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Abstract

The enteric protist Blastocystis is one of the most frequently reported parasites infecting

both humans and many other animal hosts worldwide. A remarkable genetic diversity has

been observed in the species, with 17 different subtypes (STs) on a molecular phylogeny

based on small subunit RNA genes (SSU rDNA). Nonetheless, information regarding its dis-

tribution, diversity and zoonotic potential remains still scarce, especially in groups other than

primates. In Brazil, only a few surveys limited to human isolates have so far been conducted

on Blastocystis STs. The aim of this study is to determine the occurrence of Blastocystis

subtypes in non-human vertebrate and invertebrate animal groups in different areas of the

state of Rio de Janeiro, Brazil. A total of 334 stool samples were collected from animals rep-

resenting 28 different genera. Blastocystis cultivated samples were subtyped using nuclear

small subunit ribosomal DNA (SSU rDNA) sequencing. Phylogenetic analyses and BLAST

searches revealed six subtypes: ST5 (28.8%), ST2 (21.1%), ST1 and ST8 (19.2%), ST3

(7.7%) and ST4 (3.8%). Our findings indicate a considerable overlap between STs in

humans and other animals. This highlights the importance of investigating a range of hosts

for Blastocystis to understand the eco-epidemiological aspects of the parasite and its host

specificity.

Introduction

Blastocystis is a genus of unicellular anaerobic eukaryotic organisms in the diverse Strameno-

piles group that includes brown algae, diatoms, slime nets and water molds [1–3]. It is a cos-

mopolitan enteric parasite and one of the most common protist parasites worldwide. The
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ability of Blastocystis to cause gastrointestinal and other diseases has been questioned, but the

parasite undoubtedly possesses pathogenic potential although its virulence mechanisms are

not well understood [4, 5].

Blastocystis is known to infect a wide range of animals including reptiles, invertebrates,

birds, amphibians, humans and other mammals [6–11]. Recent studies on the small subunit

ribosomal RNA (SSU-rDNA) gene identified at least 17 different Blastocystis subtypes (ST) in

humans and a variety of animals including non-human primates (NHPs) and mammals, birds

and insects [7, 8, 10–17]. All human Blastocystis isolates are currently classified into ten sub-

types (ST1-ST9 and ST12), and all, except ST9, have also been identified in other animals [18,

19]. Subtypes ST10 to ST17 have been found exclusively in non-human hosts [7, 15, 20–22]. It

has been proposed that Blastocystis can spread through human-to-human, animal-to-human

and, possibly humans-to-animal contact [6, 15, 23–26]. It is still unclear whether animals may

serve as reservoirs of Blastocystis strains colonizing humans. A higher risk of infection has

been identified in animal handlers, supporting the hypothesis of transmission from animals to

humans [6, 7, 9, 15, 27]. However, further evidence is still required in order to definitely con-

firm the occurrence of zoonotic transmission [7, 14, 15, 28].

While abundant data on the distribution and prevalence of Blastocystis STs in humans are

available, there is scanty information about host specificity, genetic variation and distribution

of STs in other hosts. Only a few surveys have been conducted in a limited number of animal

groups from farms, national parks and zoos [11, 16, 29, 30]. In South America, data on Blasto-
cystis STs remain limited especially in Brazil, where only a few studies have characterized Blas-
tocystis isolates at the molecular level [31–37]. However, no surveys of the distribution and

occurrence of Blastocystis in other non-human hosts have been conducted. Therefore, the aim

of the present study was to determine the occurrence of Blastocystis STs among vertebrates

and invertebrates in different areas of the state of Rio de Janeiro in southeastern Brazil.

Materials and methods

Samples

Prior to data collection, the study protocol was reviewed and approved by the Committee of

Ethics in Animal Experimentation of the Oswaldo Cruz Foundation Rio de Janeiro, Brazil (L–

066/08; L–049/08, LW 81/12, LW-39/14) and permission for trapping and capture was granted

by Brazilian Government’s Chico Mendes Institute for Biodiversity and Conservation (ICM-

BIO, license number 13373 and 46934-1) and the Environmental Institute of Rio de Janeiro

State (INEA, license number 020/2011. Adult cockroaches were captured from drains in sev-

eral urban dwellings. We collected fecal samples from captive breeding, domestic and wild ani-

mals in the state of Rio de Janeiro, Brazil. Samples from captive animals were collected at the

Rio Zoo (ZOO) and the Institute of Biomodel Science and Technology (ICTB, Fiocruz), both

in the municipality of Rio de Janeiro. Samples from domestic animals were collected in Santa

Bárbara, Niterói municipality (NIT) (22˚52’39.81"S 43˚ 3’4.16"W); Jardim Catarina, São Gon-

çalo municipality (SG) (22˚47’26.41"S 42˚59’19.23"W); and São Pedro da Serra, Nova Friburgo

municipality (SPS) (22˚19’21.43"S 42˚20’23.02"W). Samples from wild animals were collected

in: (i) Fiocruz Atlantic Forest Campus of the Oswaldo Cruz Foundation (CFMA) (22˚56’18”S

43˚24’11”W) and the Pedra Branca State Park (PEPB) (22˚55’57”S 43˚26’34”W), both in Rio

de Janeiro municipality,(ii) Serra da Tiririca State Park (PEST), Niterói municipality (22˚

57’56.4”S 43˚00’24.5”W), (iii) Encanto, Sumidouro municipality (SUMID) (22˚02’46”S 42˚

41’21”W), and (iv) Lidice and Morro do Estado, Rio Claro municipality (22˚52’30.6”S 44˚

12’34.9”W;22˚43’12.5”S 44˚8’21.6”W) (Fig 1).

Blastocystis isolated from animals
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We obtained fresh fecal samples from 89 non-human primates, two raccoons, 11 rodents,

26 marsupials, one armadillo, 57 birds, 39 swine, 96 cockroaches, and 13 reptiles. Feces of cap-

tive animals were collected from their cages to minimize contamination. In the case of rodents,

marsupials and the armadillo, stools were collected in the field laboratory after dissection of

viscera, stored in labeled plastic containers, and transported to the main laboratory.

Culturing of fecal material

All samples were subjected to direct in vitro xenic cultivation of Blastocystis sp. using an ali-

quot of stool samples into 10 mL of Pavlova’s medium (1.29 g/L of Na2HPO4, 0.42 g/L of

KH2PO4, 7.27 g/L of NaCl, 1.46 g/L of yeast extract) containing 10% heat-inactivated adult

bovine serum (ABS), 10% of penicillin and streptomycin (1000 IU/mL and 500 μg/mL, respec-

tively) and powdered rice starch. Xenic cultures were incubated at 37˚C and examined every

2-7 days. Whenever the typical forms of the parasite were observed by standard light micro-

scopic examination, suspensions were frozen at -20˚C until DNA extraction. Cultures positive

for Blastocystis were subcultured every three days and cells stored successfully in liquid

nitrogen.

Fig 1. Geographical location of the 11 localities where stool samples from animals were collected.

https://doi.org/10.1371/journal.pone.0210740.g001
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DNA extraction and PCR

DNA extraction from cultured samples positive for Blastocystis was carried out using the Qiamp

DNA Stool Mini Kit (Qiagen, Valencia, CA) according to manufacturer recommendations.

DNA was stored at -20˚C until use. The set of primers used in the PCR amplification of the SSU

rDNA region were: forward Blast 505-532 (5’GGAGGTAGTGA CAATAAATC3’) and reverse

Blast 998-1017 (5’TGCTTTCG CACTTGTTCATC3’) [8]. PCR reaction was performed in a

final volume of 50 μL, contained 100 mM of Tris-HCl (pH 9.0), 500 mM of KCl, 1.5 mM of

MgCl2, 200 μM each of dATP, dGTP, dCTP and dTTP; 0.2 μM of primer; 1.5 U of Platinum Taq

DNA polymerase (Invitrogen Life Technologies, Carlsbad, CA, USA), 0.05% of bovine serum

albumin (BSA) and 5 μL of DNA sample. The following reaction was used: denaturation and

enzyme activation at 95˚C for 5 min, 35 cycles of 95˚C for 30 s, 55˚C for 30 s, and 72˚C for 2 s,

followed by a final extension step of 72˚C for 7 min. Obtained amplicons were loaded on 1.5%

agarose gels in a Tris-borate Ethylenediaminetetraacetic acid buffer, run at 80 V for 60 min,

stained with Gelred (Biotium Inc., Hayward, CA, USA) and then viewed under UV transillumi-

nation. PCR products were purified using the Wizard SV gel and PCR Clean-Up System kit

(Promega, Madison, WI, USA), sequenced in both directions using the BigDye Terminator v.3.1

Cycle Sequencing Kit (Applied Biosystems), and run on the ABI 3730 Sequencing Platform.

Sequences were analyzed and edited using the SeqMan software (DNASTAR software pack-

age, DNASTAR Inc., Madison, WI, USA) and compared with previously published sequences

using the BLASTN software from NCBI server (http://www.ncbi.nlm.nih.gov/BLAST). Other

published sequences of different subtypes of Blastocystis from Genbank were downloaded, and

multiple sequence alignment was performed using the Clustal W algorithm of the MEGA soft-

ware version 6.0 [38]. Our consensus nucleotide sequences were deposited in the Genbank

database under accession numbers MG280720-MG280771.

Phylogenetic analysis

After alignment and trimming of 52 sequences, a 550-bp region was selected for the analyses.

Sequence alignment was performed using two different probabilistic methods of phylogenetic

analysis: maximum likelihood (ML) analysis performed in Phyml v.3.1 [39], and Bayesian

inference analysis carried out using MrBayes v3.1.2 [40]. Statistical selection of the best-fit

model of nucleotide substitution in the SSU-rDNA gene was performed using the program

jModelTest version 2.1.7 [41] and based on the Akaike Information Corrected Criterion

(AICC) and Bayesian Information Criterion (BIC) for ML and BI analysis respectively.

For both analyses, the model of nucleotide substitution defined as the best fitted to the data

was HKY [42] + G (gamma distribution of rates with four rate categories) with four free

parameters and unequal base frequencies (AICc= 6626.915359; -lnL=2948.68156 and BIC=

7018.998707; -lnL=2948.68156). The phylogenetic trees were constructed and rooted using

Proteromonas lacertae as the outgroup, due to its close relationship with Blastocystis [1, 14].

For ML, bootstrap samplings with 1.000 replicates were carried out to assess the branch reli-

ability. The BI analysis was done for 10 million generations with sampling trees every 100th

generation. Bayesian posterior probabilities were calculated using a Markov chain Monte

Carlo sampling approach with four chains. The first 25% of the sampled trees were discarded

as burn-in for each data set and convergence was assessed by evaluating the average standard

deviation of split frequencies, which were below the recommended values (<0.01).

Results

We analyzed 334 stool samples from 28 different animal genera. Overall occurrence of Blasto-
cystis in fecal cultures was 34.4% (115/334) or 1/1 (100%) in the case of the armadillo, 21/26

Blastocystis isolated from animals
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(81%) in marsupials, 30/39 (77%) in pigs, 9/13 (69%) in reptiles, 7/11(64%) in rodents, 33/89

(37%) in NHPs, 12/57 (21%) in birds, and 2/96 (2%) in cockroaches (Table 1).

Out of the 115 cultures, 70.4% (81/115) were confirmed by PCR. Of these samples, 52 were

successfully subtyped by sequence analyses at the SSU-rRNA gene. A total of 29 samples were

Table 1. Blastocystis positive samples and subtypes identified from vertebrates and invertebrates.

Host group Location Scientific name N˚ Pos Blastocystis subtype (ST)

ST1 ST2 ST3 ST4 ST5 ST8

Nonhuman primates ZOO Cebus apella xanthosternos 3 0 - - - - - -

Macaca nemestrina 1 0 - - - - - -

Ateles sp 1 1 - - - - - 1

Chlorocebus sp 2 0 - - - - -

Leontopithecus chrysomelas 2 0 - - - - - -

Lagothrix lagotricha 2 1 - - - - - 1

Saguinus imperator 6 0 - - - - - -

Papio sp 3 1 - - 1 - - -

Pan troglodytes 1 1 - 1 - - - -

Alouatta sp 2 1 - - - - - 1

Macaca fuscata 2 1 1 - - - - -

Aotus sp 4 2 1 - - - - 1

ICTB Macaca mulatta 30 18 - 9 1 - - 2

Saimiri sciureus 10 0 - - - - - -

Macaca fascicularis 20 7 - 1 1 - - -

Raccoon ZOO Procyon lotor 2 0 - - - - - -

Rodents CFMA Akodon cursor 1 1 - - - - - -

Rattus rattus 1 1 - - 1 - - -

Rio Claro Akodon cursor 1 0 - - - - - -

Akodon montensis 2 2 - - - - - -

Oligoryzomys nigripes 1 0 - - - - - -

Nectomys squamipes 1 1 - - - - - -

SUMID Nectomys squamipes 2 2 - - - - - 1

PEST Oligoryzomys nigripes 1 0 - - - - - -

Trinomys eliasi 1 0 - - - - - -

Marsupials CFMA Metachirus nudicautatus 1 1 1 - - - - -

Didelphis aurita 10 9 3 - - - - 1

PEPB 7 3 - - - - - -

Rio Claro 8 8 - - - - - -

Armadillo SUMID Dasypus septemcinctus 1 1 - - - - - 1

Birds NIT Gallus gallus 12 1 - - - - 1 -

Anas domesticus 4 1 - - - - - -

ZOO Anas domesticus / Cairina moschata 40 9 - - - - - -

SPS Anser anser 1 1 1 - - - - -

Swine SG Sus scrofa 27 22 - - - - 12 1

SPS 12 8 3 - - 1 2 -

Cockroaches NIT Periplaneta americana 60 2 - - - 1 - -

RJ 36 0 - - - - - -

Reptiles ZOO Chelonoidis sp 13 9 - - - - - -

Total 334 115 10 11 4 2 15 10

N˚= number; Pos=Positive

https://doi.org/10.1371/journal.pone.0210740.t001
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untypable due to poor sequence quality (N= 20) and sequencing overlapping (N=9). BLAST

search and phylogenetic analysis identified six subtypes. The most common subtype was ST5

(28.8%), followed by ST2 (21.1%), ST1 (19.3%), ST8 (19.3%), ST3 (7.7%) and ST4 (3.8%). All

but three DNA sequences showed high identity (99%-100%) with their closest matching refer-

ence sequences of Blastocystis from Genbank, thus allowing direct subtyping of the corre-

sponding isolates. The DNA sequences ZOO6 and ICTB_AG149 presented 98% identity,

while ZOO7 showed 97% identity with reference sequences.

Regarding the distribution of Blastocystis STs in this study, ST1, ST2, ST3, and ST8 were

identified in NHPs. In swine, isolates were typed as ST1, ST4, ST5, and ST8. We found ST3

and ST8 in two species of rodents, ST1 and ST8 in opossums, and ST8 in the armadillo. Birds

were infected with Blastocystis ST1 and ST5 while the cockroach was infected with ST4

(Table 1).

Both rooted trees (ML and BI) showed eight clades that corresponded exactly to ST1 to

ST8. Each subtype clade was strongly supported by high bootstrap values and Bayesian poste-

rior probabilities. Moreover, some isolates formed small clades within each subtype, showing

intra-strain variation (Fig 2). The two phylogenetic trees were topologically identical.

Discussion

This is the first study of Blastocystis subtypes in a variety of non-human animal hosts in Brazil.

Blastocystis has a wide host range, with subtypes overlapping in several animal genera. Our

study highlights the large genetic diversity between Blastocystis isolates from animals, provides

the first molecular evidence from armadillo and Nectomys squamipes, and of the presence of

different Blastocystis subtypes in cockroaches (ST4), rodents (ST8), pigs (ST4 and ST8).

In such species, we found Blastocystis STs that had been previously identified in humans.

We isolated ST1 and ST5 in samples respectively from a goose and a chicken collected in a

farm. This can be explained by the fact that the caregivers left the birds free during the day,

allowing contact with other farm and domestic animals and favoring the circulation of Blasto-
cystis subtypes. It is also important to note that these animals also maintain close contact with

humans. ST6 and ST7 have been conceived as typical “avian subtypes” [14, 43, 44]; however,

none of these STs was observed in our study. Considering invertebrates, we obtained only two

Blastocystis-positive samples from cockroaches. One isolate was identified as ST4, which we

have identified for the first time in this species [10, 45]. Previous cockroaches isolates were

identified as ST3 [46].

In general, ST4 is the most frequent ST in rodents, despite not being found in all rodent

species [11, 29]. ST1, ST3, ST5, ST10, and ST17 were also found in rodents in previous investi-

gations [7, 11, 30]. We detected ST3 in Rattus rattus, and also ST8 for the first time in the

South American water rat Nectomys squamipes, thus expanding the number of subtypes

recorded in rodents. ST8 had already been found in humans in Sumidouro, Brazil [36], con-

firming its circulation in both human and animal populations in this region. N. squamipes
inhabits the banks of streams, rivers and flooded areas, and has a wide geographical distribu-

tion in Brazil [47]. It has been reported as an important source of intestinal parasites infections

such as Schistosoma mansoni in Sumidouro [48, 49]. According to official reports (SEA, 2014)

[50], almost 80% of the population in this region has no access to appropriate sewage services

and rely on effluent disposal (rudimentary trench, ditch, river, lake, and other types), which

may lead to fecal contamination of soil and water.

We also identified Blastocystis ST8 for the first time in an armadillo. This species is widely

distributed in South America [51–53]. In the sampled marsupials, we observed elevated levels

of Blastocystis infection by ST1 and ST8 in two species (Didelphis aurita and Metachirus

Blastocystis isolated from animals
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nudicaudatus). The black-eared opossum D. aurita is a generalist and opportunist marsupial,

very abundant in degraded areas of the Atlantic Forest [54, 55], possibly explaining the high

prevalence of Blastocystis. This is also the first report of Blastocystis infection in another marsu-

pial (Metachirus nudicaudatus). This species is primarily insectivorous but also feeds on small

vertebrates, seeds and fruits [55, 56, 57], increasing the chances of ingesting Blastocystis cysts.

Further studies of native Brazilian fauna should increase our knowledge of Blastocystis epide-

miology and host specificity.

Blastocystis infection is common in domestic pigs [58, 59], primarily by the two subtypes

ST1 and ST5 [7, 10, 12, 21, 60, 61]. However, six Blastocystis STs have been reported in pigs

worldwide (ST1-ST3, ST5-ST7), with ST5 as the most common [8, 10, 12, 14, 15, 21, 25, 29,

62]. ST5 was the most prevalent in our samples. We have expanded the number of subtypes

recorded in pigs by identifying ST4 and ST8. ST4 was isolated from a pig sampled from a farm,

while ST8 was identified in a slum. Pigs bred under unhealthy conditions can be an important

source of transmission of several parasites including Blastocystis. Previous studies demon-

strated Blastocystis transmission from animals under human care, including pigs [6, 7, 15, 28,

60, 63], which indicates the potential for zoonotic transmission by pigs, as previously suggested

by the detection of the zoonotic subtype ST5 in both pigs and piggery workers in Queensland,

Australia [15, 25].

We identified ST1-ST3 and ST8 in non-human primates, with ST2 as the predominant sub-

type, in agreement with previous screens [6, 7, 15, 16, 29, 64, 65]. ST8 is common in NHP care-

givers, further supporting a possible zoonotic spread of Blastocystis from to humans [7]. NHPs

are often infected by Blastocystis with ST1, ST2 and ST3 being the most frequent subtypes both

in NHPs and humans across the world [9, 16, 29, 34, 65–68]. Considering that the most sur-

veys were conducted with captive NHPs [6, 7, 11, 15, 64, 65] in close contact with humans and

that ST1-3 can circulate in both hosts, it seems reasonable to assume the possibility of zoonotic

transmission. Blastocystis transmission between animals can also occur through interactions in

zoos, resulting in the potential transmission of distinct STs among animals and to humans [6,

15] Nonetheless, Blastocystis subtype data obtained from zoos and labs should be interpreted

with care since captive and wild populations may be exposed to different STs [29].

Blastocystis has been previously cultured in a wide range of media. In general, any medium

developed for the isolation and growth of Entamoeba spp. will also support Blastocystis. The

widely used Jones’ medium is ideal for short term culturing of multiple subtypes [69, 70].

However, xenic cultures of Blastocystis seem to be relatively stable irrespective of source and

medium reagents. For this reason, in our study Pavlova medium was used to successfully iden-

tify Blastocystis in various animal species.

Despite our considerable effort in analyzing 115 culture samples, one limitation of our

study was that no amplification was observed in 34 samples. We choose to work with cultured

samples to avoid DNA extraction from lower parasite densities or problems with PCR inhibi-

tors in feces. PCR generally works better with DNA extracted from Blastocystis cultures than

directly from feces. Our primers targeted a conserved region of the SSU rDNA gene but were

designed by Santin et al. [8] based on a relatively small number of animals (NHPs, swine, cat-

tle, and chicken). One intriguing possibility suggested by our data is that some infections may

go undetected when those primers are used. However, it is also clear that some subtypes

exhibit substantial genetic diversity, and thus the ability of primers to detect all genetic variants

Fig 2. Maximum likelihood (ML) and Bayesian inference reconstruction tree of Blastocystis based on SSU-rDNA gene using sequences obtained in the study

and Genbank retrieved. The first number associated with each node represents the ML bootstrap value (values below 50% were not shown) followed by the Bayesian

posterior probabilities. The scale bars indicate the expected number of substitutions per site.

https://doi.org/10.1371/journal.pone.0210740.g002
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is yet to be determined. Applying other primers to the 34 Blastocystis samples that failed to be

amplified may provide an answer to this question, and to this purpose, we have planned a

future comparative study of the techniques.

Moreover, there are intrinsic obstacles to accurately assessing mixed infections through the

employed methodologies. Subtyping of isolates in mixed infections requires cloning of the

PCR product and sequencing of several clones. Investigations on mixed infections are there-

fore rare. Only one study that has investigated Blastocystis mixed infections in humans [71].

The study analyzed 50 clones and detected three different subtypes of Blastocystis in humans

(ST2, ST3, and ST4). However, their analyses were based on a single individual, thus restricting

interpretations. Preparation of multiple clone libraries is laborious and prohibitive, and it is

not clear how many clones are needed to identify mixed infections. In addition, levels of diver-

sity of Blastocystis within a host have never been investigated.

Lastly, in agreement with previous findings [29, 72], the high level of genetic variability

found in ST1, ST2, and ST3 seems to support the low host specificity of these subtypes.

Although ST1 and ST3 are predominant in humans, both have been found in a wide range of

animals. Our findings show that not only ST1, ST2 and ST3, but also ST4, ST5, and ST8 were

shared by many hosts, including non-mammals, suggesting the circulation of these subtypes in

different animal populations. These results support the low host-specificity of Blastocystis and

cross-infectivity among distinct hosts. Most isolates from animals and humans are genetically

similar or identical, providing further evidence for cross-transmission [6, 15].

Conclusions

Our results indicate a considerable overlap between Blastocystis subtypes across in different

hosts. Future studies should extend our findings need and investigate a larger number of sam-

ples and animal orders, so as to better understand the ecology, epidemiology and host specific-

ity of Blastocystis. Our findings also further contribute to defining the genetic characteristics of

Blastocystis in different hosts in Brazil and other countries.
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Writing – review & editing: Helena Lúcia Carneiro Santos.
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