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Concurrently, leishmaniasis and AIDS are global public health issues and the overlap

between these diseases adds additional treats to the management of co-infected

patients. Lopinavir (LPV) has a well characterized anti-HIV and leishmanicidal action, and

to analyze its combined action with miltefosine (MFS) could help to envisage strategies

to the management of co-infected patients. Here, we evaluate the interaction between

LPV and MFS against Leishmania infantum infection by in vitro and in vivo approaches.

The effect of the compounds alone or in association was assessed for 72 h in mouse

peritoneal macrophages infected with L. infantum by the determination of the IC50s

and FICIs. Subsequently, mice were orally treated twice daily during 5 days with the

compounds alone or in association and evaluated after 30 days. The in vitro assays

revealed an IC50 of 0.24µM and 9.89µM of MFS and LPV, respectively, and an additive

effect of the compounds (FICI 1.28). The in vivo assays revealed that LPV alone reduced

the parasite load in the spleen and liver by 52 and 40%, respectively. The combined

treatment of infected BALB/c mice revealed that the compounds alone required at least

two times higher doses than when administered in association to virtually eliminate the

parasite. Mice plasma biochemical parameters assessed revealed that the combined

therapy did not present any relevant hepatotoxicity. In conclusion, the association of

MFS with LPV allowed a reduction in each compound concentration to achieve the same

outcome in the treatment of visceral leishmaniasis. Although a pronounced synergistic

effect was not evidenced, it does not discard that such combination could be useful in

humans co-infected with HIV and Leishmania parasites.
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INTRODUCTION

Visceral leishmaniasis (VL), also known as kala-azar, is a vector-
borne disseminated protozoan infection caused by species of
the Leishmania donovani complex (Lukes et al., 2007; Burza
et al., 2018). It is a an important but neglected tropical disease
that occurs worldwide (Ready, 2014). In 2015, more than
90% of VL occurred in only seven countries: Brazil, Ethiopia,
India, Kenya, Somalia, South Sudan, and Sudan (Burza et al.,
2018). Notwithstanding, VL remains prevalent in more than 60

countries worldwide (Burza et al., 2018).
VL is an opportunist disease in human immunodeficiency

virus (HIV) infected patients and this co-infection is one
of the major challenges for VL control (Alvar et al., 2008).
The re-emergence of VL in Europe in the 1990’s was caused
by immigration and HIV infection worsened the scenario
(Agostoni et al., 1998). Since then, co-infection cases have been
reported in 35 countries worldwide (Lindoso et al., 2016), being
more prevalent in the East Africa region, especially Ethiopia
(Van Griensven et al., 2014b; Yimer et al., 2014), in Brazil
(Nascimento et al., 2011; Lima et al., 2018), and in India
(Burza et al., 2014; Singh, 2014). VL promotes an increase in
viral load and accelerates the clinical progression of acquired
immunodeficiency syndrome (AIDS), thereby reducing the life
quality and expectancy of these patients. On the other hand,
HIV co-infection significantly increases the risk of progression
to VL disease in asymptomatic or subclinical individuals (Alvar
et al., 2008; Ezra et al., 2010; Adriaensen et al., 2017). Indeed, it
has been shown that the immunological status of HIV patients
is favorable for the multiplication of Leishmania parasites
(Adriaensen et al., 2017). Thus, both pathogens exert synergistic
detrimental effect on the immune response of co-infected
patients (Ezra et al., 2010).

Despite VL/HIV co-infection representing a significant public
health burden, the current therapies are inefficient, and an
effective treatment is remaining a challenge (Ritmeijer et al.,
2011; Sinha et al., 2011; Van Griensven et al., 2014a). VL/HIV
co-infection cases have higher rates of treatment failure, greater
susceptibility to drug toxicity and higher lethality and relapse
than in VL infected patients without HIV infection (Monge-
Maillo et al., 2014; Van Griensven, 2014; Van Griensven et al.,
2014c). The advent of the highly active antiretroviral therapy
(HAART) improved the life quality, increased the life expectancy
of HIV patients, as well as promoted a substantial reduction
on the incidence of opportunistic infections (Crabtree-Ramírez
et al., 2016; Lindoso et al., 2016). Particularly, HIV-aspartyl
peptidase inhibitors (HIV-PIs) have been described as a powerful
in vitro antiproliferative agents against several opportunistic
pathogens (Pozio and Morales, 2005; Trudel et al., 2008; Santos
et al., 2009; Santos, 2010; Lindoso et al., 2016). Previous
data from our research group demonstrated that nelfinavir
is an effective antileishmanial agent against promastigotes of
several Leishmania species (Santos et al., 2013), as well as
that lopinavir (LPV) affects Leishmania-macrophage interaction
(Santos et al., 2009).

The combination therapy may be an interesting strategy to
deal with the co-infection. Previous studies have shown that drug

association can be very effective, reducing side effects, decreasing
the induction of resistance, and allowing the prescription of lower
doses to achieve the same outcome (Perron et al., 2012; Stone
et al., 2014; Trinconi et al., 2014; Sun et al., 2016). Driven by the
necessity of finding alternative therapeutic strategies for VL/HIV
co-infection, we evaluated the combination treatment with LPV,
an HIV-PI, and miltefosine (MFS) in L. infantum infection.
Our results suggest that LPV- MFS combination therapy can
be effective in the treatment of VL/HIV co-infected patients
and provides data that can help to guide a possible therapeutic
strategy in VL/HIV co-infection.

MATERIALS AND METHODS

Drugs and Chemicals
LPV was synthesized in the Laboratory of Chemical Synthesis,
Farmanguinhos, FIOCRUZ. MFS, heat inactivated fetal bovine
serum (FBS), RPMI-1640 medium, streptomycin, penicillin,
hemin, D-biotin, adenine, folic acid, AlamarBlue R©, and
dimethylsulfoxide (DMSO) were purchased from Sigma Aldrich
Chemical (St. Louis, MO, USA). Drugs were prepared in DMSO,
aliquoted, and kept at −20◦C until use. All other reagents were
analytical grade or superior.

Parasites
Leishmania infantum (strain MHOM/MA/67/ITMAP-263) was
cultivated at 26◦C in RPMI medium supplemented with 10%
FBS, streptomycin (100µg/mL), penicillin (100 U/mL), hemin
(5 mg/mL), D-biotin (0.2 mg/mL), adenine (4 mg/mL), and folic
acid (0.5 mg/mL).

Experimental Animals and Ethics
Statement
BALB/c mice (female, 6–8 weeks old) were obtained from
the Institute of Science and Technology in Biomodels (ICTB-
FIOCRUZ). Mice were housed five per cage and maintained in
standard environmental conditions (12:12 h light:dark cycle at 22
± 2◦C) with access to food and water ad libitum.

Cytotoxicity Assay
The AlamarBlue R© assay was used to determine the cytotoxicity
of LPV and MFS in uninfected mouse macrophages. Resident
peritoneal macrophages from BALB/c mice were seeded at 1 ×

106 cells/mL in 200 µL supplemented RPMI into 96 well-plates
at 37◦C in 5% CO2 for 4 h for adherence. Then, the plates were
gently washed two times with PBS (phosphate buffered saline,
150mM NaCl, 20mM phosphate buffer, pH 7.2) to remove non-
adherent cells, and treated with 2-fold serial dilutions of LPV
and MFS concentration ranging from 400 to 3.125µM and 40 to
0.3125µM, respectively. After 72 h, AlamarBlue R© was added to
the macrophage cultures to a final concentration of 10% v/v, and
the plates were then incubated at 37◦C for additional 4 h. The
absorbance was measured at excitation/emission of 560/590 nm
(Kulshrestha et al., 2013; Cunha-Júnior et al., 2017). The results
were expressed as the percentage of viable cells compared to the
control cells treated with the highest DMSO dose used to dissolve
the compounds.
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Evaluation of in vitro Antileishmanial
Activity
Resident peritoneal macrophages from BALB/c mice were
resuspended in supplemented RPMI medium. 8 × 105 cells/well
were plated in eight chamber Lab-Tek chambers (Nunc, Roskilde,
Denmark). L. infantum promastigotes collected at the stationary
phase were washed three times in PBS (3,000 × g for 10min)
and added to adherent cells at a parasite/macrophage ratio
of 5:1 and incubated for 4 h at 37◦C in 5% CO2. Next, free
promastigotes were removed by washing with RPMI medium
and the macrophages were incubated with LPV alone or in
combination with MFS at 37◦C for 72 h. The solutions were
prepared in proportions of 5:0, 4:1, 3:2, 2:3, 1:4, and 0:5 of
LPV and MFS drugs, respectively, which were serially diluted
(base 2) six times. The initial drug concentrations were 25 and
2µM of LPV and MFS, respectively. LPV initial concentration
was the highest non cytotoxic to macrophages, while for MFS,
we chose the most potent (non-cytotoxic) concentration that
did not completely eliminate parasites from macrophages in
the single compound assays. Three independent experiments,
in triplicate, were performed for each drug combination and
susceptibility assay.

Finally, the slides were fixed, stained with Panoptic and
the amastigotes were counted using light microscopy. The
infection rate was calculated using the formula: (% of infected
macrophages× average number of amastigotes permacrophage).
Control experiments were performed with infected macrophages
incubated with DMSO at the highest dose used to dissolve
the compounds. The 50% inhibitory concentration (IC50), i.e.,
the minimum drug concentration that caused a 50% reduction
in infection rate in comparison with that in control infection
without the compound, was obtained by non-linear regression
using GraphPad Prism software. Each point was tested in
duplicate with three biological replicates.

Fractional Inhibitory Concentration
Determination and Isobologram
Construction
The four fractional inhibitory concentration indexes (FICIs) of
LPV, derived from association curves, were calculated using the

following equation: concentration of LPV in each association
curve (4:1, 3:2, 2:3, 1:4) able to inhibit 50% of the parasite growth/
IC50 of LPV alone. The same formula was applied to MFS.
The sum FICIs (6FICIs) were calculated as FICI of LPV plus
FICI of MFS and the arithmetic mean of the FICIs obtained
was compared to the reference values and reported as synergism
(FICI≤ 0.5), antagonism (FICI ≥ 4.0) and additive effect of the
compounds (0.5 < FICI < 4.0) (Odds, 2003). The interaction
between drugs was expressed graphically as an isobologram.

Mice Infection and Treatment
BALB/c mice were infected intraperitoneally with 1.0 × 108

stationary-phase L. infantum promastigotes. After 7 days,
animals were treated by oral gavage twice daily for 5 days
with a 12 h interval between doses following the dosages
described below (Katsuno et al., 2015; Cunha-Júnior et al., 2017).
Thirty days post infection, the animals were euthanized, and
the spleen and liver were aseptically removed, weighed, and
homogenized in supplemented RPMI medium. The parasite
load was estimated by limiting dilution assay (LDA) (Buffet
et al., 1995). Plasma biochemical parameters investigated were
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT), creatinine (CREA), urea, total bilirubin and cholesterol,
which were measured by the Program of Technological
Development in Tools for Heath PDTIS-Fiocruz.

Therapeutic Scheme
The animals were treated with either MFS, LPV or the
combination of both drugs by the oral route twice daily (at 12 h
intervals) for 5 days (Katsuno et al., 2015) at day seven post-
infection (Cunha-Júnior et al., 2016). Animals were divided into
13 groups, as follows: (0) Control, non-infected and non-treated
(CNI); (1) Control, PBS with 1% DMSO, infected and non-
treated (CI); subsequently, all groups correspond to infected and
treated mice, as follows: MFS at 15.4 mg/kg (2), 7.7 mg/kg (3),
3.85 mg/kg (4); LPV at 493.2 mg/kg (5), 246.6 mg/kg (6); MFS
+ LPV, respectively, at 7.7 mg/kg + 493.2 mg/kg (7), 7.7 mg/kg
+ 246.6 mg/kg (8), 3.85 mg/kg + 493.2 (9), 3.85 mg/kg + 246.6
mg/kg (10), 1.92 mg/kg + 493.2 mg/kg (11), 1.92 mg/kg + 246.6
mg/kg (12). Each group was composed of at least five mice, and
the experiment was repeated three times, independently.

FIGURE 1 | Citotoxicity of MFS and LPV to peritoneal macrophages. Cells (1 × 106 cells/mL) were incubated in 96 well plates for 72 h in the presence of MFS (A) and

LPV (B) at different concentrations. The viability of macrophages was assessed by using the Alamar blue assay. Data represent the mean (±SD) of three independent

experiments. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Statistical Analyses
The results are presented as means ± standard deviation
(SD) or standard error of the mean (SEM) of replicates
samples from at least two independent assays. Paired
comparisons between groups were carried out by Student’s
t-test or analysis. P-values equal or >0.05 were considered
statistically significant.

FIGURE 2 | Antiamastigote activity of MFS, LPV, and their combination.

Peritoneal macrophages infected with L. infantum were treated with MFS (A),

LPV (B), or both drugs associated (C) for 72 h at 37◦C. (C) Isobologram

analysis of antiamastigote activity of drugs combined in several proportions.

Each plotted point in the isobolograms is the IC50 of the drug alone or in

combination. The straight dashed line represents the theoretical line of

additivity for each combination. Data are representative of three independent

experiments and values are expressed in mean ± SD in (A,B) and ± SEM

in (C).

RESULTS

Evaluation of the in vitro Efficacy of
LPV-MFS Combination
First, we aimed to determine the highest drug concentration of
each compound that was not cytotoxic to macrophages under
the assayed conditions, which were 25 and 20µM for LPV and
MFS, respectively (Figure 1). Then, the antiamastigote activity
was evaluated for the drugs alone or associated in several
proportions, as described in the materials and methods section.
The antileishmanial activity of LPV and MFS was confirmed
against intracellular L. infantum amastigotes, with IC50 of 9.89
± 0.2 and 0.44 ± 0.3µM, respectively (Figures 2A,B). The
resulting effect of the drugs association was evaluated graphically
by plotting the IC50 of the compounds alone or in combination
as an isobologram (Figure 2C). In addition, the FICI value for
each drug combination was calculated. The x̄FICI was1.28± 0.24,
indicating an additive interaction (Odds, 2003) between LPV and
MFS (Table S1). Furthermore, none of the concentrations of the
drugs tested in combination induced any significant toxicity as
assessed by AlamarBlue assay (data not shown).

In vivo Efficacy of Drugs in the Murine VL
Model
For in vivo assays, L. infantum infected BALB/c mice were treated
with MFS at 15.4, 7.7, 3.85, and 1.92mg per kg of body weight
alone or in combination with LPV at 493.2 and 246.6mg per
kg of body weight. In MFS-treated mice, the hepatic and splenic
amastigote loads were completed suppressed by 7.7 and 15.4 drug
doses, respectively (Figure 3). This compound at 3.85 mg/kg
promoted a significant reduction in the mean of parasitic load
in liver (46.7% ± 7.1) and spleen (67% ± 10.5) (Figure 3).
In LPV-treated mice the hepatic and splenic amastigote loads
were statistically significant reduced by the treatment with 493.2
mg/kg to 40% (±20) and 52% (±16.4), respectively (Figure 3).
In conclusion, as expected, MFS alone was able to reduce parasite
burden compared to untreated infected control. Conversely, LPV
at the highest dose tested presented a reduction in the parasite
load that is not negligible.

Concerning the drug association at first, we showed that
LPV did not exert any deleterious effect on MFS action by
adding it at 493.2 and 246.6 mg/kg to a MFS dose that virtually
eliminated the parasite (7.7 mg/kg) (Figure 3). Then, we tested
the effect of LPV at the same concentrations on a MFS lower
dose (3.85 mg/kg), which alone presented only an intermediary
effect. The hepatic parasitic load was reduced in 70.15% (±4.6)
and 71% (±5.6) in relation to single MFS treatment with 3.85
mg/kg or control infected mice, respectively, while no dose-
response was observed between the two concentrations of LPV.
In spleen, only the highest dose of LPV promoted a significant
reduction (52.56% ± 16.4) in the parasite load, in relation to
MFS alone (3.85 mg/kg). Finally, we analyzed the combination
of MFS at 1.92 mg/kg with LPV at 493.2 and 246.6 mg/kg, this
MFS dose has as a marginal effect based on the results at 3.85
mg/kg. The highest dose of LPV showed a significant reduction
in hepatic (44.48% ± 20) and splenic (77% ± 6.5) parasite
load (Figure 3).
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FIGURE 3 | Efficacy of MFS alone or in combination with LPV in L. infantum in vivo infection. Evaluation of hepatic (A) and splenic parasite burden (B) 30 days

post-infection. CI, infected control. Animals were treated in day 7 post-infection by oral gavage twice daily for 5 days with a 12 h interval between doses. Data are

presented as the mean ± SD. *P < 0.05; **P < 0.01; ****P < 0.0001 versus CI. #P < 0.05 vs. MFS 3.85; ##P < 0.01 vs. MFS 3.85.

As expected, CI group presented a significant increase
in spleen and liver relative weight when compared to CNI
(Figure 4). A significant decrease in the liver weight in
comparison to CI was only observed in the infected mice
treated with 493.2/3.85 mg/kg of LPV/MFS (5.57% ± 0.82),
while no statistical significance is observed when compared to
CNI (Figure 4A), which indicates that a high dosage of LPV
combined with MFS at 3.85 mg/kg reverted the liver weight to
the levels of health individuals. The relative weight of spleen
was significantly reduced in comparison to CI in mice treated
with 493.2/7.7 and 493.2/3.85 mg/kg of LPV/MFS in 29.34%
(SD 1.09) and 14.4% (SD 0.48), respectively (Figure 4B). Both
treatments were able to revert the spleen weight to the levels
of health individuals (Figure 4B). Finally, at the end of the
treatment, the hepatic toxicity was evaluated by measuring the
plasma levels of total bilirubin, ALT and AST (Table S2). No
significant changes were observed in the bilirubin and ALT
levels in comparison to CI. Increased circulation levels of AST
were found in the serum of animals treated with MFS at 15.4
and 7.7 mg/kg, LPV at the highest dose (493.2 mg/kg) and
in all combination doses. However, the AST values found for

all doses tested are inside the normal range for mice (AST
= 54-298 U/I) (Wege et al., 2012). The renal function was
also evaluated and no significant changes for creatinine or urea
levels in plasma of untreated and treated animals was observed
(Table S2). Moreover, no differences were found in the serum
cholesterol levels among all studied groups (Table S2). These
data point out that the combined therapy did not present
any relevant hepatotoxicity and impact on mice, under the
assayed parameters.

DISCUSSION

The aim of this study was to evaluate the antileishmanial
effect of LPV and MFS combination in an infection caused
by L. infantum using in vitro and in vivo murine model of
VL. The nature of interaction between the drugs was first
determined as additive in vitro. This prompted us to assay the
association in vivo in BALB/c mice infected with L. infantum,
and the additive effect of both drugs observed in vitro was
reproduced in vivo.
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MFS interferes on L. donovani lipid metabolism, inducing
an increase in sphingolipid and ergosterol content (Armitage
et al., 2018). Sterol biosynthesis is a crucial pathway that leads
to the production of ergosterol in Leishmania parasites, and
therefore, it is an interesting chemotherapeutic target. Unlike
mammalian cells, trypanosomatids synthesize C24-alkylated and
ergostane-based sterols (Goad et al., 1984; McCall et al., 2015).
Therefore, compounds that interfere with the sterol pathway are
promising drugs in treating leishmaniasis. In addition, drugs
that act synergistically on different points of the same pathway
represent an attractive strategy for antimicrobial chemotherapy
(Roberts et al., 2003; Andrade-Neto et al., 2016). In this sense,
our group showed that LPV also alters the lipid composition
on L. amazonensis, mainly interfering in sterol composition
and causing a pronounced accumulation of cholesterol-ester in
treated parasites (Rebello et al., 2018). Although the intracellular
target or death mechanism of the HIV-PIs are not totally
elucidated in trypanosomatids, it is also likely that they interact
and inhibit trypanosomatids aspartyl peptidases (Santos et al.,
2013; Castilho et al., 2018). Therefore, considering the multiple
and diverse targets of each compound, the additive effect
reported here was expected.

Recently, Valdivieso et al. reported the effects of the combined
therapy with nelfinavir, another HIV-PI, and MFS in a murine
infection by L. infantum (MCAN/ES/98/LLM-724) (Valdivieso
et al., 2018). Mice experimentally infected were treated in day
15 by intraperitoneal injection of nelfinavir and MFS during
15 days, and then parasitemia was measured. This treatment
is in high contrast to our scheme, which was oral gavage
twice a day, for only 5 days in the seventh day post-infection.
Mice were then sacrificed on day 30-post infection, therefore,
before parasitemia was assessed, mice continued alive with no
treatment during 18 days. Although Valdivieso et al. recently
reported a more prominent combined effect, the treatment
scheme reported here, strongly challenge the compounds efficacy,
and the oral gavage, more closely resembles the administration
route that is used for human patients, since MFS and HIV-
PIs are oral drugs (Jha et al., 1999; Dorlo et al., 2012;
Crabtree-Ramírez et al., 2016).

In the scenario of increasing cases of HIV/Leishmania co-
infection, the data presented herein from oral-treated mice
during only 5 days can help to guide the design of clinical trials
for the specific management of co-infected individuals. The oral
combined therapy of LPV-MFS was effective in reducing the
parasite loads in animal models of visceral Leishmaniasis and
boosted the effect of lower doses of MFS. We demonstrated the
potential value of combining available oral and safer drugs as a
promising strategy to treat VL/HIV co-infection patients, and
envision the possibility of achieving the same treatment outcome
with lower compounds dosages, which can prevent or delay drug
resistance and reduce side effects in patients.
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FIGURE 4 | Relative organ weights of mice in different treatment with MFS

alone or in combination with LPV. (A) Liver, (B) Spleen. Animals were treated in
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evaluated. *P < 0.05 vs. CNI; **P < 0.01 vs. CNI; #P < 0.05 vs. CI.
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Table S1 | IC50, FICI50, and 6FICI50 of LPV-MFS combination against L.

infantum intracellular amastigotes.

Table S2 | Comparison of biochemical parameters between untreated (CI, control

infected) and treated parasites with MFS or LPV administered alone or in

combination. Levels of creatinine, urea, total bilirubin, cholesterol, AST (Alanine

amino transferase), and ALT (Aspartate amino transferase) are shown. The data

are mean ± SD of three independent experiments. ∗P < 0.05, ∗∗P < 0.01.
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