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Alzheimer’s disease (AD), the most common form of dementia in late life, will become

even more prevalent by midcentury, constituting a major global health concern with huge

implications for individuals and society. Despite scientific breakthroughs during the past

decades that have expanded our knowledge on the cellular and molecular bases of AD,

therapies that effectively halt disease progression are still lacking, and focused efforts are

needed to address this public health challenge. Because AD is classically recognized as

a disease of memory, studies have mainly focused on investigating memory-associated

brain defects. However, compelling evidence has indicated that additional brain regions,

not classically linked to memory, are also affected in the course of disease. In this review,

we outline the current understanding of key pathophysiological mechanisms in AD and

their clinical manifestation. We also highlight how considering the complex nature of AD

pathogenesis, and exploring repurposed drug approaches can pave the road toward the

development of novel therapeutics for AD.
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INTRODUCTION

Increasing life expectancy has produced a dramatic rise in the number of cases of age-associated
diseases, including dementia. Alzheimer’s disease (AD) is the most frequent cause of dementia,
accounting for 60–80% of all cases (Prince et al., 2016), and epidemiological studies indicate that
AD will become even more incident by midcentury, constituting a major personal and societal
tragedy. AD is primarily a condition of late life, roughly doubling in prevalence every 5 years after
age 65 (Prince et al., 2013), and affects some 47 million people worldwide (Prince et al., 2013).
This number is predicted to increase in the next two decades (Prince et al., 2016). The total cost
of dementia was estimated around $818 billion in 2010 and has been projected to hit $1 trillion
by 2018 worldwide (Prince et al., 2016). This becomes even more dramatic because nearly 60% of
people affected by dementia live in low- and middle-income countries.

AD is a complex disorder. While the vast majority of AD cases are sporadic, affecting individuals
older than 60 years, genetic mutations cause a rare (<0.5%) familial form of AD, whose symptoms
develop earlier, typically between 30 and 50 years of age (Bateman et al., 2010). Further, there is
a marked difference in the incidence of AD between women and men. It is estimated that nearly
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two-thirds of the patients living with AD are women (Alzheimer’s
Association, 2017), raising the intriguing suggestion that there
are biological mechanisms underlying the higher incidence of AD
cases in women that still demand to be investigated.

AD is mainly characterized by progressive cognitive
impairment. However, as disease progresses, other debilitating
non-cognitive symptoms arise, including impaired sleep and
appetite, and neuropsychiatric alterations (e.g., depression
and apathy) (Ishii and Iadecola, 2015; Lanctôt et al., 2017). In
addition, mounting epidemiological studies have supported a
link between metabolic disorders and AD (Ott et al., 1996, 1999;
Steen et al., 2005; Matsuzaki et al., 2010; Takeda et al., 2010;
Crane et al., 2013; De Felice, 2013; De Felice and Lourenco,
2015; Chatterjee et al., 2016). Because AD has been considered
a disease of memory, studies on AD pathogenesis have mainly
concentrated on how memory and cognitive failure develop,
while other symptoms and co-morbidities have remained largely
overlooked.

Thus, it is not surprisingly that precise and reliable biomarkers
are still lacking for early disease diagnosis. Although conclusive
diagnostics has mostly been confirmed through post-mortem
examination, it is now widely accepted that pathophysiological
changes begin to develop decades prior to initial cognitive
symptoms, in a preclinical or presymptomatic stage (Sperling
et al., 2011a,b). Further, the addition of novel biomarkers
to diagnostic criteria has prompted a shift in how AD is
considered as pathological entity, increasing the appreciation
that it should not be regarded as having discrete and defined
clinical stages, but rather as multifaceted process moving along
a continuum (Sperling et al., 2011a; van Maurik et al., 2017;
Figure 1). Relatively accurate diagnosis and timely therapies will
likely be achieved when neuropsychological, fluid and imaging
biomarkers are used in combination (Viola and Klein, 2015;
Dubois et al., 2016; Blennow, 2017).

Although advances in animal and clinical research over
the past few decades have improved our knowledge on the
pathophysiological course of AD, even drugs with successful
preclinical assessment have not been effective in reversing or
slowing down AD progression in large clinical trials. These
constraints may be due to that clinical trials have predominantly
focused on therapies based on anti-amyloid strategies, since the
amyloid cascade hypothesis has been placed at the center of
therapeutic prospection (Karran et al., 2011; Cummings et al.,
2014; Hendrix et al., 2016). Such disappointing outcomes are
also suggestive of problems in translating therapies from rodent
model species to humans (De Felice and Munoz, 2016). The lack
of adequate control for sex differences in animal models adds
up to this translational impedance. Therefore, potential therapies
that work in a sex of one animal species (usually male rodents)
frequently fail to translate to human trials dominated by female
participants (often 2:1 female:male in large trials). Furthermore,
while neuropathological features of AD are widely recognized,
the intricacies of the mechanism involving central and peripheral
derangements have not been clearly defined.

Given that AD holds a complex pathology, it has now
been believed that more effective treatments could be possible
using disease-modifying therapies and drugs targeting multiple

molecular pathways (Castellani and Perry, 2012; Cummings
et al., 2014; Perry et al., 2014; Stephenson et al., 2014). These
should importantly take sex differences into consideration, as
recently noticed (Snyder et al., 2016; Zhao et al., 2016). In this
review, we discuss recent advances in the AD field, as well as
classical and novel mechanisms that might reveal potential new
strategies to treat AD.

MOLECULAR PATHOGENESIS OF AD

Tau Phosphorylation, Amyloid Deposition,
and Aβ Oligomers
The most distinctive features present in memory-associated
brain regions of AD patients are the intracellular neurofibrillary
tangles (NFTs) and the extracellular amyloid plaques. The
major component of the NFTs is abnormally phosphorylated
and aggregated tau protein (Querfurth and LaFerla, 2010;
Medeiros et al., 2011; Morris et al., 2011), thereby destabilizing
microtubules and compromising axonal transport (Querfurth
and LaFerla, 2010; Ittner and Götz, 2011; Medeiros et al., 2011;
Morris et al., 2011; Scheltens et al., 2016). It has been recently
shown that tangles induce neuronal loss and spatial memory
defects (Fu et al., 2017), putatively providing a link between
tau pathology and cognitive deficits in early AD. Although
pathological alterations of tau were thought to be downstream
events of Aβ deposition, it is equally plausible that tau and Aβ act
in parallel to enhancing each other’s toxic effects and initiate the
pathogenic events germane to AD (Small and Duff, 2008; Spires-
Jones and Hyman, 2014; Bennett et al., 2017). Fresh evidence
has also pointed to soluble, diffusible tau oligomers as important
drivers of synaptotoxicity, and possible culprits for the marked
progression of tau pathology across the brain (Fá et al., 2016;
Carrieri et al., 2017; Piacentini et al., 2017; Puzzo et al., 2017;
Reilly et al., 2017).

The amyloid cascade hypothesis suggests that brain
accumulation of the amyloid-β peptide (Aβ), produced by
sequential cleavage of the amyloid precursor protein (APP) by
the β- and γ-secretase enzymes, is a central event in AD (Karran
et al., 2011; Selkoe and Hardy, 2016). Soluble Aβ undergoes
conformational changes to high β-sheet content, rendering it
prone to aggregation into polymeric forms, including soluble
oligomers and larger insoluble fibrils. These fibrils ultimately
deposit into extracellular amyloid plaques in the AD brains
(Stine et al., 2003; Blennow et al., 2006; Finder and Glockshuber,
2007; Lee et al., 2007).

Aβ is physiologically degraded by the peptidases insulin-
degrading enzyme, neprilysin, and by endothelin-converting
enzyme (Qiu et al., 1998; Iwata et al., 2001; Farris et al.,
2003; Leissring et al., 2003). In addition, Aβ can be cleared
out by transportation to peripheral circulation across multiple
pathways, including the blood-brain barrier, interstitial fluid
bulk flow, arachnoid villi, and glymphatic-lymphatic pathways
(Tarasoff-Conway et al., 2015). Additionally, Aβ aggregates
can be phagocited and degraded by microglia, perivascular
macrophages, and astrocytes. Defective clearing systems could
thus lead to an imbalance between production and clearance
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FIGURE 1 | Alzheimer’s disease depicted as a continuum: challenges for therapy. Pathophysiological changes in the AD brain begin many years prior to clinical

manifestations of disease and move along a continuum, spanning from clinically asymptomatic to severely impaired spectra. Although cognitive symptoms are absent

in the preclinical stage, progressive amyloid deposition could drive the patient toward prodromal AD stage, characterized by short-term memory impairment without

affecting activity of daily living. As disease progresses, however, many brain areas and their functions become impaired, culminating in severe memory loss and

metabolic derangements, both of which affect autonomy. Despite the lack of bona fide biomarkers to date, earlier detection will ensure that treatments reach individuals

in a timely manner. Given that therapies initially considered promising have disappointed in clinical trials, current AD research pipeline requires a shift toward the use of

disease-modifying approaches, combination and/or repurposing therapies, and the search for agents selectively targeting specific modulators of inflammation.

of Aβ in the brain, thereby resulting in subsequent neuronal
dysfunction and neurodegeneration (Hardy, 2002).

A growing body of evidence indicates, however, that plaque
deposition is not the sole responsible for the impairments
observed in AD. On the other hand, the notion that Aβ oligomers
(AβOs) are the main toxins responsible for synapse dysfunction
and cognitive deficits in AD has attracted considerable attention
to improve our understanding of the mechanisms of the disease
(Walsh and Selkoe, 2007; Selkoe, 2008; Ferreira and Klein, 2011;
Ferreira et al., 2015; Yang et al., 2017). In this context, plaques
have been thought to comprise a reservoir from which AβOs
diffuse, or may even act sequestering soluble oligomers until they
reach a physiological plateau (Selkoe and Hardy, 2016).

A considerable number of studies has reported that
AβOs accumulate in the brain and CSF of AD patients
(Georganopoulou et al., 2005; Haes et al., 2005; Anker et al.,
2009; Xia et al., 2009; Herskovits et al., 2013; Viola et al.,
2014; Murakami et al., 2016), and are found in association
with synapses in the brains of patients presenting clinical
signals of dementia (Koffie et al., 2009; Bjorklund et al., 2012;
Perez-Nievas et al., 2013; Bilousova et al., 2016), adding clinical
relevance to their role in AD. These studies suggest that
synapse-associated AβOs promote detrimental modifications
in synapse structure and composition, thereby leading to
memory loss. This growing body of evidence props up an

early notion that cognitive decline is not only a result of the
extracellular accumulation of Aβ and intracellular accumulation
of tau but also as a consequence of synapse failure and
loss in AD (Terry et al., 1991; Masliah et al., 1992; Selkoe,
2002).

Despite intense research, the exact mechanisms of how AβOs
exert their toxicity remains to be fully unveiled. Binding of
Aβ aggregates to various receptors may disrupt key neuronal
functions. However, the complete identity of receptors to which
they bind and the underlying signaling pathways still remain to
be fully elucidated (Ferreira et al., 2015).

We now know that AβOs bind to cell surface receptors
and trigger multiple aberrant signaling pathways, including
calcium signaling (Mattson, 2010; Ferreira et al., 2015), oxidative
stress (Smith et al., 1998; Perry et al., 2002; De Felice et al.,
2007), derangements in plasticity-related receptors and increased
glutamate release from pre-synaptic terminals (Roselli et al.,
2005; Shankar et al., 2007; Decker et al., 2010a; Ferreira et al.,
2015). In addition, they promote tau hyperphosphorylation (De
Felice et al., 2008; Jin et al., 2011), impaired axonal transport
(Snyder et al., 2005; Decker et al., 2010b; Miñano-Molina et al.,
2011; Bomfim et al., 2012), and drive inhibition of long-term
potentiation (LTP) and memory impairment (Rowan et al., 2005;
Shankar et al., 2008; Ferreira and Klein, 2011; Ferreira et al., 2015;
Yang et al., 2017).
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Inflammatory Markers in the Brain
AD pathogenesis appears to include strong interactions with
immune mechanisms in the brain. AβOs induce aberrant
reactivity of astrocytes and microglia, in the brains of mice and
non-human primates (Bomfim et al., 2012; Ledo et al., 2013,
2016; Forny-Germano et al., 2014). Recent studies have further
unveiled that disturbances in microglia, as well as interactions
with peripheral immune cells, may play key roles in causing
synapse loss and neurodegeneration in AD (Browne et al.,
2013; Zhang et al., 2013; Baruch et al., 2015, 2016; Guillot-
Sestier et al., 2015; Zenaro et al., 2015; Hong et al., 2016a,b).
These studies are in line with emerging evidence suggesting
that inflammation has a pivotal role in disease pathogenesis, as
markers of inflammation, such as TNF-α, IL-1β, IL-6, and other
cytokines, have been shown to be increased in the brain, CSF, and
plasma of AD patients (Perry et al., 2010; Swardfager et al., 2010;
Czirr and Wyss-Coray, 2012; Alcolea et al., 2014; Heneka et al.,
2015a; Hong et al., 2016a; Salter and Stevens, 2017).

Increased pro-inflammatory signaling resulting from reactive
microglial reduces Aβ clearance, promotes aberrant synaptic
pruning (Lee and Landreth, 2010;Mandrekar-Colucci et al., 2012;
Heneka et al., 2015a,b; Hong et al., 2016b), prompts Aβ and tau
pathologies, and contributes to impaired synapse function (Wang
W. Y. et al., 2015). Importantly, TNF-α-dependent mechanisms
appear to drive memory defects (Lourenco et al., 2013) and
depressive-like behavior in AD mice (Ledo et al., 2016), thereby
indicating a causal role of inflammation in deleterious processes
linked to AD.

Unfolded Protein Response and Defective
Proteostasis
Pro-inflammatory pathways triggered by AβOs, notably via TNF-
α, have been reported to induce neuronal stress (Lourenco et al.,
2013), likely resulting in defective proteostasis. Furthermore,
it has been recently demonstrated that AβOs stimulates eIF2α
phosphorylation (Devi and Ohno, 2010, 2013, 2014; Lourenco
et al., 2013; Ma et al., 2013; Baleriola et al., 2014). In the brain,
eIF2α is a hub that controls protein synthesis-dependent learning
and memory and mantain neuronal integrity in health and
disease. When phosphorylated, however, eIF2α attenuates the
initiation of global protein synthesis (Lourenco et al., 2015).

Aberrant eIF2α phosphorylation and inhibition of protein
synthesis have emerged as major molecular pathways driving
synapse and memory failure in AD models (Costa-Mattioli
et al., 2007; Lourenco et al., 2013, 2015; Ma et al., 2013; Baleriola
et al., 2014). In line with this notion, deletion of eIF2α kinases,
including PKR, PERK, or GCN2 restores memory and synapse
function in mouse models of AD (Lourenco et al., 2013; Ma et al.,
2013).

Abnormal accumulation of misfolded proteins in the
endoplasmic reticulum triggers the unfolded protein response
(UPR), a set of signaling branches aimed at restore cellular
homeostasis (Hetz, 2012; Dufey et al., 2014; Hetz and Saxena,
2017). However, when prolonged, UPR signaling might
compromise neuronal functions, resulting in neurodegeneration
(Lourenco et al., 2015; Freeman and Mallucci, 2016; Hetz and

Saxena, 2017). There is now considerable evidence suggesting
that AD brain display increased markers of UPR (Hoozemans
et al., 2009; Hetz and Saxena, 2017), and that at least the
PERK (Ma et al., 2013) and IRE-1a (Lourenco et al., 2013;
Duran-Aniotz et al., 2017) branches of UPR are involved in
memory defects in AD mice. Further, the chemical chaperone
4-phenylbutyrate alleviates AβO-induced memory defects in
mice (Lourenco et al., 2013), thus highlighting the role of UPR in
mediating neurotoxicity in AD. The combination of misfolded
protein accumulation, activation of brain immune responses and
defective proteostasis might thus comprise the very essence of
synapse and memory failure in AD.

NOVEL PATHOPHYSIOLOGICAL
MECHANISMS IN AD

Scientific breakthroughs during the past decades have expanded
our knowledge on cellular and molecular aspects of AD.
Nevertheless, AD remains largely idiopathic, and therapies that
effectively combat disease progression are still lacking. Given that
AD largely associates with memory loss, it is not surprising that
the vast majority of studies deal with mechanisms implicated
in cognitive deterioration. Hence, much less is known about
how brain regions that are not directly linked to memory are
affected in AD, as well as about mechanisms underlying its major
comorbidities.

Numerous studies have investigated how Aβ impacts the
hippocampus and the cortex (Ferreira and Klein, 2011; Musiek
and Holtzman, 2015), known to be fundamentally involved
in acquisition, consolidation, and recollection of new episodic
memories. However, early studies indicated that brain regions
not necessarily involved in learning and memory might also
be affected in AD. It is noteworthy that AD patients exhibit
significant non-cognitive deficits (summarized in the Table 1)
such as sleep-wake disorders and neuroendocrine alterations
attributable to hypothalamic dysfunction (Prinz et al., 1982;
White et al., 1996; Csernansky et al., 2006).

Impaired Hypothalamic Function
Disturbances in hypothalamic nuclei have been reported in
patients and animal models of AD (Duncan et al., 2012; Lim
et al., 2014; Musiek et al., 2015; Musiek and Holtzman, 2016;
Stevanovic et al., 2017). Since the hypothalamus is responsible
for controlling circadian rhythm, impairments in its function
can at least partially account for sleep disturbances. Nonetheless,
although initial results have already shed light on how sleep
becomes deregulated in AD (Ju et al., 2014; Musiek and
Holtzman, 2016; Kincheski et al., 2017), studies investigating
whether hypothalamic defects mediate sleep disturbances in AD
are still needed.

Derangements in hypothalamic functions play a central role
in peripheral metabolism deregulation and its consequences. For
instance, hypothalamic inflammation and impaired proteostasis
are critical pathogenic events in the establishment of peripheral
insulin resistance in metabolic disorders (Zhang et al., 2008;
Milanski et al., 2009; Denis et al., 2010; Arruda et al., 2011; Thaler

Frontiers in Neuroscience | www.frontiersin.org 4 February 2018 | Volume 12 | Article 37

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Frozza et al. Challenges in AD Research: Beyond Memory

TABLE 1 | Novel pathophysiological mechanisms in AD.

Feature Pathophysiological mechanisms References

Impaired hypothalamic

function

– Aβ deposits in hypothalamic nuclei leading to disturbances in

circadian rhythm;

– Reduced dendrite arborization and neurodegeneration;

– Inflammation driving endoplasmic reticulum stress and insulin

resistance.

Ogomori et al., 1989; Standaert et al., 1991; Duncan et al., 2012;

Lim et al., 2014; Baloyannis et al., 2015; Clarke et al., 2015;

Musiek et al., 2015; Musiek and Holtzman, 2016; Kincheski et al.,

2017; Stevanovic et al., 2017

Metabolic derangement – Reduced cerebral glucose metabolism;

– Altered peripheral metabolism with hyperglycemia and

hyperinsulinemia;

– Defective glucose metabolism and insulin signaling induced by

Aβ;

Chase et al., 1984; Janson et al., 2004; Rivera et al., 2005; Steen

et al., 2005; Lester-Coll et al., 2006; De Felice et al., 2009; de la

Monte, 2009; Matsuzaki et al., 2010; Moloney et al., 2010;

Bomfim et al., 2012; Talbot et al., 2012; Crane et al., 2013; De

Felice, 2013; Lourenco et al., 2013; De Felice and Ferreira, 2014;

Clarke et al., 2015

Disturbances in monoamine

signaling and mood

– Aβ induces both depressive-like behavior and decreases brain

serotonin levels;

– Increased microglial activity of IDO might partially explain

reduced serotonin levels;

– Reduced tryptophan and increased quinolinic acid in plasma

might drive depressive-like behavior in AD;

– Alterations in the dopaminergic system, including reduced levels

of dopamine and its receptors might contribute to

hippocampus-dependent memory deficits and reward circuitry

dysfunction.

Gibb et al., 1989; Storga et al., 1996; Burns et al., 2005; Bonda

et al., 2010; Gulaj et al., 2010; Jürgensen et al., 2011; Ledo et al.,

2013, 2016; Romano et al., 2014; Masters et al., 2015; Nobili

et al., 2017

Inflammation – Pro-inflammatory cytokines are elevated in AD brains and

mediate neurotoxic signals;

– Brain inflammation underlies defective neuronal insulin signaling

and peripheral metabolic deregulation;

– Inflammation may drive synaptic failure in the monoaminergic

systems, thereby linking cognitive and non-cognitive symptoms

found in AD patients.

Heneka and O’Banion, 2007; Bonda et al., 2010; Lee and

Landreth, 2010; Swardfager et al., 2010; Bomfim et al., 2012;

Czirr and Wyss-Coray, 2012; Ledo et al., 2013, 2016; Lourenco

et al., 2013; Alcolea et al., 2014; De Felice and Ferreira, 2014;

Morales et al., 2014; Clarke et al., 2015; Heneka et al., 2015a,b;

Yirmiya et al., 2015; Hong et al., 2016a,a; Santos et al., 2016;

Nobili et al., 2017; Salter and Stevens, 2017

Aβ, amyloid-β peptide; AD, Alzheimer’s disease; CNS, central nervous system; IDO, indolamine-2,3-dioxygenase; T2D, type 2 diabetes.

et al., 2012; Valdearcos et al., 2015). Nonetheless, very few studies
so far investigated hypothalamic dysfunction in AD.

Early post-mortem studies identified Aβ deposits in
hypothalamic nuclei of AD patients (Ogomori et al., 1989;
Standaert et al., 1991), and neurodegeneration with marked
retraction of dendrites in early AD (Baloyannis et al.,
2015). Further, hypothalamic endoplasmic reticulum stress,
inflammation, and insulin resistance were demonstrated in
AβO-injected mice and non-human primates (Clarke et al.,
2015). Dysfunction triggered by AβOs in the hypothalamus
associated with development of persistent peripheral glucose
intolerance, which was further demonstrated in several
transgenic mouse models of AD (Clarke et al., 2015; Vandal et al.,
2015; Stanley et al., 2016), and in human patients (Craft et al.,
1992).

Defective Glucose Metabolism and Insulin
Signaling
Altered peripheral metabolism with hyperglycemia and
hyperinsulinemia, which are cardinal features of type 2
diabetes (T2D), were recently found to positively correlate
with development of AD-like brain pathology in humans
(Matsuzaki et al., 2010; Crane et al., 2013). Conversely, AD has
been associated with increased T2D risk (Janson et al., 2004),
suggesting that the connection between AD and T2D may

comprise a two-way road. AD progression positively further
correlates with reduction of cerebral glucose metabolism in the
forebrain, including the posterior parietal lobe and portions of
temporal and occipital lobes (Chase et al., 1984).

An important player accounting for impaired glucose
metabolism in AD could arise from defects in insulin signaling
pathways. AD brains exhibit lower levels of insulin and reduced
insulin receptor (IR) expression and sensitivity (Rivera et al.,
2005; Steen et al., 2005; Talbot et al., 2012). Further, impairments
in insulin signaling downstream machinery have been reported
in post-mortem brain tissue and in animal models of AD
(Steen et al., 2005; Lester-Coll et al., 2006; de la Monte, 2009;
Moloney et al., 2010; Bomfim et al., 2012; Craft, 2012; Talbot
et al., 2012; Lourenco et al., 2013; Clarke et al., 2015). Recent
studies have shown that AβOs are the toxins linked to impaired
hippocampal insulin signaling by promoting internalization and
cellular redistribution of insulin receptors, blocking downstream
hippocampal insulin signaling (De Felice et al., 2009; Ma et al.,
2009; Bomfim et al., 2012). Such body of evidence has established
novel molecular parallels between AD and T2D.

The precise molecular mechanisms connecting impaired
glucose metabolism and insulin signaling to AD pathogenesis
remain to be fully determined. Nonetheless, mounting evidence
has pointed to inflammation as a critical player linking AD and
metabolic diseases, including T2D (De Felice and Ferreira, 2014;

Frontiers in Neuroscience | www.frontiersin.org 5 February 2018 | Volume 12 | Article 37

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Frozza et al. Challenges in AD Research: Beyond Memory

Ferreira et al., 2014; Morales et al., 2014; Heneka et al., 2015b).
Overproduction of pro-inflammatory cytokines, notably TNF-α,
is a key feature of the pathophysiology of metabolic disorders
(Hotamisligil, 2006, 2017). Notably, brain inflammation has
recently been proposed to underlie defective neuronal insulin
signaling (Bomfim et al., 2012; Lourenco et al., 2013), as well as
peripheral metabolic deregulation in AD (Clarke et al., 2015).

Disturbances in Monoamine Signaling and
Mood
Mounting evidence supports the notion that microglial activation
and brain inflammation could further underlie mood disorders,
including depressive behaviors (Yirmiya et al., 2015; Santos et al.,
2016). Depression and/or apathy have been reported as frequent
comorbidities in AD patients (Lyketsos and Olin, 2002), and have
been regarded as risk factors for AD (Green et al., 2003; Ownby
et al., 2006; Starkstein and Mizrahi, 2006; Geerlings et al., 2008).

Although clinical and epidemiological studies have revealed a
strong connection between AD and depression, the mechanisms
connecting these disorders at the molecular and cellular levels
have only recently begun to be established. Clues into a
mechanistic link between memory and mood disturbances in
AD came from recent works showing that AβOs induce both
depressive-like behavior and memory deficits in mice and
associate with decreased brain serotonin levels (Ledo et al., 2013,
2016) in a similar way to that observed in transgenic mice
model of AD (Romano et al., 2014). Reduced serotonin levels
may be linked to increased levels and activity of indolamine-
2,3-dioxygenase (IDO) followmicroglial activation. Interestingly,
AD patients were found to have reduced levels of plasma
tryptophan and increased quinolinic acid (Gulaj et al., 2010),
as well as increased IDO immunoreactivity in microglia (Bonda
et al., 2010). Because inflammation plays a significant role in
depression, these findings raise the possibility that AβO-induced
brain inflammation may constitute a common denominator
between cognitive and mood alterations in AD.

Alterations in the dopaminergic system have also been
reported in AD patients and experimental models, including
reduced levels of dopamine and its receptors (Gibb et al., 1989;
Storga et al., 1996; Burns et al., 2005; Jürgensen et al., 2011;
Nobili et al., 2017), and are commonly linked to cognitive and
non-cognitive symptoms of the disease. It has been recently
shown that inflammation and apoptosis take place in the
ventral tegmental area, causing selective degeneration of the
dopaminergic nuclei before senile plaque deposition, tangles or
any sign of neuronal loss in cortical and hippocampal regions in
a transgenic mouse model of AD (Nobili et al., 2017).

Given that dopaminergic neurons from ventral tegmental area
not onlymodulate hippocampal synaptic plasticity (Rossato et al.,
2009; McNamara et al., 2014; Broussard et al., 2016), but also
target the nucleus accumbens and the cerebral cortex (Russo and
Nestler, 2013), dopaminergic degeneration in ventral tegmental
area might largely contribute to the deficits in hippocampus-
dependent memory and reward circuits. These findings may
provide an intriguing explanation to recent observations in
AD patients indicating that the clinical diagnosis of dementia

is associated with early non-cognitive symptoms, such as
depression and apathy (Masters et al., 2015). Overall, these recent
data suggest that inflammation may drive synaptic failure in
the monoaminergic systems, thereby linking the cognitive and
non-cognitive symptoms found in AD patients.

CHALLENGES FOR AD THERAPY

Despite intensive investigation of mechanisms of pathogenesis
in AD during the past three decades, little has been achieved in
terms of effective treatments or approaches to prevent or cure it.
Taking into account the dramatic rise in the number of AD cases,
huge economic and social hurdle will impact the society if no
treatment is developed within the next few years. Additionally,
it is noteworthy that advances in therapeutic strategies for AD
that lead to even small delays in AD onset or progression would
significantly attenuate the global burden of the disease.

Given the conceptual frameshift that occurred in the field in
the past few years, AD has not only been viewed with discrete
and defined clinical stages, but as a multifaceted process moving
along a continuum. Thanks to the evolving biomarker research,
it is now recognized that pathophysiological changes begin many
years before clinical manifestations of AD. For example, changes
in CSF tau levels have been shown to develop ∼15 years before
the onset of clinical AD, while CSF Aβ42 levels may drop even
earlier, up to 20 years before symptom onset (Bateman et al.,
2012; Buchhave, 2012; Villemagne et al., 2013; Fagan et al., 2014).

The spectrum of AD spans from clinically asymptomatic to
severely impaired (Figure 1). However, these boundaries are
challenging, given that separation between healthy aging and
preclinical AD is not well-defined in our current understanding.
This unmet question will likely be addressed in the future, as early
detection biomarkers have become a major research focus.

Sex differences should also be taken into account as a
biological variable in AD pathogenesis as women constitute the
majority of affected people, accounting for nearly two-thirds of
AD patients (Alzheimer’s Association, 2017). Reasons for the
higher frequency of AD among women could be partly explained
by the fact that women live longer. However, late-onset AD
risk is greater in women even after controlling for their longer
lifespan relative to men (Viña and Lloret, 2010). The biological
underpinnings of the increased AD risk in women remain largely
unknown.

Nonetheless, it is now accepted that the perimenopause
to menopause transition disrupts multiple estrogen-regulated
systems, thereby affecting multiple domains of cognitive function
(Brinton et al., 2015; Christensen and Pike, 2015). Indeed, recent
preclinical studies have implicated that a shift in the bioenergetics
system of the brain during menopause onset could serve as an
early initiating mechanism for increased AD risk in the female
brain (Brinton et al., 2015; Mosconi et al., 2017a,b). These
biological variables may lead to increased fatty acid catabolism,
Aβ deposition, and impaired synaptic plasticity (Liu et al., 2008;
Brinton, 2009; Yao and Brinton, 2012), which could serve as a
mechanism that triggers AD (Brinton et al., 2015). As a result, it is
conceivable that disappointing outcomes in clinical trials may be
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partially explained by metabolic differences in women and men.
Therefore, recommendations to include both female and male
animals in preclinical research should be completely embraced
by the research community.

While the amyloid cascade hypothesis has dominated research
for the past 20 years, the shift toward disease-modifying drug
development in the last decade might be imperative to develop
approaches that interrupt the underlying disease processes.

Potential benefits for AD therapy can also emerge from
combination pharmacotherapy. This strategy has proven
effective for several diseases, including tuberculosis, HIV/AIDS,
cardiovascular diseases, and cancer (Perry et al., 2014; Hendrix
et al., 2016), and holds potential to enhance the efficacy of drugs
that are ineffective on their own, but offer synergistic or additive
benefits in combination.

Taking into account the well-known high failure rates in
drug development targeting the central nervous system, strategies
aimed at repurposing already marketed drugs become an
interesting option to speed up drug discovery in AD (Appleby
and Cummings, 2013). Given that metabolic derangements seem
to play a pivotal role in AD, and that a myriad of drugs
for metabolic disease have already been labeled for human
use, repurposing such compounds may have the potential
to accelerate drug development. That is because preclinical
toxicology, human safety, tolerability, and pharmacokinetic
assessments could move faster. Impaired brain insulin signaling
or brain insulin resistance seems play a central role in the
molecular pathogenesis of sporadic AD. Thus, targeting brain
insulin signaling through the administration of drugs that
have already been previously approved for the treatment of
diabetes mellitus, such as insulin and drugs that improve insulin
sensitivity, could expedite their development for the treatment
of AD (Chen et al., 2016). It worthy to note that anti-diabetic
compounds, such as insulin, exenatide, and liraglutide, have
already been tested in ongoing clinical trials (clinical trial ID
NCT01767909, NCT01255163, and NCT01843075, respectively).

Neuroinflammation, especially at the earliest stages, supports
a vicious cycle of microglial activation, release of pro-
inflammatory factors, and neuronal damage. Additionally,
inflammatory mechanisms, such as those driven by TNF-α, may
be orchestrated between the brain and the periphery, providing
a likely link between AD and peripheral metabolic deregulation
(De Felice and Ferreira, 2014; Ferreira et al., 2014; De Felice
and Lourenco, 2015). The important role of neuroinflammation
in AD is further supported by findings that gene variants for
immune receptors, including TREM2, are associated with altered
AD risk (Guerreiro et al., 2013; Heneka et al., 2015a).

A considerable body of evidence supports that inflammation
could be a therapeutically relevant target in AD. Nevertheless,
trials with anti-inflammatory compounds, such as non-steroidal
anti-inflammatory drugs (NSAIDs), peroxisome proliferator-
activated receptor-γ (PPAR-γ) activators, minocycline, and TNF-
α signaling inhibitors have not yet provided exciting outcomes
to date (Calsolaro and Edison, 2016), although lifelong use of
NSAIDs has been associated with reduced risk of developing AD
(Wang J. et al., 2015).

Additional therapeutic approaches with intravenous
immunoglobulins and/or monoclonal antibodies are currently
under evaluation, and results have not been conclusive
yet. These uncertain results could be, to some extent, due
to that anti-inflammatory drugs target generic rather than
specific neuroinflammatory components in AD. Thus, specific
modulators of inflammation at early disease stages will be
essential to understand the potential of targeting inflammation
in neurodegeneration.

CONCLUDING REMARKS

Although our understanding of AD has considerably increased
over recent years, there is a still unmet requirement for
effective therapeutics. Properly diagnosing AD is still one of
the major hurdles in the field, as reliable biomarkers are
lacking. There is fresh and compelling preclinical evidence
that brain regions not necessarily involved in learning and
memory might also be affected in AD, driving its major
comorbidities. As most of therapeutic approaches have had
disappointing outcomes so far, it is time to revisit the science
underlining our current AD canons, and move toward the
search for additional disease mechanisms and keys to treatment.
Inflammation plays a critical role in the pathogenesis of
AD and seems to drive the metabolic derangements that
have been found to positively correlate with disease onset,
leading to the emergence of cognitive and non-cognitive
symptoms.

A deeper understanding of the complex features underlying
major disease symptoms, including behavioral, mood,
inflammation, and metabolic disturbances, may contribute
to the development of novel and successful therapies. Given
the differential prevalence of AD in men and women, sex
differences should also be taken into account when studying
AD pathophysiology, as they might reveal the need for separate
therapeutic approaches. Drugs currently approved for use
in AD are not disease-modifying, only confer mild and
transient symptomatic management. Intervention at earlier
stages using disease-modifying and combination therapy
comprised of repourposed drugs and anti-inflammatory
agents could pave the road toward successful outcomes in AD
therapy.
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