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Inferring population dynamics 
of HIV-1 subtype C epidemics 
in Eastern Africa and Southern 
Brazil applying different Bayesian 
phylodynamics approaches
Daiana Mir   1, Tiago Gräf   2,3, Sabrina Esteves de Matos Almeida4,5,6, Aguinaldo Roberto 
Pinto7, Edson Delatorre   1 & Gonzalo Bello   1

The subtype C Eastern Africa clade (CEA), a particularly successful HIV-1 subtype C lineage, has seeded 
several sub-epidemics in Eastern African countries and Southern Brazil during the 1960s and 1970s. 
Here, we characterized the past population dynamics of the major CEA sub-epidemics in Eastern Africa 
and Brazil by using Bayesian phylodynamic approaches based on coalescent and birth-death models. All 
phylodynamic models support similar epidemic dynamics and exponential growth rates until roughly 
the mid-1980s for all the CEA sub-epidemics. Divergent growth patterns, however, were supported 
afterwards. The Bayesian skygrid coalescent model (BSKG) and the birth-death skyline model (BDSKY) 
supported longer exponential growth phases than the Bayesian skyline coalescent model (BSKL). The 
BDSKY model uncovers patterns of a recent decline for the CEA sub-epidemics in Burundi/Rwanda and 
Tanzania (Re < 1) and a recent growth for Southern Brazil (Re > 1); whereas coalescent models infer 
an epidemic stabilization. To the contrary, the BSKG model captured a decline of Ethiopian CEA sub-
epidemic between the mid-1990s and mid-2000s that was not uncovered by the BDSKY model. These 
results underscore that the joint use of different phylodynamic approaches may yield complementary 
insights into the past HIV population dynamics.

The human immunodeficiency virus type 1 (HIV-1) subtype C accounts for approximately 48% of all people 
living with HIV, representing the most prevalent HIV-1 subtype in the world1. The high global prevalence of the 
C subtype results from its predominance in regions with the highest rates of HIV-1 infection and with large pop-
ulations, such as Southern and Eastern Africa, India and Southern Brazil1,2. The origin of HIV-1 subtype C was 
recently traced to the Katanga region of the Democratic Republic of Congo (DRC) in the late 1930s3 from where 
it spread independently to Eastern and Southern Africa, leading to a phylogeographic subdivision between the 
HIV-1 subtype C strains circulating in those two African regions4,5.

The expansion of HIV-1 subtype C inside Eastern Africa gave rise to the C East African clade (CEA), whose 
most probable epicenter of dissemination was in Burundi around the early 1960s. During the 1970s, this coun-
try acted as ignition point of several local CEA sub-epidemics in other Eastern African countries5 and also in 
Southern Brazil6 where the CEA sub-epidemic was fueled from a single founder event7. The CEA clade currently 
predominates among subtype C strains from Eastern African countries and Brazil, and accounts for almost 100% 
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of subtype C sequences from Burundi and Brazil, 97% from Uganda, 64% from Kenya, 61% from Ethiopia and 
49% from Tanzania5,8. The evolutionary analyses of the CEA sub-epidemics performed so far mostly address ques-
tions about the place and timing of outbreaks onset, focusing on the reconstruction of the geographic dissemi-
nation pathways of this viral clade2,5,6,8–12. Studies on the population dynamics of CEA sub-epidemics, while key 
to understand their historical epidemic growth trends, epidemic potential and ecological processes shaping their 
evolution, have been much less frequent13,14.

Key epidemiological and population parameters, most notably the effective number of infections (Ne), the 
epidemic growth rate (r) and the basic (R0) and effective (Re) reproductive number, can be estimated from viral 
sequence data by using Bayesian phylodynamic approaches based on coalescent15 and birth-death16 models. 
These models have very different mathematical grounds as well as particular strengths and limitations. The coa-
lescent is appropriate only if the number of sampled infected individuals is small compared with the size of the 
total infected population16, despite certain robustness to violation of this requirement has been demonstrated17. 
The birth-death model, meanwhile, explicitly models the sampling process and can thus be used for sparse or 
densely sampled viral populations16, although estimates may be biased if the model of the sampling process is 
misspecified. The coalescent allows the inference of the R0 (key epidemiological parameter indicator of increment 
[R0 > 1], decline [R0 < 1] or stabilization [R0 = 1] in the number of new cases18) only through modeling the pop-
ulation dynamics under a deterministic assumption, which represents a limitation for populations undergoing 
complex dynamics19, and require an independent estimate of the average duration of infectiousness. The birth–
death model has the advantage of accounting for stochasticity of the demographic process and provides an esti-
mate for Re changes over time using only sequence data16,20. A potential disadvantage of the birth-death model is 
that credibility intervals grow wider the further we go into the past, which is not the case for the coalescent-based 
models21; although simulation studies showed that the coalescent might not capture the true r because of the 
narrow credibility intervals around the median estimate attributed to its assumption of deterministic changes in 
the population size20.

The present work aims to shed light on the past population dynamics of the major HIV-1 CEA sub-epidemics 
established in Burundi, Rwanda, Ethiopia, Tanzania and Brazil by analyzing viral pol gene sequences sampled 
between 1990 and 2014 with Bayesian phylodynamic methods based on coalescent and birth-death models.

Materials and Methods
Sequence dataset compilation.  A reference dataset of HIV-1 subtype C pol sequences belonging to the 
east, southern and central African lineages was selected from a previous study5 and combined with: 1) more 
recent east African subtype C pol sequences with known sampling dates available in Los Alamos HIV Database 
(http://www.hiv.lanl.gov) by August 2017, and 2) subtype C pol sequences with known sampling dates isolated 
from heterosexual populations living in the two southernmost Brazilian states (Rio Grande do Sul and Santa 
Catarina) previously described11. The option “One sequence/patient” was selected from Los Alamos HIV data-
base to exclude multiple sequences from the same subject. The subtype assignment of all sequences was con-
firmed using the REGA HIV-1 subtyping tool v.3.0. Given the two genetically distinct subtype C clades (C and C’) 
co-circulating in Ethiopia22, linked to subtype C viruses of eastern and southern African origin respectively, puta-
tive intrasubtype C/C’ recombinant sequences (n = 99) were identified by Bootscanning using Simplot v3.5.123 as 
described previously5 and removed from further analyses. This resulted in a final dataset of 1,147 HIV-1 subtype 
C pol sequences (Table S1) covering the complete protease (PR) and the first part of the reverse transcriptase (RT) 
regions (nucleotides 2,253 to 3,272 relative to HXB2 genome).

Identification of dominant country-specific HIV-1 CEA subclades.  To identify major country-specific 
clades within the CEA radiation, HIV-1 subtype C pol sequences from eastern Africa and southern Brazil were 
first aligned with reference subtype C sequences belonging to the eastern, southern and central African clades 
using the CLUSTAL X program24 and subjected to maximum likelihood (ML) phylogenetic analysis. ML trees 
were inferred with the PhyML program25, using an online web server26, under the general time-reversible model 
of nucleotide substitution plus invariant sites and four discrete gamma rate categories (GTR+I+Γ4) selected 
with jModeltest program27 and the subtree pruning and regrafting (SPR) branch-swapping algorithm of heuristic 
tree search. The reliability of the phylogenies was estimated with the approximate likelihood-ratio test based on a 
Shimodaira–Hasegawa-like procedure (SH-aLRT)25. Basal HIV-1 CEA sequences from Burundi and Rwanda and 
major (n ≥ 50 sequences) country-specific (>90% of sequences from a single country) monophyletic groups with 
high support (SH-aLRT ≥0.85) nested within the CEA clade radiation were selected for demographic analyses. 
Reference sequences of HIV-1 subtypes A1 and D from the Los Alamos HIV Database were used as outgroups. 
Final trees were visualized in FigTree v1.4.2.

Estimation of phylodynamic parameters.  Epidemiological and evolutionary parameters of the defined 
CEA subclades were estimated via Bayesian Markov Chain Monte Carlo (MCMC) phylogenetic inference using 
coalescent and birth-death tree priors as implemented in BEAST v1.828 and BEAST v.2.429 software packages, 
respectively. Changes in Ne using the coalescent tree prior were first assessed using the non-parametric Bayesian 
skyline (BSKL)30 and Bayesian Skygrid (BSKG)31 models and estimates of the r were subsequently obtained using 
the parametric model that provided the best fit to the demographic signal contained in each dataset. Comparison 
between demographic models (logistic, exponential, or expansion) was performed using the log marginal likeli-
hood estimation (MLE) based on path sampling (PS) and stepping-stone sampling (SS) methods32. The cumula-
tive number of lineages through time (LTT) was calculated from the combined posterior distribution of sampled 
coalescent tree topologies by using TRACER v1.6 program33. A special case of the birth-death tree prior, namely 
the birth-death skyline (BDSKY) was applied to model viral transmissions through time21. The sampling rate 
(δ) was set to zero for the period prior to the oldest sample and estimated from the data afterwards. The Re was 
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estimated in a piece-wise manner over three different equidistant intervals using a lognormal prior distribution 
(Re: mean = 0, standard deviation = 1). Bayesian analyses for each transmission clade employed the GTR+I+Γ4 
model of nucleotide substitution selected using the jModelTest program27 and a relaxed uncorrelated lognormal 
molecular clock model34. Because linear regression analysis of root-to-tip distances as function of sampling time 
obtained by TempEst v1.535 revealed low temporal signal in the datasets, an informative normal prior distribution 
on the time to the most recent common ancestor (tMRCA) was applied based on previous estimates5,6. MCMC 
chains were run for sufficiently long to ensure stationarity (constant mean and variance of trace plots) and good 
mixing (Effective Sample Size >200) for all parameter estimates, as diagnosed by TRACER v1.6 program33.

Results
Identification of major subclades within the HIV-1 CEA clade radiation.  To obtain a more updated 
picture of the HIV-1 CEA clade radiation, subtype C pol sequences from Eastern Africa and Southern Brazil 
deposited in Los Alamos HIV sequence database between 2013 and 2016 were combined with CEA pol sequences 
from those regions previously characterized5,6. The reconstructed ML phylogeny showed that most (79%) subtype 
C sequences from Eastern Africa and all sequences from Southern Brazil sampled at most recent time (2013–
2016) branched within the highly supported (SH-aLRT = 0.96) HIV-1 CEA clade (Fig. S1). As expected, sequences 
from Burundi and Rwanda were highly intermixed among each other and occupied the most basal positions of 
the CEA clade radiation; while sequences from other Eastern African countries and Brazil were nested within 
Burundian and Rwandan CEA sequences.

Most sequences from Kenya and Uganda appeared as sporadic (non-clustered) lineages or clustered in mono-
phyletic subclades of small sizes (n < 50) (Fig. S1). All Brazilian sequences and most sequences from Ethiopia 
(67%) and Tanzania (66%), by contrast, branched within four country-specific CEA subclades of large size (n > 50) 
(Fig. S1) that were more clearly visualized after pruning of non-clustered CEA sequences and CEA sequences within 
monophyletic subclades of small sizes (Fig. 1). The four identified CEA subclades (CEA/BR, CEA/ET-1, CEA/ET-2 and 
CEA/TZ) together with sequences from Burundi and Rwanda (CEA/BI-RW) comprise 76% (n = 616) of all the CEA 
sequences analyzed here; thus confirming the epidemiological relevance of the selected subclades.

Figure 1.  ML phylogenetic tree of HIV-1 CEA pol PR/RT sequences (~1,000 nt) from eastern Africa and 
southern Brazil. Branches are colored according to the geographic origin of sequences as indicated in the legend 
(upper right). Gray shaded boxes indicate the positions of major CEA lineages. Asterisks point to key nodes with 
high support (SH-aLRT >0.85). The tree was rooted using HIV-1 subtypes A1 and D reference sequences and 
the branch lengths are drawn to scale with the bar at the center indicating nucleotide substitutions per site.
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Bayesian population dynamics inference in a coalescent framework.  Bayesian MCMC 
coalescent-based analyses under the BSKL model suggest that all CEA subclades presents roughly comparable 
demographic histories, with an initial phase of fast exponential growth followed by a stabilization of the Ne at 
some time between the late 1970s and the late 1980s that persisted until the most recent sampling date of each 
of them (Figs 2a,e, 3a,e and 4a). The observed stabilization in the Ne of African CEA sub-clades occurs before 
the respective stabilization of the HIV incidence in corresponding countries estimated around the mid-1990s 
according to the UNAIDS (Figs 2d,h and 3d,h). The UNAIDS data also supports a significant reduction of the 
HIV incidence in Burundi/Rwanda, Ethiopia and Tanzania between the mid-1990s and the mid-2000s that was 
not captured by the BSKL inference. The stabilization of the CEA/BR Ne around the early 1990s is consistent with 
the stabilization of the new HIV cases in Rio Grande do Sul and Santa Catarina at around the same time (consid-
ering a lag time of eight years between HIV infection and new AIDS cases reported by the Brazilian AIDS cases 
databank for those Brazilian states); but fails to capture a recent increase in the number of new HIV cases from 
2010 onwards (Fig. 4d).

The BSKG demographic reconstructions point to a longer period of exponential growth for all CEA subclades 
that extends up to between the early and the mid-1990s, in agreement with incidence data. For the Ethiopian CEA 
sub-epidemics, the BSKG points to subsequent decline of the median Ne until mid-2000s and a final plateau until 
2010, in agreement with epidemiological data (Fig. 2b,d,f,h). The median estimated Ne for the CEA/BI-RW, CEA/TZ 
and CEA/BR sub-epidemics reach a plateau that persisted until the most recent sampling time which differs mark-
edly from the HIV incidence pattern (Figs 3b,d,f,h and 4b,d). The large 95% highest probability density (HPD) 
interval of the Ne estimates inferred by the BSKG model, however, may accommodate different demographic 

Figure 2.  Epidemiological and population dynamics of the CEA sub-epidemics in Ethiopia. Median estimates 
of the effective number of infections (Ne) using the Bayesian skyline or skygrid models (black lines) together 
with their 95% highest probability density (HPD) intervals (gray areas), co-plotted together with the median 
Ne estimates using the logistic coalescent-based parametric model (blue lines) and its 95% HPD intervals (blue 
areas). The green dashed lines indicate the time of the last coalescent event reported by the lineages-through-
time (LTT) (a,b,e,f). Temporal fluctuation of the effective reproductive number (Re) of the CEA/ET-1 and CEA/

ET-2 sub-epidemics estimated using the Bayesian birth-death approach (c and g). For an easier visualization, 
the median coalescent-based R0 estimate (blue dashed lines) inferred for each sub-epidemic and its 95% HPD 
intervals (blue area) were added. The gray dashed lines indicate Re = 1 (c and g). Plots representing the number 
of new HIV cases in Ethiopia as obtained from UNAIDS website http://aidsinfo.unaids.org/ (d and h). The 
yellow, pink and gray intervals denote the time spanned for the birth-death-based Re-initial, Re-middle and Re-
final estimates of each CEA sub-epidemic.

http://aidsinfo.unaids.org/
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patterns in the latter stages making it difficult to draw solid conclusions on the consistency (or the lack thereof) 
between these estimates and the HIV incidence temporal pattern.

The logistic growth model was the best-fit parametric model of population growth for all the CEA subclades 
(Table S2). The median Ne trajectories obtained by the logistic growth model during the initial exponential phase 
closely matched the corresponding trajectories obtained with the non-parametric approaches, particularly those 
obtained with the BSKG (blue line Figs 2a,b,e,f, 3a,b,e,f and 4a,f). The mean R0 values derived from the logistic 
growth model using the formula R0 = rD + 115 (where D is average duration of infectiousness herein considered 
of eight years) was very similar for all CEA subclades, ranging between 5.0 and 5.9 (Table 1). The median Ne tra-
jectories of the CEA/BI-RW, CEA/TZ and CEA-BR at the plateau phase obtained with parametric and non-parametric 
approaches were very similar. As the logistic growth model is unable to capture non-constant trends on recent 
time period estimates, obviously do not reproduced the declining phase pointed by the BSKG for the CEA/ET-1 and 
CEA/ET-2 sub-clades, however, the parametric and non-parametric models converge to similar median Ne values 
at the late plateau phase.

Bayesian population dynamics inference under birth-death model.  The BDSKY model was applied 
allowing the Re to change in a piece-wise manner over three different time intervals that allow us to estimate the 
epidemic potential before identification of HIV (first time interval, ~1960–1970 to 1980–1984) and observe the 
potential impact of prevention (second time interval, ~1981–1985 to 1995–1999) or therapy (third time interval, 
~1996–2000 to 2012–2014) measures on epidemic dynamics (Figs 2c,g, 3c,g and 4c). The BDSKY model support 
initial exponential growth dynamics fully consistent with those estimated using coalescent models. Although the 
mean R0 values (5.0–5.9) were slightly higher than the estimated mean Re-initial (3.8–4.9), the uncertainty on 

Figure 3.  Epidemiological and population dynamics of the CEA sub-epidemics in Tanzania and Burundi/
Rwanda. Median estimates of the effective number of infections (Ne) using the Bayesian skyline or skygrid 
models (black lines) together with their 95% highest probability density (HPD) intervals (gray areas), co-plotted 
together with the median Ne estimates using the logistic coalescent-based parametric model (blue lines) and its 
95% HPD intervals (blue areas). The green dashed lines indicate the time of the last coalescent event reported by 
the lineages-through-time (LTT) (a,b,e,f). Temporal fluctuation of the effective reproductive number (Re) of the 
CEA/TZ and CEA/BI-RW sub-epidemics estimated using the Bayesian birth-death approach (c and g). For an easier 
visualization, the median coalescent-based R0 estimate (blue dashed lines) inferred for each sub-epidemic and 
its 95% HPD intervals (blue area) were added. The gray dashed lines indicate Re = 1 (c and g). Plots representing 
the number of new HIV cases in Tanzania and Burundi/Rwanda as obtained from UNAIDS website http://
aidsinfo.unaids.org/ (d and h). The yellow, pink and gray intervals denote the time spanned for the birth-death-
based Re-initial, Re-middle and Re-final estimates of each CEA sub-epidemic.

http://aidsinfo.unaids.org/
http://aidsinfo.unaids.org/
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the R0 estimates was always contained within the broader 95% HPD intervals of Re-initial (Table 1). The BDSKY 
model supports a progressive reduction of the mean Re in the second (mean Re-initial >mean Re-middle) and 
third (mean Re-middle >mean Re-final) time intervals for all African subclades. Although the mean Re estimates 
for the Ethiopian clades remained above one during all time intervals, which clearly did not match with the 
declining and subsequent stabilization of the HIV incidence in Ethiopia from the mid-1990s onwards (Fig. 2d,h), 
those Re estimates should be interpreted with caution because the extremely wide 95% HPD intervals (Table 1). 
For the CEA/BI-RW and CEA/TZ subclades, the Re-middle was above one, while the Re-final was below one, in agree-
ment with the increasing HIV incidence in Burundi/Rwanda and Tanzania up to the mid-1990s and the subse-
quent declining from the mid-1990s onwards (Fig. 3d,h). For the CEA/BR subclade, the BDSKY model supports a 
reduction of the mean Re in the second interval (Re-initial ~1) and a new increase in the third one (Re-final >1). 
This is consistent with the HIV incidence trends in Rio Grande do Sul and Santa Catarina Brazilian states, that 
supports an epidemic stabilization during the 1990s and a new epidemic increase during the 2000s (Fig. 4c,d).

Figure 4.  Epidemiological and population dynamics of the CEA sub-epidemic in southern Brazil. Median 
estimates of the effective number of infections (Ne) using Bayesian skyline or skygrid models (black lines) 
together with their 95% highest probability density (HPD) intervals (gray areas), co-plotted together with 
the median Ne estimates using the logistic coalescent-based parametric model (blue lines) and its 95% HPD 
intervals (blue areas). The green dashed lines indicate the time of the last coalescent event reported by the 
lineages-through-time (LTT) (a and b). Temporal fluctuation of the effective reproductive number (Re) of 
the CEA/BR sub-epidemic estimated using the Bayesian birth-death approach (c). For an easier visualization, 
the median coalescent-based R0 estimate (blue dashed line) inferred for the CEA/BR subclade and its 95% HPD 
intervals (blue area) were added. The gray dashed line indicate Re = 1 (c). Plot representing the number of new 
HIV cases in the Southern Brazilian states of Rio Grande do Sul (RS) and Santa Catarina (SC). AIDS cases 
reported by the Brazilian AIDS cases databank (SINAN = SIM = SISCEL: http://www.portalsinan.saude.gov.br/
dados-epidemiologicos-sinan), minus eight years, was used as an approximation for new HIV infections (solid 
black line). From 2007 onward, Brazilian Ministry of Health started to report HIV new infections (http://www.
aids.gov.br/pt-br/pub/2016/boletim-epidemiologico-de-aids-2016), reprented here as a dashed black line (d). 
The yellow, pink and gray intervals denote the time spanned for the birth-death-based Re-initial, Re-middle and 
Re-final estimates of the CEA/BR sub-epidemic.

http://www.portalsinan.saude.gov.br/dados-epidemiologicos-sinan
http://www.portalsinan.saude.gov.br/dados-epidemiologicos-sinan
http://www.aids.gov.br/pt-br/pub/2016/boletim-epidemiologico-de-aids-2016
http://www.aids.gov.br/pt-br/pub/2016/boletim-epidemiologico-de-aids-2016
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Discussion
In this study, we characterized key features of the epidemic dynamics of major HIV-1 subtype CEA lineages cir-
culating in East Africa and Southern Brazil through the use of different phylodynamic frameworks based in 
coalescent and birth-death process. The different coalescent models capture very similar epidemic dynamics over 
the earlier decades of the CEA lineages dissemination; but point to quite different epidemic dynamics from the 
mid-1980s onwards.

Both phylodynamic approaches suggest an initial stage of fast exponential growth of all the CEA sub-epidemics 
during the period of cryptic transmission of HIV in human populations. These initial phases of exponential 
growth herein inferred correlate with retrospective serological-based studies and simulations that indicated that 
an explosive epidemic was already sweeping the Eastern African region36–41 by 1981, when the AIDS was first 
recognized. The exponential growth phase inferred for the Brazilian CEA sub-epidemic during the 1970s and 
1980s is also fully consistent with the sharp increase in the number of new HIV cases detected in the southern-
most Brazilian states during the 1980s42. The mean R0 (5.0–5.9) and Re-initial (3.8–4.9) values here estimated for 
all CEA sub-clades were roughly comparable. The 95% HPD intervals of R0 were always smaller and contained 
within the broader 95% HPD intervals of Re-initial, consistent with previous empirical and simulated data20,21. 
The coalescent-based logistic growth model is expected to provide narrow HPD intervals because it consid-
ers a deterministic population trajectory, while the BDSKY model incorporates stochasticity in population size. 
Additionally, the HPD interval of Re estimates from the BDSKY model grows wider the further we go towards the 
past, that is not the case for the coalescent-based logistic growth model estimates.

Importantly, the mean R0 and Re-initial values inferred for the African CEA sub-epidemics were fully con-
sistent with those estimated through analyses of HIV prevalence rate and life expectancy in Eastern African 
countries43. This suggests that both phylodynamic frameworks were able to recover the true early growth rates of 
HIV-1 CEA sub-epidemics.

Factors like gender inequality44–46, civil and ethnic conflicts47–50, conflict-induced displacement, and increas-
ing urbanization51,52 have shaped the early HIV epidemic dynamics across all Eastern African countries, con-
sistent with the similar epidemic growth rates of African CEA sub-epidemics. Notably, the epidemic growth rate 
inferred for the Brazilian CEA sub-epidemic was very similar to those obtained for the African CEA sub-epidemics 
despite significantly distinctive history of human conflicts in those regions. The exponential growth phase of the 
CEA/BR sub-epidemic matches with a period in which public health system was unaware about the severity of the 
epidemic53 and the CEA/BR subclade was efficiently disseminated in Southern Brazil through heterosexual (HET) 
networks2,13,54, similar to that observed in Eastern Africa. This suggests that the absence of prevention efforts and 
the predominant viral transmission through HET route may have been the common driving forces of the early 
dynamics of the CEA sub-epidemics in Eastern African and Southern Brazil.

The BSKL model supports that African CEA sub-epidemics grew exponentially until between the late 1970s 
and late 1980s, after which there occurs a plateau in the Ne until the most recent sampling time of each of them. 
The stabilization of the Ne trajectories occurs around 10 years before the last coalescent event (Figs 2a,b,e,f and 
3a,b,e,f), thus supporting that the inferred plateau of the Ne is not due to a paucity of coalescent events after 
the early 1990s55. More important, such stabilization occurred before implementation of prevention campaigns 
during the 1990s56–60 and introduction of universal access to antiretroviral (ARV) therapy during the 2000s61,62 
in Eastern Africa. The overall Ne trajectories inferred by the BSKL after the mid-1980s, however, differ markedly 
from the data of the United Nations Joint Program on HIV/AIDS (UNAIDS)63 according to which the HIV inci-
dence in Burundi/Rwanda, Ethiopia and Tanzania reached a peak around the mid-1990s (rather than during the 
1980s), and was followed by a sharp decline (rather than a plateau) until the mid-2000s, before stabilize.

The overall epidemic dynamics inferred by the BSKG model from the mid-1980s to the mid-1990s are more 
consistent with the HIV incidence data than those inferred by the BSKL, although some divergences were also 
detected at later times. The BSKG model points that CEA African sub-epidemics grew exponentially until the 
early/mid-1990s and further supports a declining Ne of CEA/ET subclades between the mid-1990s and the mid-
2000s, consistent with epidemiological data. This model, however, failed to capture a similar decline of Ne for the 
CEA/BI-RW and CEA/TZ sub-epidemics. These results indicate that the BSKG model can correctly predict epidemic 

Clade N
Sampling 
interval Method

Substitution 
rate (10−3) TMRCA R0/Re-initial Re-middle Re-final

BI-RW 303 2002–2012
coalescent (logistic) 1.5 (1.3–1.6) 1958 (1952–1964) 5.0 (4.2–5.8) — —

birth-death 1.5 (1.4–1.6) 1957 (1952–1962) 3.8 (1.9 –7.1) 2.3 (1.2–3.8) 0.5 (0.3–0.7)

ET-1 63 2003–2011
coalescent (logistic) 1.2 (1.1–1.4) 1971 (1969–1973) 5.8 (4.2–7.4) — —

birth-death 1.3 (1.0–1.5) 1972 (1970–1974) 4.6 (2.0–8.8) 1.6 (0.1–3.7) 1.3 (1.0–2.0)

ET-2 56 2003–2012
coalescent (logistic) 1.1 (0.9–1.3) 1974 (1972–1976) 5.0 (4.2–6.6) — —

birth-death 1.1 (1.0–1.3) 1974 (1973–1976) 4.3 (1.9–8.1) 2.0 (0.2–4.2) 1.2 (1.0–1.7)

TZ 50 2004–2014
coalescent (logistic) 1.2 (0.8–1.7) 1974 (1963–1984) 5.8 (3.4–8.2) — —

birth-death 1.1 (0.9–1.3) 1971 (1966–1977) 4.2 (1.8–8.2) 2.8 (1.2–5.4) 0.3 (0.1 –0.6)

BR 144 1992–2014
coalescent (logistic) 1.6 (1.2–2.0) 1974 (1966–1982) 5.9 (4.4–7.6) — —

birth-death 1.5 (1.3–1.7) 1978 (1974–1981) 4.9 (2.2–9.2) 1.0 (0.2–2.1) 2.4 (1.4–3.7)

Table 1.  Evolutionary and demographic parameters estimated for HIV-1 CEA subclades. *The 95% credibility 
intervals for all estimates are indicated inside parenthesis.
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decline in some situations, as demonstrated here for the CEA/ET subclades and previously for the CRF02_AG epi-
demic in Cameroon31,64; but not in others.

Although the BDSKY model also supports a progressive reduction of epidemic growth over time, an Re >1 
was estimated at the second time interval (that roughly covers the period between early/mid-1980s and mid/late 
1990s) for all African CEA subclades, consistent with a continuous increase of HIV incidence up to the mid-1990s. 
The BDSKY model capture an Re <1 for the CEA/BI-RW and CEA/TZ sub-epidemics at the most recent time interval 
(after the mid-1990s); but supported an Re ≥1 for the CEA/ET sub-epidemics in the same time interval. These 
results confirms that the BDSKY model can correctly uncover a signature of a recent declining epidemic not 
reflected in the coalescent plots, as previously seen in the HIV-1 subtype B epidemic in the UK21; but also reveals 
that it may fail to capture such trend in some other datasets.

It is interesting to note that  the BSKG failed to capture a decline of Ne for the CEA/BI-RW and CEA/TZ 
sub-epidemics since the middle-late 1990s onwards, while the BDSKY model failed to capture a Re ≤1 for the 
CEA/ET sub-epidemics at the same time interval, suggesting that the performance of different phylodynamics 
approaches could be affected by different factors. The BSKG model requires strongly informative data to prevent 
erroneous estimates of Ne stabilization as pointed by a recent study65. The lower proportion of HIV-1 subtype C 
sequences sampled at recent times (since 2008 onwards) in the CEA/BI-RW (6%) and CEA/TZ (30%) datasets com-
pared with the CEA/ET datasets (≥70%) may have reduce the ability of this coalescent model to capture changes 
in Ne for the CEA/BI-RW and CEA/TZ sub-epidemics at most recent times. The BDSKY model could be more robust 
to the paucity of coalescent events at most recent time; but its performance could be limited by the number of 
time intervals (changes in Re) specified. Increasing the number of Re-changes may allow a better fit of the Re 
trajectories to the epidemiological data for the CEA/ET sub-epidemics. This strategy, however, resulted in a lack of 
parameter convergence and huge 95% HPD intervals, indicating that accurate Re estimations at more time inter-
vals would require a larger number of CEA/ET sequences than those used in the present study.

The BSKL, BSKG and BDSKY models support quite consistent epidemic dynamics for the CEA/BR sub-epidemic 
until the late 1990s. According to the coalescent models, the Ne of the CEA/BR subclade growth exponentially until 
the early (BSKL) or mid-1990s (BSKG) and then reached a plateau. In agreement, the BDSKY model supports an 
expanding epidemic (Re >1) in the first time interval (~ mid-1970s to late 1980s) and a transient epidemic stabi-
lization (Re ~ 1) in the second time interval (~ late 1980s to early 2000s). The stabilization of the CEA/BR incidence 
since the early/mid-1990s is in line with the reported trend toward stability of the new HIV cases in Rio Grande 
do Sul and Santa Catarina states since the mid-1990s42, probably due to the implementation of prevention efforts 
that acted as the driven-force of people’s behavioral changes53,66. While coalescent models support a roughly 
constant Ne for the CEA/BR sub-epidemic until the most recent sampling time, the BDSKY model uncovers a new 
epidemic increase (Re >1) at the last time interval. This matches with an upward trend of new HIV diagnoses in 
Rio Grande do Sul and Santa Catarina states since 200767. Such epidemiological changes are probably too recent 
to be fully captured by coalescent models.

A recent study using BSKG to analyze the population dynamics of the CEA/BR sub-epidemic from pol and env 
sequences from HET and men having sex with men (MSM) individuals reported a continuous increase in the Ne 
until mid to late 2000’s that was associated with the recent expansion of subtype C throughout the MSM group13. 
Interestingly, universal access to free fully suppressive ARV therapy is available in Brazil since the late 1990s61,62 
and an association between ARV treatment availability and increases in sexual risk behavior (and consequent rise 
in HIV incidence) have been previously reported among MSM from developed countries68–71. Our BDSKY anal-
yses of sequences from HET individuals support that the recent expansion of the CEA/BR sub-epidemic is probably 
not restricted to a specific group, but also occurred among HET individuals. Increases in sexual risk behavior 
among HET individuals fully agrees with the sustained increase of HIV67 and other sexually transmitted disease 
observed in Southern Brazil since 201072.

A drawback to consider about the highlighted agreements and disagreements between the available epidemi-
ological data and our phylodynamic modeling is that while the former characterizes the HIV epidemic of each 
of the countries/regions as a whole, the CEA clade herein analyzed is not the only prevalent HIV lineage in all of 
them5. Then, it is possible that trends in the number of new HIV cases belonging to the CEA sub-epidemics do not 
fully correspond with those of the overall HIV epidemic. Besides, a more homogeneous and dense sampling of 
each CEA sub-epidemic over time as well as the use of sequence data from multiple genetic loci31 and the incorpo-
ration of covariates into the demographic inference framework64 may improve the performance of phylodynamics 
methods to recover true population trajectories.

Overall, this study supports that major HIV-1 CEA lineages circulating in Eastern Africa and Southern Brazil 
seem to have had an exponential spread with very similar growth rates until the early/mid-1990s. The overall 
agreement of the R0 and Re-initial values here estimated from genetic sequences with those previously obtained 
from classical epidemiological data strengthen the utility of coalescent and the birth-death phylodynamic 
approaches to infer relevant epidemiological information of HIV epidemics at the earlier stages. Our data sup-
ports that introduction of universal access to ARV therapy during the late 1990s and early 2000s coincides with 
a declining epidemic in Eastern Africa, but with an upward trend of new HIV diagnoses in Southern Brazil. 
Our results also underscore the importance of the joint use of both coalescent and birth-death phylodynamic 
approaches for the analyses of HIV population dynamics given its apparent differential sensitivity for recovering 
changes in population dynamics at most recent times in different datasets.
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