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Teresina, Piauı́, Brazil, 3 Laboratório de Biologia e Parasitologia de Mamı́feros Silvestres Reservatórios,
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Abstract

In this study, we assessed the genetic diversity of Ascaris lumbricoides / Ascaris suum circu-

lating in humans and pigs, exploring potential zoonotic cycles in endemic areas in Brazil.

We carried out cross-sectional surveys in four municipalities: Santa Isabel do Rio Negro

(SIRN-AM) (n = 328); Nossa Senhora de Nazaré (NSN-PI) and Teresina (TER-PI) (n = 605

and n = 297, respectively); and Cachoeiras de Macacu (CAM-RJ) (n = 543). We also studied

61 fecal samples/adult worms obtained from pigs (n = 53 in NSN-PI and n = 8 in TER-PI). A

~450 bp fragment of the Ascaris cytochrome c oxidase subunit 1 (cox1) and ~400 bp of the

NADH dehydrogenase subunit 1 (nad1) were amplified and sequenced. Maximum-likeli-

hood (ML) tree and Median-joining (MJ) haplotype network analyses were performed. We

also performed scanning electron micrographs of adult specimens. Positivity rates were 93/

328 (28.4%) in SIRN-AM, 6/297 (2.0%) in TER-PI, 0/605 (0%) in NSN-PI, and 6/543 (1.1%)

in CAM-RJ. In NSN-PI it reached 11/53 (20.7%) in pigs. The MJ network based on cox1

locus (383 bp) revealed three main clusters, one centered around haplotypes H01/H28/H32

and the other around H07/H11. The cox1 haplotypes had a heterogeneous distribution,

showing no pattern by geographic region, and high haplotype diversity. The ML trees based

on cox1 and nad1 loci showed a similar topology with each other, and with the haplotype

networks. Three distinct clusters were observed. Sequences of cox1 and nad1 from humans

and animals were distributed throughout the tree and it was not possible to differentiate

specimens of human and swine origin. Ascaris populations obtained from humans and

swine in different Brazilian regions are not discriminable through the genetic markers used,

which indicates the potential for zoonotic transmission and the need for better control of

these infections in swine herds, mainly when created in a peridomestic environment.
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Introduction

The soil-transmitted helminthes (STH) Ascaris lumbricoides and Ascaris suum are parasites of

great importance to human and swine health, respectively [1,2]. In humans, A. lumbricoides can

cause potentially serious and fatal disease when high parasitic loads are present. In these cases,

ascariasis can be associated with intestinal obstruction and perforation, in addition to the

migration of adult worms to the bile duct and other organs [3,4]. Chronic infections by round-

worms may also be associated with delayed cognitive and physical development in children

[5,6]. Infection by roundworms with high parasitic load is dependent on constant reinfection

and continuous exposure to the environment contaminated with fecal matter [7]. Ascariasis has

been successfully controlled in developed countries through sanitation and the adequate dis-

posal of human feces. However, in many areas in developing countries, the disease persists as an

important public health problem, with a high prevalence rate and infection intensity.

Ascariasis control strategies are strongly based on chemoprophylaxis campaigns (MDA

[mass drug administration]), mainly in Africa, Asia, and Latin America, with a single 400 mg

dose of albendazole [8–10]. This strategy aims to reduce prevalence, control parasitic burden,

and reduce transmission potential. In Brazil, the Ministry of Health has implemented these

actions on a more regular basis since 2012 with the National Soil-transmitted Helminthiases

Campaign [11].

Classically considered an anthroponotic disease, there is evidence that ascariasis can cross

the host species barrier (humans and pigs), circulating at the human-animal interface [12–14].

Nevertheless, the importance of potential zoonotic transmission and cross-infections in dis-

ease production and the maintenance of endemicity in specific communities needs to be better

understood. In the case of infection in swineherds, the disease is controlled by the regular

administration of ivermectin or benzimidazole compounds, such as fenbendazole [15].

The hypothesis that ascariasis is potentially zoonotic and produces cross-infections is based

on the close similarity between the parasites A. lumbricoides and A. suum. Morphologically,

there are very few differences, these being restricted to details detectable by electron micros-

copy in the shape of the lips and size of the teeth, as evaluated and reviewed by Ansel and Thi-

baut [16]. From the perspective of molecular evolutionary genetics, there is high homology in

the nucleotide and amino acid sequences of the two species, suggesting that A. lumbricoides
and A. suum are a single species [17]. The evidence that humans and pigs can be infected with

both nematodes supports the hypothesis that A. lumbricoides and A. suum actually represent a

single zoonotic species [18–23].

In this study, we assessed the genetic diversity of Ascaris lumbricoides / Ascaris suum circu-

lating in humans and pigs, exploring potential zoonotic cycles in endemic areas in Brazil.

Material and methods

Study design, population, and sampling strategy

We evaluated the presence of A. lumbricoides/A. suum in 1,773 humans and 61 pigs in three

Brazilian regions (Rio de Janeiro [RJ], Piauı́ [PI], and Amazonas [AM] states). In order to

assess the presence of roundworms, we carried out cross-sectional surveys in four municipali-

ties: Santa Isabel do Rio Negro (SIRN-AM); Nossa Senhora de Nazaré (NSN-PI) and Teresina

(TER-PI); and Cachoeiras de Macacu (CAM-RJ). These regions are extremely diverse in cli-

matic, physiogeographic, and sociodemographic aspects, as shown in Table 1. In the states of

AM and RJ, the study only involved humans. In the state of PI, humans and pigs were studied

(Table 1). In all the studied localities, residents infected with helminths or pathogenic protozoa

were treated with specific antiparasitic drugs, including albendazole, metronidazole, and

Genetic diversity of Ascaris spp. in Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0218867 June 24, 2019 2 / 13

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0218867


secnidazole. In the four municipalities studied, members of the research team visited house-

holds and delivered bottles for fecal collection. A questionnaire was administered at the same

time to obtain sociodemographic and sanitation data. In the state of PI, the study involved

humans and pigs. The adult worms from pigs were obtained from necropsies, and swine feces

were collected after spontaneous evacuation. The adult worm from human participants was

obtained by spontaneous elimination after treatment with a single 400 mg dose of albendazole

(chemo-expelled).

Laboratory procedures and detection of Ascaris lumbricoides / Ascaris suum
in fecal samples

Fresh fecal samples were processed through the Ritchie and Kato-Katz techniques. Moreover,

samples obtained from pigs were also examined by sucrose flotation. A. lumbricoides/A. suum
positive samples (original fecal samples) were cryopreserved and transported to the Oswaldo

Cruz Foundation, in Rio de Janeiro. Spontaneous sedimentation was performed before the

molecular analysis. Adult worms were preserved in 70% ethanol until processing and then

washed twice with sterile saline for two hours. Forty mg of the adult worms was cut with sterile

scalpel, macerated with mini-pistil, and digested with 20 mg/mL of Proteinase K (Invitrogen,

Waltham, MA, USA).

Electron microscopy of adult worms

For the scanning electron microscopy, the specimens were fixed in 2.5% glutaraldehyde, and

post-fixed in 1% osmium tetroxide, both in 0.1 M sodium cacodylate buffer at pH 7.2. They

were washed in the buffer and then dehydrated in an increasing ethanol series. After being

critical-point dried using super-dry CO2 in a Balzers device, the material was mounted on

metal supports, coated with gold, and observed using a JEOL JSM 6390LV scanning electron

microscope (JEOL Ltd., Akishima, Tokyo, Japan) in the Rudolph Barth Electron Microscopy

Platform, Instituto Oswaldo Cruz, Fiocruz.

Table 1. Characteristics of Brazilian localities and samples included in this study.

Characteristic Site of collection

Cachoeiras de Macacu, RJ Teresina, PI Nossa Senhora de Nazaré, PI Santa Isabel do Rio Negro, AM

Kind of seattlement Urban Rural Rural Urban

Year of collection 2018 2017 2016-2015-2014 2011

Region Southeast Northeast Northeast North

Climate Tropical Tropical, semiarid Tropical, semiarid Equatorial

Annual pluviosity 1307 mm 1349 mm 1421 mm 2497 mm

Temperature range average 23.1˚C 27.6˚C 26.8˚C 26.8˚C

IDHM 0.752 0.751 0.594 0.479

Human fecal samples collected 543 297 605 328

Human fecal samples positive for Ascaris sp. 6 6 0 93

Adult worms obtained from humans 0 1 0 0

Ascaris sp. sequences obtained from humans 4 6 0 74

Pig fecal samples collected 0 8 53 0

Pig fecal samples positive for Ascaris sp. - 3 11 -

Adult worms obtained from pigs 0 2 0 0

Ascaris sp. sequences obtained from pigs - 2 2 -

MHDI: Mean human development index. RJ: Rio de Janeiro state; PI: Piauı́ state; AM: Amazonas state.

https://doi.org/10.1371/journal.pone.0218867.t001
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Ethics

The study was approved by the Research Ethics Committee (license CAAE

12125713.5.0000.5248) and the Ethics Committee for Animal Use (license LW-21/13 [P-4/

13.3]) of the Oswaldo Cruz Institute, Fiocruz. All subjects provided written informed consent

and the parent or legal guardian of all children included in this study provided written

informed consent on their behalf.

DNA extraction, polymerase chain reaction, and sequencing

Parasitic DNA was obtained from three different sources: i) eggs obtained by spontaneous

sedimentation (400 μL of fecal sediment); ii) eggs obtained by Kato-Katz thick smears, as

described by [24]; and iii) adult worms obtained by the necropsy of slaughtered pigs or

chemo-expulsion in humans. DNA extraction was performed using a DNeasy Blood & Tissue

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s recommendations. The

polymerase chain reaction (PCR) was performed using a Platinum Taq DNA Polymerase kit

(Invitrogen, Waltham, MA, USA), with 50 μL of final volume. A. lumbricoides/A. suum mito-

chondrial targets cytochrome c oxidase subunit 1 (cox1, ~450bp) and NADH dehydrogenase

subunit 1 (nad1, ~400bp) were amplified [25]. PCR conditions were as described by the

authors. The amplicons were purified using Illustra GFX PCR DNA and Gel Band Purification

Kit (GE HealthCare, Pittsburgh, PA, USA) and were sequenced using a BigDye Terminator

v.3.1 Cycle Sequencing Ready Reaction kit (Applied Biosystems, Foster City, CA, USA) in an

ABI3730 Automated DNA Sequencer (Applied Biosystems). Ascaris lumbricoides/Ascaris
suum nucleotide sequences were edited with Bioedit v.7.2.5 [26] software. The GenBank acces-

sion numbers were MK143378-MK143391 and MK160501-MK160574. The cox1 sequences of

SIRN-AM were published in [24], accession numbers MH674438-MH674442 and

MH800218-MH800286.

Phylogenetic inferences, genetic diversity, and haplotype network

The Basic Local Alignment Search Tool (BLAST, NCBI https://blast.ncbi.nlm.nih.gov/Blast.

cgi) was used to check similarity with Ascaris sequences. Orthologous sequences representing

the diversity of Ascaris spp. were retrieved from GenBank (NCBI, https://www.ncbi.nlm.nih.

gov/nucleotide/) and added to the analyses. Ascaris spp. nucleotide sequences were aligned

using the multiple sequence alignment ClustalW [27] available in the BioEdit v.7.2.5 [26] soft-

ware. The substitution model for the cox1 and nad1 dataset was chosen using Bayesian Infor-

mation Criterion (BIC) in Molecular Evolutionary Genetics Analysis (MEGA) v.7.0.20

software [28]. The lower BIC score was the Hasegawa-Kishino-Yano (HKY) model with non-

uniformity of evolutionary rates among sites (+G). The Maximum Likelihood (ML) method

was implemented in MEGA v.7.0.20 software [28], using the HKY+G model. Branch support

was provided by bootstrapping with 1,000 replications.

DNA Sequence Polymorphism (DNASP) v.6 [29] was used to prepare an input file. A

Median-joining (MJ) haplotype network was constructed in Network v.5.0.0.3 software [30]

(Fluxus Technology Ltd., www.fluxusengineering.com). In order to evaluate the intraspecific

genetic diversity of Brazilian Ascaris populations, diversity indices were determined for each

population pair using Pairwise Distance in ARLEQUIN v.3.5.2.2 software (http://cmpg.unibe.

ch/software/arlequin35/) [31]. Orthologous sequences representing the Brazilian diversity of

Ascaris spp. were retrieved from [20] (n = 3, from Guapimirim/RJ [GUA-RJ]) and [21] (n = 7,

from SIRN-AM 2008, MG, and from Rio de Janeiro-RJ). The map was created using Terraview

v.4.2.2 software (www.dpi.inpe.br/terraview).
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Results

As presented in Table 1, Ascaris lumbricoides / Ascaris suum-positive samples were found in all

localities studied. Eighty-eight cox1 Ascaris sequences (424 pb, 5 short sequences removed)

and 74 nad1 Ascaris sequences (381 pb, 6 short sequences removed) were obtained. Align-

ments were performed with our new sequences (83 cox1 and 68 nad1 sequences) and Ascaris
spp. reference sequences (169 cox1 and 53 nad1 sequences) from GenBank (S1 Table).

The ML trees based on cox1 (Fig 1) and nad1 (S1 Fig) loci showed a similar topology with

each other, and with the haplotype networks. Three distinct clusters were observed, corre-

sponding to the A-C clusters described by [32]. Sequences of cox1 and nad1 from humans and

animals were distributed throughout the tree and it was not possible to differentiate specimens

of human and swine origin.

A MJ network based on cox1 locus (383 bp) revealed three main clusters of haplotypes, one

centered around haplotypes H01/H28/H32 and the other around haplotype H07/H11 (Fig 1).

The haplotype clusters present a star-like shape, as expected from Ascaris sp. Seventeen

Fig 1. ML tree and MJ network of 383 bp cox1 locus of Ascaris spp. (252 sequences). The colors of the circles indicate the isolation continent: black: America; dark gray:

Africa; diagonal: Asia; and light gray: Europe. The area of the circle is proportional to the sequence number. �: pig origin samples. ��: non-human primate sample. Only

bootstrap values�70% are reported.

https://doi.org/10.1371/journal.pone.0218867.g001
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different cox1 haplotypes were identified, nine of which were novel. Any amino acid changes

in the sequences are described in the supplemental material (S2 Table). Eight of the haplotypes

found had already been described (H01, H03, H07, H11, H21, H27, H28, and H32). Table 2

summarizes haplotype abundance by location. The H01 was by far the most abundant haplo-

type, particularly in humans from SIRN-AM (n = 52). Five haplotypes were rare. In pigs, two

new haplotypes were found, as well as the haplotype H28, of human origin. The cox1 haplo-

types described in this study had a heterogeneous distribution (Fig 2), showing no pattern by

geographic region, and high haplotype diversity (general 0.6156 ± 0.0620, Table 2 shows

H ± SD by locality). Four haplotypes (H01, H07, H11, and H32) had already been described in

Brazil (Fig 3). Pairwise Fst analysis comparing Brazilian haplotypes (four localities described in

this study and three previously published) indicate significant genetic differentiation (p-value

�0.05) (Table 3).

The nad1 haplotype network was very similar to that of the cox1 locus, presenting three

main groups of haplotypes (S1 Fig). Thirty-two different nad1 haplotypes were identified, 26

of which were novel (Table 2). Any amino acid changes in the sequences are described in the

supplemental material (S2 Table). Six haplotypes had already been described. A haplotype

found in this study has already been described in Ascaris from humans and pigs. In addition,

two pig samples presented a haplotype of pig origin and a third pig sample had a haplotype of

human origin. The haplotype general diversity was 0.8705 ± 0.0383 (Table 2 shows the H ± SD

by locality).

Scanning electron micrographs were obtained of two specimens, both obtained from pigs

(Fig 4). It was observed that the morphology of the buccal orifice was compatible with A.

suum, although the classic hexagonal orifice shape was observed in only one specimen. In one

of the specimens it was possible to observe the triangular shape of the denticles, also compati-

ble with A. suum.

Table 2. cox1 and nad1 haplotype abundance and haplotype diversity, by location.

Locus Haplotype Locality Total

SIRN-AM NSN-PI TER-PI CAM-RJ

cox1 a H01 52 - 6 2 60

H03 2 - - - 2

H07 7 - - - 7

H11 5 - - - 5

H21 - - - 1 1

H27 1 - - - 1

H28 - 1 1 - 2

H32 1 - - - 1

New 6 1 1 1 9

Total 74 2 8 4 88

H ± SD 0.5082 ± 0.699 1.0 ± 0.5000 0.600 ± 0.2152 1.0 ± 0.2722 0.6156 ± 0.0620

nad1 b Previously described 29 3 4 - 36

New 33 - 1 4 38

Total 62 3 5 4 74

H ± SD 0.8772 ± 0.0401 0.6667 ± 0.3143 0.700 ± 0.2184 1.00 ± 0.5000 0.8705 ± 0.0383

a cox1 haplotypes H1–H07, H11, and H21-H32 were previously identified in human Ascaris from Zanzibar [32], China [25], and Uganda [33], respectively.
b nad1 haplotype names were not defined by the authors.

H ± SD: haplotype diversity ± standard deviation.

https://doi.org/10.1371/journal.pone.0218867.t002
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Discussion

In this study, we describe the genetic diversity of two mitochondrial loci of Ascaris sp. from

Brazil. The ML tree and MJ network analysis based in both cox1 and nad1 revealed three main

clusters (A-C). Several studies demonstrate this topology for Ascaris mitochondrial targets, in

which two main groups are formed with i) clusters A and C; and ii) cluster B [34,35]. Our

main finding is that, despite this division, there is no separation between specimens obtained

from humans and from pigs, presumably A. lumbricoides and A. suum. It should, however, be

noted that there was relatively low bootstrap support for the internal branches of the dendro-

grams, which may indicate low phylogenetic resolution when using mitochondrial DNA

markers.

Fig 2. Map of the study areas in Brazil. The haplotypes obtained by the sequencing of cox1 locus are shown in the graphs. The map was created

using Terraview v.4.2.2 (www.dpi.inpe.br/terraview).

https://doi.org/10.1371/journal.pone.0218867.g002
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Fig 3. MJ network of 383 bp cox1 locus of Ascaris spp. from Brazil. The colors of the circles indicate the isolation locality (city). Dark gray:

SIRN-AM from this study; light gray: SIRN-AM [21]; green: TER-PI; blue: NSN-PI; red: GUA-RJ [20]; black: CAM-RJ; violet: MG. The area of

the circle is proportional to the sequence number.

https://doi.org/10.1371/journal.pone.0218867.g003

Table 3. Population pairwise Fst values based on Brazilian cox1 data.

Populations NSN-PI TER-PI SIRN-AM SIRN-AMa GUA-RJ b CAM-RJ

NSN-PI 0

TER-PI 0.0927 0

SIRN-AM 2011 0.0605 0.3125 0

SIRN-AM 2008 a 0.5205 0.0664 0.2890 0

GUA-RJ b 0.0625 0.4345 0.1943 0.1513 0

CAM-RJ 0.1201 0.1328 0.2353 0.2656 0.7128 0

p-value�0.05, 1023 permutations. NSN-PI: Nossa Senhora de Nazaré-Piauı́; TER-PI: Teresina-Piauı́; SIRN-AM: Santa Isabel do Rio Negro-Amazonas; GUA-RJ:

Guapimirim-Rio de Janeiro; CAM-RJ: Cachoeiras de Macacu-Rio de Janeiro.
a sequence data published in [21].
b sequence data published in [20].

https://doi.org/10.1371/journal.pone.0218867.t003
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We found high haplotype diversity in A. lumbricoides / A. suum samples from Brazil. The

number of different cox1 haplotypes obtained in this study– 17 haplotypes to cox1 and 32 hap-

lotypes to nad1 –is similar to that found in previous studies in Asia and Africa [32,35].

Although some localities present low prevalence, these results suggest that there is raised cox1

genetic diversity in Ascaris across Brazil. The present study adds to the growing database of

Ascaris sequences from human and pig hosts, since nine and 26 new haplotypes have been

described for cox1 and nad1, respectively. Interestingly, the haplotypes H59, H64, and H73—

considered highly divergent haplotypes of A. lumbricoides / A. suum–were not found in the

studied population. The high haplotypic diversity in Brazil can be explained by the migration

for the peopling of the American continent: European settlers and African slaves being intro-

duced from the 17th century and integrated with native Amerindian, which have Asian ances-

try [36,37]. During the time of the introduction of other peoples in Brazil, breeding of pigs was

established.

Of the eight cox1 haplotypes found, four had already been described in the country (H01,

H07, H11, and H32) [20,21]. This indicates that, despite the small number of positive cases in

some localities, we were able to analyze a number at least reasonably of samples able to reflect

the diversity of Ascaris in the country. The haplotype H01 was the most common in this study.

Interestingly, it has been found in all Brazilian localities studied to date (this study and previ-

ous studies by [21] and [20]). This haplotype is widespread in four continents–Asia, Africa, the

Americas, and Europe–mainly in human samples [33,35,38]. Furthermore, Ascaris sp. isolated

from Sumatran orangutans (GenBank accession number LN600399) and chimpanzees [39]

from Asia demonstrated genetic similarity with this haplotype. Since it is widely distributed

worldwide and has a central position in cluster A, H01 haplotype is considered an ancestor,

and to have originated in Africa [39]. The presence of H01 in all Brazilian regions studied can

be explained by the migratory phenomena responsible for the peopling of the American

continent.

Although all cox1 haplotypes (n = 8 previously described) were found to be originally from

humans, four of them had already been described as infecting pigs (H01, H07, H28, and H32)

[20,21]. Although two samples obtained from pigs in our study (SST2.2 and PBFE3) were clas-

sified as the haplotype H28 originally from humans [25], described the same sequence as

belonging to the haplotype P1, originally from pigs. Moreover, another pig-origin sequence

(SST2.1 sample) differed by only one polymorphism from haplotype H28/P1 and clustered

around this haplotype in the network. Another pig sample, PBFE2, situated in cluster B, dif-

fered by only three polymorphisms from haplotype H07, and was considered a “pig-like” hap-

lotype by [32]. Therefore, the novel Ascaris cox1 haplotypes described here may be new pig-

like haplotypes. Nuclear targets have been used in an attempt to unravel the taxonomy of the

Ascaris genus. The presence of hybrids [40] and possible reproductive isolation between

Fig 4. Scanning electron micrographs of the buccal orifice of two adult Ascaris specimens obtained from pig

necropsy in the city of Teresina, state of Piauı́. A. Six-sided hexagonal shape of the buccal orifice, due to indentations

in the three lips. B1. Two lips have indentations and the third is almost straight. B2. At higher magnification, the

triangular shape of the denticules is observed.

https://doi.org/10.1371/journal.pone.0218867.g004
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species A. lumbricoides and A. suum [41] has been suggested. The presence of shared mito-

chondrial haplotypes most likely represents retention of ancestral polymorphisms [41].

One limitation of the direct nucleotide sequencing of the amplicon—when it is obtained

from egg pool—is that we can lose mixed infections caused by different haplotypes. Despite

this, a wide variety of haplotypes were described in this study.

The morphological analysis of two adult specimens obtained by the necropsy of pigs

revealed that their mouth parts were compatible with A. suum species. The nucleotide

sequences of the cox1 fragment allowed the characterization of these two specimens as A.

suum.

From a One Health perspective, the characterization of the zoonotic potential of Ascaris
lumbricoides / Ascaris suum is important in the improvement of control strategies. In this

study, considering the three Brazilian states in which we obtained Ascaris-positive samples, the

characterization of cross infections was only possible in Piauı́, where we examined fecal sam-

ples from pigs and humans living in close contact to each other. In NSN-PI, pigs live in close

proximity to human dwellings, having free access to houses and streets, so it is to be expected

that humans and pigs were infected with the same Ascaris haplotype. Intriguingly, in NSN-PI,

no human infection was observed with this parasite in the more than 600 analyzed samples

[42]. Thus, we could not characterize the zoonotic circulation in communities where the rate

of positivity in pigs was high.

It is concluded that Ascaris populations obtained from humans and swine in different Bra-

zilian regions are not discriminable through the genetic markers used, which indicates the

potential for zoonotic transmission and the need for better control of these infections in swine

herds, mainly when created in peridomestic environment.
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