymphocyte gate).

Results were analysed using Flowjo software (FlowJo LLC,

Ashland, OR).

Skeletal muscle mononuclear cells separation

Skeletal muscle from muMT KO or C57Bl/6 infected mice

was sliced in small pieces (less than 2 mm diameter) and

incubated in collagenase (Sigma-Aldrich) at a concentra-

tion of 1 mg/ml, diluted in RPMI for 45 min at 37�. Cell

suspension and remaining tissue was further passed

trough a metal mesh (70 lm pore). Recovered cell sus-

pension was washed three times in incomplete RPMI and

the pellet diluted in 40% Percoll (GE Healthcare Bio-

Sciences AB, Uppsala, Sweden). A discontinuous Percoll

gradient 40/80% was used to separate mononuclear cells

as described before.18 Cells at the 40/80 interface were

recovered, washed three times in incomplete RPMI and

used in further experiments.

Histopathological and quantitative morphological studies

These studies were performed as described before.10,11

In brief, tissue samples were fixed in 4% neutral buf-

fered formalin and processed for conventional paraffin

embbeding on day 20 after infection. The sections

(8 mm) were deparaffinized and stained with haematoxy-

lin and eosin. A single blind evaluation of two sets of
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serial sections from each tissue sample was done using

histometry with the aid of an ‘Integrationsplatte I’ eyepice

(Carl Zeiss MicroImaging Inc, Thornwood, NY). Intact

parasite nests were evaluated in blinded samples by

counting the number of parasites nests (mm2) in 10

non-consecutive sections. The percentage of inflamed area

per section was calculated in relation to the total area of

the section. Thus, the results were expressed as percentage

of inflamed area per section ± SEM (10 non-consecutive

sections from each tissue sample) or nests per five

mm2 ± SD. The slide codes were revealed only after

analysing the sections.

Statistical analysis

Indicated tests were used to evaluate differences

among groups. The P-values � 0�05 were considered

significant.
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Figure 1. B cells help to control parasitaemia. In (a) and (b) the levels of parasitaemia were determined on the indicated days after an initial

infection with 5 · 102 or 5 · 103 trypomastigote forms, respectively (C57Bl/6 mice, closed squares; C57Bl/6 muMT KO mice, closed circles).

Each point represents the mean of the parasitaemia values from mice of the different groups. (c, d) Shows the rate of mortality in the different

experimental groups: C57Bl/6 mice (filled bars) and C57Bl/6 muMT KO mice (hatched bars), n ¼ 10 animals/group in the beginning of the

experiment. The results shown in (a) and (b) were compared in each point using the Mann–Whitney test (*P < 0�05, **P < 0�01). The mortality

rates in (c, d) were compared, using Mann–Whitney U-test.
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Results

B cells help to control parasitaemia

C57Bl/6 muMT KO mice had higher parasitaemia levels

than control, B-cell competent C57Bl/6 mice, when these

mice were infected with 5 · 102 parasites (Fig. 1a). In

addition, there was a delay in the ability to control parasit-

aemia. The mortality ratio was comparable between the

C57Bl/6 muMT KO mice and the control group (Fig. 1c)

and about 25% of the KO mice underwent a chronic infec-

tion phase (not shown). MuMT KO mice infected with

5 · 103 parasites were not able to control parasite numbers

as did the C57Bl/6 control mice (Fig. 1b). However, the

mortality rate was similar in both groups of infected mice

(MuMT KO and C57Bl/6). For instance, in the beginning

of the fourth week of infection 100% of the MuMT KO

and 90% of the C57Bl/6 mice were dead (Fig. 1d).

Spleen cells from T. cruzi-infected C57Bl/6 muMT
KO mice produce less inflammatory cytokines
(IFN-c, IL-12), and similar or increased amounts
of IL-18, in comparison with control mice

IFN-c, IL-12 and IL-18 were spontaneously produced by

C57Bl/6 cultured spleen cells after 20 days of infection
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Figure 2. Spleen cells from T. cruzi-infected C57Bl/6 muMT KO mice produce less inflammatory cytokines (IFN-c, IL-12), and similar or

increased amounts of IL-18, in comparison with control mice. Spleen cells from control or infected C57Bl/6 or C57Bl/6 muMT KO mice were

cultured in vitro in the presence of medium alone. Three to four spleens from each group of mice were pooled and used to prepare the cell sus-

pensions. (a, b, c) The levels of IFN-c (ng/ml), IL-12 (ng/ml) or IL-18 (ng/ml) production by spleen cells from the different experimental groups

after 48 hr of culture. (d, e, f) The amounts of IFN-c (ng/ml), IL-12 (ng/ml) or IL-18 (pg/ml) in the sera from the different experimental groups

(day 30 after infection). Cytokines were measured by ELISA, as described in the Methods section. Columns represent the mean of the amount of

cytokines of triplicate cultures or three to four different serum samples. The data are from one of three experiments with similar results. Mann–

Whitney test was used. (*P < 0�05, **P < 0�01; ND, not detected)
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(Fig. 2). Further stimulation with soluble T. cruzi antigens

or mitogen (concanavalin A, Con A) did not increase,

and in some cases (Con A stimulation) inhibited cytokine

production (not shown). Spleen cells from infected

muMT KO C57Bl/6 mice produced less IFN-c than

spleen cells from B-cell sufficient C57Bl/6 mice (Fig. 2a).

The same pattern was observed for IL-12, which could

not be detected in supernatants of muMT KO spleen cells

(Fig. 2b). IL-18 was produced in similar amounts by sple-

nic cells from control or B-cell deficient mice (Fig. 2c).

The concentration of these cytokines was also assessed in

the sera. IFN-c and IL-12 were found in higher amounts

in the sera from infected C57Bl/6 mice than of muMT

KO mice (Fig. 2d, e). This pattern was observed in three

different experiments on days ranging from the 20th and

30th after infection (data not shown). The amount of

IL-18 in sera was higher in the sera of muMT KO mice

than in those of the control group after 30 days of infec-

tion (Fig. 2f).

Spleen cells from B-cell deficient mice produce higher
amounts of IL-4 and similar levels of IL-10 in
comparison with control mice during the acute phase
of T. cruzi infection

The production of IL-4 was higher in supernatants

obtained by cultured spleen cells from infected muMT

KO mice than from infected C57Bl/6 mice (Fig. 3a).

Spleen cells from infected B-cell deficient mice pro-

duced comparable amounts of IL-10 when compared to

infected control mice (Fig. 3b). IL-4 and IL-10 were

not detected in the sera from infected mice (data not

shown).

T. cruzi-infected B-cell deficient mice have reduced
numbers of CD8+ splenic T cells and impaired
generation of central or effector splenic memory
T cells

Figure 4 shows in bar chart the numbers of splenic CD4+

and CD8+ T cells from the different experimental groups.

There were marked increases in the numbers of CD4+ and

CD8+ T cells in infected wild type C57Bl/6 mice. There

was no change in the number of CD4+ T cells, and a

reduction by half in the number of splenic CD8+ T cells in

infected muMT KO mice in comparison with non-infected

animals. Gated CD4+ or CD8± T cells were analysed for

the expression of markers that characterize central

(CD44high CD62Lhigh) or effector (CD44high CD62Llow)

memory T cells. Contour plots in the lower panels (Fig. 4)

show that the percentages of central and effector memory

CD4+ and CD8+ T cells were increased in non-infected

B-cell deficient mice than in non-infected control mice. By

day 30 after infection, the percentages of central memory

CD4+ T cells increased sevenfold in control C57Bl/6 mice

and only three fold in B-cell deficient mice. The same

pattern could be observed for effector memory CD4+

T cells (fivefold increase in control C57Bl/6 mice versus

less than twofold increase in muMT KO mice; Fig. 4,

upper contour plot panel). Lower panel (contour plots)

shows the percentages of central and effector memory

CD8+ T cells. These results show that B-cell deficient mice
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Figure 3. Spleen cells from B-cell deficient mice produce higher amounts of IL-4 and similar levels of IL-10 in comparison with control

mice during the acute phase of T. cruzi infection. Spleen cells from control or infected C57Bl/6 or C57Bl/6 muMT KO mice were cultured

in vitro in the presence of medium alone. Three to four spleens from each group of mice were pooled and used to prepare the cell suspensions.

(a and b) The levels of IL-4 (pg/ml) and IL-10 (pg/ml) production by spleen cells from the different experimental groups after 48 hr of culture

(day 30th after infection). Cytokines were measured by ELISA, as described in Methods. Columns represent the mean of the amount of cytokines

of triplicate cultures. The data are from one of three similar experiments. Mann–Whitney test, *P < 0�05.
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did not up-regulate, significantly, the percentage of central

or effector memory CD8+ T cells in relation to their previ-

ous, uninfected estate. Control C57Bl/6 mice showed an

increase in the percentages of central (twofold) and effec-

tor (threefold) memory CD8+ T cells along the first

30 days of infection. Lower dot plots in Fig. 4 represent

one experiment where the different groups of mice were

analysed individually for the splenic frequencies of central

and effector memory CD4+ (left) or CD8+ (right) T cells.

The individual analysis confirmed the observations des-

cribed above for pooled spleen cells (contour plots).

B-cell deficient mice have smaller percentages
of activated/memory CD8+ T cells in inflammatory
infiltrates

The analyses of T-cell markers in mononuclear cells

derived from infected skeletal muscle tissues revealed

that CD8+ cells predominated over CD4+ T cells (2 : 1

ratio) in wild type C57Bl/6 mice after 30 days of infec-

tion (Fig. 5; contour plots). On the other hand, CD4+

T cells predominated over CD8+ T cells in B-cell defici-

ent mice. The percentage of CD8+ T cells having low
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levels of CD45Rb molecules was lower in mononuclear

cells derived from skeletal muscle from infected muMT

KO mice than in infected control C57Bl/6 mice (Fig. 5;

histograms). The percentage of CD4+ CD45Rb low in

these cells was comparable in both groups (Fig. 5; his-

tograms). Tissue CD4+ T cells from both groups

showed a remarkable down-modulation of the CD4

molecule when compared to splenic CD4+ T cells (not

shown).

B-cell deficient mice have decreased inflammatory
infiltrate and augmented tissue parasitism during
the acute phase of T. cruzi infection

The percentage of inflamed area in skeletal muscle

tissues was larger in wild type C57Bl/6 mice than in B

cell-deficient mice after 20 days of infection (Fig. 6a).

Figure 6(c, d) illustrates in low magnification muscle

tissues from C57Bl/6 and muMT KO infected mice,

respectively. In addition, the number of intact parasite

nests was increased in muMT KO mice (Fig. 6b). Nests

were also larger and contained more amastigote forms

in muMT KO mice than in B-cell sufficient mice (not

shown).

Discussion

This study was conducted in order to investigate the role

of B cells during the acute phase of T. cruzi infection. We

showed that muMT KO C57Bl/6 mice infected with the

Tulahuem strain of T. cruzi had increased levels of para-

sitaemia, but were still able to control the acute infec-

tion when infected with low numbers of the parasite

(5 · 102). In addition, these mice showed equivalent

mortality ratios when compared to controls during the

acute phase of the infection, thus indicating that the lack

of B cells may, in part, be compensated by other infec-

tion-controlling mechanism during this phase of the

infection. However, infection with higher numbers of par-

asites (5 · 103) resulted in uncontrolled parasitaemia in

B-cell deficient mice. Yet, in this case, the mortality ratio

was not different from control B-cell sufficient mice. Pre-

vious studies have shown that antibodies against T. cruzi

antigens could play an important role in the control of

the infection.19,20 It has being demonstrated that anti-

T. cruzi antibodies of some immunoglobulin G (IgG) iso-

types are very efficient to fix complement and clear the

parasite,21 thus suggesting that parasite-specific IgG is an

important component of the immune response that
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controls the infection. Although muMT mice lack B cells,

we were able to detect very low levels of non-IgM/non-

IgG specific antibodies to T. cruzi (data not shown).

Therefore, we may not formally exclude the role of speci-

fic antibodies of other classes, rather than IgM and IgG,

in the early control of parasitism in muMT mice infected

with low numbers of T. cruzi. It has being shown that

muMT KO mice produce IgA22 and this may well be the

case in this experimental model. In spite of that, muMT

mice showed increased parasitaemia levels in all studied

situations, clearly showing an important role for B cells

and possibly antibodies in the early control of parasite

multiplication.

The production of pro-inflammatory cytokines such as

IFN-c and IL-12 is of crucial importance to control intra-

cellular parasites.23,24 The T-cell functional pattern (Th1

or Th2) developed in the course of an infection usually

relates to host-resistance or susceptibility.7 Th1 cells
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Figure 6. B-cell deficient mice have decreased inflammatory infiltrate and augmented tissue parasitism during the acute phase of T. cruzi infec-

tion. Wild-type C57Bl/6 or muMT KO C57Bl/6 mice were infected i.p. with 5 · 102 trypomastigote forms of Tulahuem strain of T. cruzi. Quan-

titative analysis of inflammatory infiltrates (a) and the numbers of intact T. cruzi parasite nests (b) in skeletal muscle tissues were evaluated in 10

non-consecutive histological sections obtained from mice at day 20 after infection, as described in Materials and Methods. Results are shown as

mean ± SD. Student’s t-test was used to compare indicated groups. Two and three asterisks indicate that differences are statistically significant

(P � 0�01 and P � 0�005, respectively) between the indicated groups (n ¼ 8–10 mice/group). Representative skeletal muscle sections from wild-

type C57Bl/6 and muMT KO C57Bl/6 infected mice (c and d, respectively) (magnification · 100) are shown. Similar results were obtained in

four independent experiments.
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induce inflammatory responses, whereas the other func-

tional pattern (Th2) has an anti-inflammatory regulatory

activity with a major impact in up-regulation of antibody

production.25 For CD8+ T cells this situation is less clear,

but some studies suggest that this T-cell population could

be divided in at least two different functional patterns

depending on the production of IFN-c or IL-10.26 It has

being shown that IL-12 produced by dendritic cells or

macrophages and/or IL-18 may favour the development

of T cells that secrete IFN-c (Th1).27 On the other hand,

IL-4 production favours the appearance of Th2 immune

responses which may lead to the production of large

quantities of IL-10, a cytokine that down-regulates cellu-

lar immune responses by diminishing the activation of

dendritic cells and the ability of macrophages to kill

microorganisms.28 Additionally, it has being shown that

IL-4 promotes susceptibility in T. cruzi infection.29 IL-4

may be also important in inducing the secretion of trans-

forming growth factor-b,30 a cytokine that also down-

regulates antigen-presenting cells31 being involved in the

reduction of resistance to T. cruzi.32 In fact, it was

observed in the work described herein that spleen cells

from T. cruzi-infected muMT KO mice secrete more IL-4,

similar amounts of IL-10 and less IFN-c and IL-12 during

the acute phase of the infection, in comparison with

spleen cell from infected control mice. In addition, a

strong reduction of Th1 cytokine levels was also found in

muMT sera during the acute phase of T. cruzi infection.

IL-18 has also being related to the Th1 pattern.33 How-

ever, infected muMT KO mice, which had an impaired

Th1 response, produced equal or increased amounts of

IL-18 during the acute infection, when compared to

infected wild-type C57Bl/6 mice, arguing against a major

role of this cytokine during the acute T. cruzi infection,

as suggested before34 and indicating therefore that IL-12

is the major cytokine favouring the Th1 pattern in this

model. These results may point out that a different class

of immune response, tending to a Th2 pattern, was pref-

erentially mounted by infected muMT KO mice, thus jus-

tifying, at least in part, the increased susceptibility to

T. cruzi showed by these mice and implicating B cells in

the promotion of a Th1-type T-cell polarization during

the infection.

The control of T. cruzi infection by the host immune

system also requires the generation of activated/memory

or effector T cells.10,35–37 Effector T cells are able to

migrate from secondary lymphoid tissues to many other

tissues in the infected organism and secrete a number of

different cytokines, including IFN-c or IL-4 and IL-10.38

However, very little is known about the conditions that

could favour the generation and maintenance of fully

mature effector T cells.39 Effector T cells usually have low

levels of CD45Rb and CD62L molecules and high levels

of CD4440,41 including a characteristic pattern of expres-

sion of chemokine receptors.42 A second population of

memory/activated T cells was described as also bearing

high levels of CD44, but instead are CD62L high.43 This

latter population has been called central memory T

cells.44 Macrophages, dendritic cells and B cells can func-

tion as antigen-presenting cells to activate CD4+ T

cells.12,13,45 It has been shown that B-cell activation by the

cross-linking of their antigen receptors or through their

CD40 molecules may up-regulate costimulatory molecules

such as B7, which in their turn promote T-cell expansion

and differentiation.46–48 The expansion of antigen-specific

B cells during an immune response allow a large number

of these cells to capture and concentrate small amounts

of antigens providing efficacious antigen presentation for

T cells.48,49 In fact, the relationship between CD4+ T cells

and B cells is relatively well known and B cells are des-

cribed to be important in the generation of memory/

activated effector CD4+ T cells in many different

models.13,50–53 However, the activation and differentiation

of CD8+ T cells by B cells is less well documented and B

lymphocytes are apparently important in the contraction

phase of CD8+ T cell responses, being implicated in the

long-term survival of effector CD8+ T cells.54–56 The

results presented here argues in favour of these previous

data, showing that during the acute phase of T. cruzi

infection the generation of central and effector memory

CD4+ and CD8+ T cells was greatly diminished in muMT

KO mice when compared with B-cell sufficient C57Bl/6

mice. In addition, we demonstrated that absolute num-

bers of splenic CD8+ T cells were much lower in infected

muMT KO mice, thus indicating that B cells were

required for the expansion and maintenance of this T cell

subset during the infection. Central and effector CD8 T

cell frequencies did not increase during the acute infec-

tion in muMT mice, differently from what was observed

in control C57Bl/6 mice where the percentage of central

memory CD8+ T cells increased two fold and effector

memory CD8+ T lymphocytes augmented threefold in

relation to uninfected controls. Moreover, a reduction in

the total numbers (twofold) of total splenic CD8+ T cells

was found after 30 days of infection in the muMT KO

mice. Taken together, these results strongly argue that B

cells are of crucial importance to the generation and

maintenance of memory T cells particularly of the CD8+

phenotype, during T. cruzi infection. In accordance with

this view, it has been previously described that immuniza-

tion of muMT KO mice with T cruzi antigens before

infection did not result in protection as it did for in

B-cell sufficient mice.36,57

The mechanism by which B cells exert these non-

redundant and marked effects could involve direct

interactions between T and B cells, with requirement for

specific costimulatory molecules. For instance, the finding

that the blocking of CD27/CD70 interaction results in a

deficient generation of effector T cell memory indicates

that the presence of these molecules on B cells are
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required to regulate T-cell activation.58,59 Therefore, this

type of interaction could be crucial for the generation

and maintenance of effetor/memory T cells during the

acute phase of T. cruzi infection. In addition, it has being

recognized that B cells produce a number of cytokines that

might regulate function and/or survival of T cells.14–16,55

Alternatively, it is possible that B cells influence the

activity of other lymphoid or myeloid populations,60,61

which could, in their turn, provide activation and/or

survival signals for T cells. For instance, it was described

that NK cells and Vc1-bearing cd T cells are involved in

the generation of memory in the conventional T-cell

compartment.10,11 Recently, it was demonstrated that B

cells might influence the composition of NK-cell subpop-

ulations and therefore, their functional activities62 thus

supporting the hypothesis of an indirect effect of B cells

over T-cell activation and/or survival. Evidences that B

cells interact with cd T cells are also available63 thus sug-

gesting the possibility that B cells could mediate their

effects over conventional T cells trough cd T cells. Finally,

it remains possible that B cells, by the secretion of their

major product (i.e. immunoglobulins), could maintain T

cells either by trophic activities mediated by interactions

between the Fc and Fc-receptors60,61 and/or by facilitating

thymic positive T-cell selection and therefore T-cell

replenishing, as previously suggested.60,64,65 Independently

of the precise mechanism by which B cells mediate their

activity, the data presented here demonstrate a pivotal

role of B cells in the generation of memory T cells and

their maintenance during T. cruzi infection.

The acute phase of T. cruzi infection is marked by an

intense tissue parasitism surrounded by an expressive

inflammatory infiltrate composed mainly by CD8+ T cells

and fewer CD4+ T cells in C57Bl/6 mice (Figs 5 and 666).

However, in infected muMT KO mice the ratio CD8+/

CD4+ T cells in skeletal muscle mononuclear cells was

inverted and CD4+ T cells predominate, indicating that,

during the T. cruzi infection, the effect of B cells on these

two T-cell subpopulations is not quantitatively or qualita-

tively identical. In fact, the activation profile of CD8+ T

cells, and not of CD4+ T cells, disclosed differences in

relation to the expression of the activation/memory mar-

ker CD45Rb. In parallel, there was a decrease in the num-

bers of cells infiltrating skeletal muscle tissues and an

increase in the numbers and size of the parasite nests

found in this tissue, thus denoting a less effective anti-

parasite local immune response. These findings may

reflect the lower effector memory CD8+ T-cell activation

and/or, as discussed above, a decrease in the production

of IFN-c.

In conclusion, this study shows that B cells have

important functions during the acute phase of an intra-

cellular parasite infection, by regulating the pattern of the

T-cell mediated immune response and/or the functional

phenotypes of effector/memory CD8+ T cells.
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