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RNA molecules are essential players in many fundamental biological processes.

Prokaryotes and eukaryotes have distinct RNA classes with specific structural features

and functional roles. Computational prediction of protein structures is a research field

in which high confidence three-dimensional protein models can be proposed based on

the sequence alignment between target and templates. However, to date, only a few

approaches have been developed for the computational prediction of RNA structures.

Similar to proteins, RNA structures may be altered due to the interaction with various

ligands, including proteins, other RNAs, and metabolites. A riboswitch is a molecular

mechanism, found in the three kingdoms of life, in which the RNA structure is modified

by the binding of a metabolite. It can regulate multiple gene expression mechanisms,

such as transcription, translation initiation, and mRNA splicing and processing. Due to

their nature, these entities also act on the regulation of gene expression and detection

of small metabolites and have the potential to helping in the discovery of new classes

of antimicrobial agents. In this review, we describe software and web servers currently

available for riboswitch aptamer identification and secondary and tertiary structure

prediction, including applications.

Keywords: riboswitch, RNAmotif, riboswitch aptamer prediction, RNA secondary structure, RNA tertiary structure

INTRODUCTION

Fifty years ago, the central dogma of molecular biology proposed a preferential flow of information,
stating that DNA is transcribed into RNA, which in turn is translated into proteins with structural
or catalytic functions (Crick, 1970; Albert et al., 2011). Since then, new findings have indicated
that this theory was incomplete. For instance, in 2007, the ENCODE Project Consortium showed
that, although most of the DNA is transcribed, only a fraction of the transcriptome is translated
into proteins. RNA portions that do not encode proteins were then termed non-coding RNAs
(ncRNA) (Crick, 1970; Mattick, 2001; Albert et al., 2011). Those ncRNAs belonging to the same
class share precise sequence and structural characteristics, which have been conserved throughout
several evolutionary processes. The degree of sequence conservation is smaller than that observed
for protein-coding genes, but is crucial to explain the functional heterogeneity of the ncRNAs
(Amaral et al., 2011; Qu and Adelson, 2012). One of the most significant examples of conserved
functional RNAs are the riboswitches (Barrick and Breaker, 2007).
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Riboswitches are natural RNA sensors located in the
untranslated regions (UTRs) or the introns within an mRNA
sequence. These sensors are capable of binding a great variety of
small molecules, such as vitamins, amino acids, and nucleotides
(Edwards and Batey, 2010; Breaker, 2012) and control the
transcription or translation of the host mRNA. Riboswitches
can be classified into different classes according to their binding
metabolite, being the largest class the one including those
capable of recognizing coenzymes, such as adenosylcobalamin
(AdoCbl) (Vitreschak et al., 2003), thiamine pyrophosphate
(TPP) (Winkler W. et al., 2002), flavin mononucleotide (FMN)
(Winkler W. C. et al., 2002), S-adenosylmethionine (SAM)
(Winkler et al., 2003), S-adenosylhomocysteine (SAH) (Wang
et al., 2008), tetrahydrofolate (THF) (Ames et al., 2010) and
molybdenum/tungsten cofactors (Moco/Tuco) (Regulski et al.,
2008). Riboswitches belonging to the second largest group bind
purines and some derivate purine compounds, such as adenine
(Mandal and Breaker, 2004a), guanine (Batey et al., 2004), pre-
queuosine-1 (preQ1) (Roth et al., 2007), deoxyguanosine (dG)
(Wacker et al., 2011), cyclic-di-GMP (c-di-GMP) (Sudarsan et al.,
2008), and cyclic-di-AMP (c-di-AMP) (Nelson et al., 2013).
They also recognize amino acids, including lysine (Serganov
et al., 2008), glycine (Mandal, 2004), and glutamine (Ames and
Breaker, 2011). Other metabolites include metal cations such
as Mg2+ (Cromie and Groisman, 2010), the halide anion F−

(Chawla et al., 2015) and glucosamine-6-phosphate (GlcN6P)
(Klein, 2006). However, riboswitch classification could be larger
as there are several putative structures yet to be validated and
orphan riboswitches yet to be identified (reviewed by Peselis and
Serganov, 2014). Examples of known riboswitches are depicted in
Figure 1.

Genes regulated by riboswitches are involved in the
biosynthesis, catabolism, signaling or transport of its binding
metabolite, which creates a negative feedback regulatory
mechanism to maintain the adequate levels of this molecule
in metabolic processes (Mandal and Breaker, 2004b). When
the levels of the metabolite increase, binding to the riboswitch
occurs, leading to down regulation of the expression levels of the
metabolite-related genes and, consequently, of the metabolite
itself. This negative feedback mechanism can be considered
as a fast reaction to changes in the environmental metabolite
concentration that does not require the assistance of other
supporting molecules (Serganov and Nudler, 2013), which
consequently minimizes energy waste (Garst and Batey, 2009).

The structure of a riboswitch includes the aptamer and
the expression platform, both of which are connected by
the switching sequence. The aptamer region is evolutionarily
conserved and responsible for metabolite recognition and
binding (Tucker and Breaker, 2005; Hammann and Westhof,
2007; Serganov and Nudler, 2013). Binding of a metabolite
induces a structural change in the expression platform, which
is a highly variable region (Serganov and Nudler, 2013). This
last modification controls gene expression (Garst and Batey,
2009). An example of this class of riboswitch is the guanine
riboswitch, which is present in the xpt-pbuX operon of Bacillus
subtilis (Ottink et al., 2007; Peselis and Serganov, 2014). In
some riboswitches, such as the SAM-II riboswitch in the metX

transcript of the Sargasso Sea metagenome, both aptamer and
expression platform are merged into a single region (Coppins
et al., 2007; Haller et al., 2011). In this particular case, SAM
binding promotes the formation of a pseudoknot1 structure,
which includes the Shine-Dalgarno sequence, preventing its
recognition by the ribosome.

The “ON” and “OFF” states of riboswitches depend on
metabolite binding (Garst et al., 2011). So far, the only known
exception is the adenine riboswitch present in the add gene of
the thermophile Vibrio vulnificus. In 2013, Reining et al. (2013)
demonstrated the occurrence of three stable conformations for
this riboswitch. In one of them, the metabolite was inside
the structure and a free Shine-Dalgarno sequence allowed
translation. In the two other conformations, the metabolite was
not inside the riboswitch and the Shine-Dalgarno sequence
was not free. The difference between these two ligand-free
conformations is that one of them, which the authors termed
apoB, cannot interact with the metabolite. To adjust its
3D-structure to the other ligand-free conformation able to
bind adenine, termed apoA, a change in the environmental
temperature and in metabolite concentration is needed.

The aptamer has an extremely high specificity to bind the
metabolite, which allows it to act in the presence of many
related compounds (Tucker and Breaker, 2005). For instance,
the AdoCbl riboswitch cannot bind to methylcobalamin or
cyanocobalamin (Nahvi, 2004), and the TPP-binding riboswitch
does not interact with thiamine or thiamine monophosphate
(TMP) (Lang et al., 2007). This specificity is due to the
evolutionary conservation of sequence and structural features.
If mutations occur within metabolite-binding regions, the
function of the riboswitch can be affected or even abolished
(Lai, 2003).

Riboswitches can be found in the three kingdoms of life,
procaria, fungi and plantae and can regulate transcription and
translation in two different ways (Nudler and Mironov, 2004;
Thore et al., 2006). In prokaryotes, riboswitches are usually
located within the 5′ UTR region and act by prematurely
terminating transcription (Figure 2A) or preventing the
translation of its host mRNA (Figure 2B).

In premature termination of transcription, the structure of
the expression platform folds, giving rise to either a terminator
or an anti-terminator hairpin (Serganov and Nudler, 2013;
Machtel et al., 2016). For instance, in the above-mentioned
guanine binding riboswitch from the Bacillus subtilis xpt-pbuX
operon, binding to guanine leads to the formation of a Rho-
independent transcription terminator, while the ligand-free
conformation forms an anti-terminator hairpin. The Mg2+ and
FMN riboswitches, which are found in the mgtA transcript from
Salmonella enterica serovar Typhimurium and the ribB transcript
from Escherichia coli, respectively, prevent transcription
elongation by a Rho-dependent transcription termination
mechanism (Hollands et al., 2012). Upon riboswitch-metabolite
binding, Rho binds to the transcribing mRNA, translocates up
to the RNA–separates the transcribing mRNA from the template

1Pseudoknot is an RNA structure in which the loop of a hairpin pairs with either a
stem or a loop outside the original hairpin (Staple and Butcher, 2005).
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FIGURE 1 | Secondary and tertiary structures of known riboswitches.

DNA thereby terminating transcription prematurely (Machtel
et al., 2016).

Prevention of translation initiation occurs due to the absence
of the ribosome-binding site (RBS) (Machtel et al., 2016).
Examples of such riboswitches are the SAM-II riboswitch in
the metX transcript of the Sargasso Sea metagenome (Gilbert
et al., 2008), the adenine riboswitch within the Add mRNA from
Vibrio vulnificus (Reining et al., 2013), and the lysine riboswitch
in the lysC transcript from E. coli. In conditions of high lysine
concentration, the expression platform of these riboswitches
acquires a structure that simultaneously prevents translation and
exposes RNase E cleavage sites (Peselis and Serganov, 2014).

In eukaryotes, only the TPP-binding riboswitch has been
described where they may control splicing by either halting
or promoting gene expression (Chen et al., 2011; Peselis and
Serganov, 2014). In plants, such as Arabidopsis thaliana, Oryza
sativa, and Poa secunda (Bocobza et al., 2007; Wachter et al.,
2007), the 3′ UTR region of the THIC gene is highly conserved
and harbors a TPP riboswitch. In this type of mRNAs, the start
codon is followed by an intron, a small exon and a second
intron that is tightly linked to the TPP riboswitch. This last
intron may be kept or removed according to the intracellular
TPP concentration. After binding to TPP, an alternative splice
site is exposed, and the entire intron is removed along with its
poly-adenylation site, thus generating an unstable transcript with
several poly-adenylation sites (Bocobza and Aharoni, 2014).

In fungi such as Aspergillus oryzae (Kubodera et al., 2003) and
Neurospora crassa (Li and Breaker, 2013), the TPP riboswitch is

located within the 5′ UTR region. In this organism, when TPP
levels are increased, metabolite binding to the riboswitch exposes
an alternative splicing site while retaining part of its intron.
This event changes the open reading frame and interrupts the
biosynthesis of thiamine (Bocobza and Aharoni, 2008). The TPP
riboswitch employs a similar mechanism in the transcription of
the THI4 and THIC genes from algae such as Chlamydomonas
reinhardtii and Volvox carteri (Croft et al., 2007).

In 2009, Ray et al. published the discovery of an RNA switch
structure in the 3′ UTR region of the human VEGFA gene
(Ray et al., 2009). In conditions close to hypoxia, the structural
conformation of the VEGF 3′UTR allows the interaction with
the hnRNPl protein, which stabilizes and increases VEGFA
translation. In normal oxygenation conditions, hnRNPl is
degraded, and the VEGF mRNA binds to the GAIT complex,
inhibiting translation. Different from riboswitches, the VEGF
3′UTR binds to two different protein elements to control gene
expression. Nevertheless, the discovery of an RNA switch in
human cells highlights the possibility of similar mechanisms
playing essential roles in translation and transcription regulation
in animal cells. Therefore, large-scale prediction of RNA motifs
can serve as a tool to uncover these mechanisms and enhance our
current knowledge of riboswitches and analog.

In the particular case of riboswitches, a single RNA sequence
is capable of adopting, at least, two stable secondary structures
in order to regulate the expression of a given gene. These
structures are conserved throughout evolution in spite of
sequence variations (Ritz et al., 2013). The information of the 3D
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FIGURE 2 | Two different forms of the riboswitch regulatory mechanism. (A) Premature termination of transcription. In the absence of a ligand, transcription of the

downstream gene is permitted due to the formation of an anti-terminator stem. Upon binding of the ligand to the aptamer, a terminator stem is assembled instead the

anti-terminator, and transcription in terminated. (B) Prevention of translation initiation. In the absence of a ligand, a ribosome binds to the ribosome-binding site (RBS)

of an mRNA sequence and initiates translation. When the ligand is available, the RBS is sequestered and is not recognized by the ribosome, preventing translation to

occur (Kim and Breaker, 2008).

aptamer structure became essential to investigate the mechanism
of regulation of these switching functional ncRNAs. Structural
information is necessary to characterize structural changes of
riboswitch aptamers and fully to understand their role in the cell.

RNA structure is hierarchical, beginning with the linear
ribonucleotide sequence, then a set of base-pairing interactions
form the secondary structure, and sequentially the tertiary
structure determines the spatial shape (Onoa and Tinoco,
2004). Like proteins, RNA motifs present structure-function
relationships, and traditional experimental methods such as
X-ray crystallography and nuclear magnetic resonance (NMR)

provide critical insight into the details of this relation. However,
these methods have limitations. In X-ray crystallography, due
to the flexible nature of RNA molecules, it becomes difficult
to grow crystals that can adopt unstructured components and
multiple conformations. NMR experiments are limited to small
RNAs (Ke and Doudna, 2004). In the Protein Data Bank (PDB)
(Berman et al., 2000), only approximately 0.9% of all deposited
structures correspond to RNA structures (accessed November
2017). The smaller number of RNA structures experimentally
resolved makes it necessary to use computational methods to aid
in determining the structures of RNAs.
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Different computational tools were developed to search for
novel riboswitches, this allows the identification of robust
candidates prior to experimental validation. Several tools were
also developed to predict RNA secondary structure, as well as
3D structure for RNAs. In this paper, we summarize currently
available tools for riboswitch discovery and structure prediction.
These tools are divided into three categories: prediction of RNA
motif, prediction of RNA secondary structure, and prediction of
RNA tertiary structure, according to their main method.

PREDICTION OF RNA MOTIF

There are several methods for predicting RNA motifs, such
as using an algorithm for predicting the secondary structure
and then compare the conserved stem-loops (like RiboSW,
Chang et al., 2009), searching for riboswitch specific sequence
motives followed by the comparison of the secondary structures
(riboswitch Finder, Bengert and Dandekar, 2004; RibEx, Abreu-
Goodger and Merino, 2005; and DRD, Havill et al., 2014) and the
usage of probabilistic models such as HMM and CM (HMMER,
Mistry et al., 2013; Infernal, Nawrocki and Eddy, 2013b).

HMMER
HMMER uses Hidden Markov Model (HMM) to create a
position-specific score matrix based on primary sequence
conservation (Krogh et al., 1994; Eddy, 1998; Mistry et al.,
2013). Briefly, HMM is a statistical Markov model in which
the modeled system is assumed to be a Markov chain with
unobserved (hidden) states. nhmmer is a part of the HMMER
and search nucleotide queries against a nucleotide sequence
database (Wheeler and Eddy, 2013). The software can create a
matrix with only one sequence, but its accuracy is improved
when a larger set of reliable sequences is provided. A variety
of input sequence file formats can be used as alignment file
format (Stockholm, Aligned FASTA, Clustal, NCBI PSI-BLAST,
PHYLIP, Selex, UCSC SAMA2M); and unalignment file (FASTA,
EMBL, Genbank). The probabilistic HMM model searches for
sequence homologs in an available sequence database, accounting
for substitutions, insertions, and deletions. The program output
ranks a list of the hits with the most significant matches to the
query. Each hit represents a region of local similarity of the HMM
to a subsequence of a full target database sequence. An alignment
of the matched sequence to the model with the confidence value
which each position is aligned is also shown. The current version
of this software (Version 3.1) can be found at http://hmmer.org/.

Infernal
Infernal (INFERence of RNA ALignment) was first created by
Sean Eddy in 2002 (Eddy et al., 2002). The 1.1.2 version (July,
2016) (Nawrocki and Eddy, 2013b) is used by the Rfam database
(Nawrocki et al., 2015) to infer a set of homologous sequences
of an RNA family. Infernal’s algorithm implements covariance
models (CMs), a particular case of stochastic context-free
grammar (SCFGs), to create a probabilistic model that accounts
for RNA sequence and secondary structure conservation that
can be used to search for a particular structural pattern in user-
provided sequences (Eddy et al., 2002). Further reading about

SCFG is available in Giegerich (2014). First, the software utilizes
a set of reliable sequence alignments, along with a common
secondary structure annotation (Stockholm format), to create the
CM model specific for that target RNA family. Then, it uses a
dynamic programming algorithm to find similar sequence and
structural patterns in a set of target sequences. The alignment and
a set of trustworthy RNA sequences can be found in the Rfam
database (http://rfam.xfam.org/). Infernal has many functions
that are based on analogous ones in HMMER, such as output
formatting, which is very similar to the two software packages.
Infernal is available at http://eddylab.org/infernal/.

Riboswitch Finder
Developed in 2004 by Bengert and Dandekar (2004), this
web-based tool employs user-provided nucleotide sequence to
infer putative riboswitches by searching for specific sequence
motives and obtain its secondary structure. The algorithm was
tested with a consensus set of 13 known Bacillus subtilis-like
riboswitches sequences. To use the Riboswitch finder, merely give
any RNA sequence up to three million base pairs of nucleotides.
The tool provides information on the position of the putative
riboswitch, the minimum free energy (MFE) and a putative
secondary structure alignment. The secondary structure and
MFE are calculated using the Vienna RNA package (Lorenz et al.,
2011). Riboswitch finder is available at http://riboswitch.bioapps.
biozentrum.uni-wuerzburg.de/server.html.

RibEx
RibEx (Riboswitch Explore) (Abreu-Goodger and Merino, 2005)
is a web server to detect riboswitches and riboswitch-like
elements (RLEs). Among others, RibEx can detect the Gram-
positive T-box and the PyrR protein binding site based on
sequence motifs that are unique to each particular class. RibEx
employs an algorithm capable of finding bacterial regulatory
motifs, built exclusively on sequence conservation of regulatory
regions associated with at least one cluster of orthologous groups
of proteins that can be found in at least five non-redundant
genomes. After submitting the target primary sequence of
interest, up to 40,000 bases, the software provides a scheme of the
open reading frame (ORF) with the regulatory element found.
The sequence corresponding to this element can be addressed
with the NCBI’s BLAST tool. RibEx is currently available at http://
132.248.32.45/cgi-bin/ribex.cgi.

RiboSW
The RiboSW is a webserver (Chang et al., 2009) able to identify up
to 12 classes of riboswitches based on structural conformations
and sequence conservation. The authors used the sequence and
secondary structure information of 12 riboswitches annotated
in Rfam to recognize fundamental structure components and to
create HMM models. After a user sequence query, the software
seeks for the combination of structural elements corresponding
to one of the twelve riboswitch classes, and performs a functional
local detection using HMMER (Mistry et al., 2013). This tool
provides a sequence with secondary structure annotation and
graph, the MFE, the HMM e-value and the RNA Logo graph,
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which compares the provided sequence with the corresponding
Rfam riboswitch family.

The authors stated that the performance of their method is
comparable to that of the CM employed by Rfam, except for the
AdoCbl and TPP riboswitches, as RiboSW was not able to detect
all the members of these riboswitch families. They suggested that
this flawmay be due to the high structural variation found within
these families. The webserver is hosted at http://ribosw.mbc.nctu.
edu.tw/.

RNAConSLOpt
RNAConSLOpt is a program for predicting consensus stable
local optimal structures for multiple sequence alignment
of related RNAs (Li et al., 2012). The program also allows
predicting alternate consensus structures for riboswitches
elements in bacteria 5′ UTRs. De novo prediction, with
no previous knowledge about sequences and structures
of known riboswitches, is possible. To predict ncRNA,
RNAConSLOpt incorporates information of free energies of
structures, covariance and conservation signals into enumerating
ConSLOpt stack configurations. The program output consisting
of all probable consensus local optimal stack configurations
and consensus stable local optimal stack configurations ranked
according to both free energy and the associated minimal energy
barrier. RNAConSLOpt is available for download at http://
genome.ucf.edu/RNAConSLOpt/.

DRD: Denison Riboswitch Detector
Using a dynamic programming algorithm that considers
mismatches, the Denison Riboswitch Detector (DRD) (Havill
et al., 2014) web server predicts up to 13 classes of riboswitches
from DNA sequences. The applied algorithm breaks the query
sequence into overlapping smaller sequences and searches for
exclusive motifs belonging to each searched riboswitch class.
Afterwards, the secondary structure is predicted using Mfold
(Zuker, 2000) and is subsequently aligned with a consensus
sequence of the riboswitch class. The query provides the position
of the putative riboswitch along with its optimal and suboptimal
secondary structure annotation and graph. The authors tested
DRD using validated sequences annotated in Rfam. Overall,
the software achieved 88–99% sensitivity and more than 99%
specificity. The web server can be found at http://drd.denison.
edu/.

Riboswitch Scanner
Riboswitch Scanner (Mukherjee and Sengupta, 2016) is a web
server capable of detecting 24 riboswitch classes and identifying
novel riboswitches. Its algorithm utilizes 5-fold cross-validated
HMM models created by HMMER 3 (Mistry et al., 2013) to
determine putative riboswitches. Through the submission of
the nucleotide sequences in FASTA format, the server provides
the position of the riboswitch, MFE, HMM score and E-
value, and secondary structure annotation obtained by RNAfold
(Lorenz et al., 2011). It is available at http://service.iiserkol.ac.
in/~riboscan/application.html.

Comparison among Tools for Riboswitch
Aptamer Prediction Based on RNA Motif
Riboswitches control the expression of genes involved in the
biosynthesis and transport of ligands, as well as transcription
factors (Mandal and Breaker, 2004b). Given their significant
regulatory role in bacteria and in a few eukaryotic organisms, it is
crucial to develop tools for the accurate identification of different
riboswitch classes. Several approaches have been used for the
computational identification of riboswitch aptamers (Figure 3,
Table 1). The current riboswitch search tools employ hidden
Markov model algorithm, covariance model, and machine
learningmethods, which often use riboswitch aptamers identified
from seed alignments performed with sequences retrieved from
the Rfam database.

Most of the tools described here are web-based. These
instruments often impose restraints on the input sequence length
and number of riboswitches that can be detected at once. They
also rely on sequence or structural conservation of the aptamer to
perform that analysis. Therefore, the aptamer prediction affects
the detection of more variable riboswitches, such as the TPP and
the Cobalamin, or smaller ones, such as the guanine riboswitch.

Several computational methods have been created to identify
novel riboswitches and to characterize those that are already
known. Amongst the methods that use primary sequences, the
HMMER and Infernal tools stand out due to their ability to
run locally, with the advantage of not having upload limits.
Bothmethods utilize similar approaches by applying probabilistic
models to sequence datasets to infer patterns.

DRD group (Havill et al., 2014) compared their server with
RiboSW. The advantage of DRD compared to the other server
is the ability to scan genome-scale files for riboswitches. In
analyses of overall sequences obtained higher sensitivity (0.95)
than RiboSW (0.85). DRD server was able to detect 64 instances
that RiboSW was not identified, and 12 instances in which the
opposite was true.

In 2009, Singh and collaborators compared the performance
of HMM with other two CM web-based tools (Riboswitch finder
and RibEx) in the search for ten riboswitches families on Rfam
or RefSeq databases (Singh et al., 2009). Their results showed
that HMM models run faster than CM and were more accurate
than Riboswitch Finder and RibEx. The recently released version
1.1 of Infernal (Nawrocki and Eddy, 2013b) is reported to be
100 times faster than earlier versions and has been used for the
identification of functional RNA homologs in metagenomic data
(Nawrocki and Eddy, 2013a).

Although we agree that HMMER is faster than Infernal,
our experience in searching for riboswitches in genomes does
not corroborate their report of similar searches. In our case,
most of the candidate regions found while using HMMER were
not identified by Infernal, and the ones that were in common
were discarded according to the following threshold filters:
positive values for HMMER and values above the Rfam gathering
score for Infernal, or E-values greater than 0.01 in both cases
(unpublished data).

In a recent review on the computational prediction of
riboswitches (Clote, 2015), Infernal was considered the most
valuable tool to predict riboswitch aptamers mainly because
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FIGURE 3 | Input and output files of RNA motif prediction tools.

TABLE 1 | Feature comparison of softwares used for riboswitch identification.

Feature HMM Infernal Riboswitch Finder RibEx RiboSW RNAConSLOpt DRD Riboswitch Scanner

Considers structural conformations No Yes Yes No Yes Yes Yes Yes

Considers conserved functional sequences Yes No Yes Yes Yes Yes Yes No

Software package Yes Yes No No Yes Yes No No

Max input length None 2 kb 3Mb 40 kb 10 kb None None None

# riboswitches Any Any 13 17+ 12 Any 13 24

New user definition Yes Yes No No Yes Yes Yes Yes

the relevant Rfam database relies on Infernal for maintenance
and extension. Some studies have used Infernal to identify
riboswitches and other ncRNAs in archaeal metagenomes
(Nawrocki and Eddy, 2013a; Gupta and Swati, 2016), species in
the phyla Actinobacteria (Kang et al., 2017) and Proteobacteria
(Leyn et al., 2014),Methanobrevibacter ruminantium (Nawrocki,
2014), Neisseria gonorrheae (Remmele et al., 2014), and Brassica
rapa (Pang et al., 2015). Based on our knowledge, we also
recommend the use of the Infernal program because this tool
takes into account secondary structure conservation.

PREDICTION OF TWO- AND
THREE-DIMENSIONAL RNA STRUCTURES

Prediction of RNA Secondary Structure
Most functional ncRNAs have secondary structures that are
strictly related to their functions and that have been conserved

during evolution. RNA secondary structures are defined by
the arrangement of a set of base pairs non-covalently bound
through hydrogen bonds, and can be considered a substructure
of the global 3D structure. As it is difficult to obtain the
experimental elucidation of RNA 3D structures and these
structures are hierarchically folded, the computational prediction
of RNA secondary structures provides key information to clarify
the potential functions of RNAs. So far, a large number of
computational studies have been carried out in the field of
RNA secondary structure prediction. Prediction methods can be
classified into two groups: single sequence analysis and multiple
sequence analysis. Single sequence analysis is a traditional
approach that consists of finding the structure with minimum
free energy (MFE) of a single RNA sequence. On the other hand,
the multiple sequence analysis has the advantage of providing
higher prediction accuracy compared to single sequence analysis
because it incorporates evolutionary information. Nonetheless,
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this approach is not always suitable, given that knowledge of a
set of homologous sequences is required. Below, we list a few
programs that perform these analyses.

UNAFold/Mfold
The Mfold software for RNA folding was published as a stand-
alone option (Zuker, 1989). The first version of the Mfold
package applied free energy minimization and the methodology
was described by Freier et al. (1986). Following versions (2.1
to 2.3) used the parameters from Walter et al. (1994) and only
in the recent version 3.6, free energy data from Mathews et al.
(1999b) was incorporated into the algorithm. The Mfold web
server was first created in 1995 (Zuker, 2003) and currently
merged with DINAMelt (Markham and Zuker, 2005) (web server
simulates hybridization and melting prediction of one or two
single-stranded nucleic acids in solution) giving rise to UNAFold
(Markham and Zuker, 2008). RNA folding prediction is available
at http://unafold.rna.albany.edu/?q=mfold/rna-folding-form.

RNAfold
The RNAfold program belongs to the Vienna RNA package
(Hofacker et al., 1994; Lorenz et al., 2011). RNAfold predicts
the most thermodynamically stable structure compatible with a
single RNA sequence using the standard algorithm of Zuker and
Stiegler (1981). The prediction algorithm is based on dynamic
programming. It finds a minimum free energy conformation
using published values of stacking and destabilizing energies.
Additionally, it can produce the base-pairing probability matrix
via John McCaskill’s partition function algorithm (McCaskill,
1990), which is a different O(n3) time dynamic programming
algorithm. This methodology allows computation of the
partition function of a nucleotide sequence over all possible
unpseudoknotted secondary structures. RNAfold is available
as a free software Vienna RNA package as well as web
server (Hofacker, 2003) at http://rna.tbi.univie.ac.at/cgi-bin/
RNAWebSuite/RNAfold.cgi.

RNAstructure
RNAstructure (Mathews et al., 1998; Reuter and Mathews, 2010)
used to include a method to predict the lowest free energy
structure. This tool could also provide a group of low free
energy structures (Steger et al., 1984; Zuker, 1989). After it was
expanded to foresee binding affinity of oligonucleotides to a
complementary RNA target with OligoWalk (Mathews et al.,
1999a,b; Lu andMathews, 2008), a tool called Dynalign (Mathews
and Turner, 2002; Uzilov et al., 2006; Harmanci et al., 2007)
was added to enhance the accuracy of structural prediction by
combining free energy minimization and comparative sequence
analysis, and to obtain a low free energy structure common to two
sequences with no obligation of sequence identity.

This tool incorporates additional data to drive the prediction
of secondary structure such as enzymatic data (Mathews et al.,
1999b), chemical mapping data (Mathews et al., 2004), SHAPE
(Rice et al., 2014), and NMR data (Hart et al., 2008). Recent
extensions include PARTS (Lu and Mathews, 2008), which
calculates partition functions for secondary structures common
to two sequences and can also produce a stochastic sampling of

common structures (Mathews et al., 1999a).MaxExpect generates
a very specific group of structures from a sequence of either
RNA or DNA, and predicts the maximum expected accuracy
structure, that is, a structure that maximizes pair probabilities (Lu
et al., 2009). RNAstructure is an open-source program and can
be found at http://rna.urmc.rochester.edu/RNAstructureWeb/
(Bellaousov et al., 2013).

SFold/Srna
Sfold is a nucleic acid folding and design software package
accessible to the scientific community through web servers
since 2003 (Ding et al., 2004). Sfold package currently consists
of six modules: (i) Sirna, which provides computational tools
for target accessibility prediction; (ii) Soligo, used for rational
design of siRNAs; (iii) Sribo, used to predict antisense oligos
and trans-cleaving ribozymes; (iv) STarMir, for CLIP-based
prediction of microRNA binding sites and; (v) STarMirDB, a
database of microRNA binding sites; (vi) Srna, which provides
general statistical folding features. Srna implements tools and
sampling statistics to analyze the Boltzmann ensemble of RNA
secondary structures. All Sfold modules are available at http://
sfold.wadsworth.org/cgi-bin/index.pl.

RNAalifold
RNAalifold predicts a consensus secondary structure for a set of
previously aligned homologous RNA sequences. This approach
is inherently limited by the quality of the input alignments.
The first RNAalifold approach combines energy minimization
with a simple scoring model to assess evolutionary conservation
(Hofacker et al., 2002). Both an energy minimization algorithm
and a partition function version are implemented in the Vienna
RNA package (Lorenz et al., 2011). RNAalifold (Bernhart et al.,
2008) was later optimized by incorporating a more accurate
treatment of gaps and an elaborated model for the evaluation of
sequence covariations resembling the RIBOSUMmatrices (Klein
and Eddy, 2003). Current limits are 3,000 nt and 300 sequences
for an alignment and the program can be found at http://rna.tbi.
univie.ac.at/cgi-bin/RNAWebSuite/RNAalifold.cgi.

LocARNA
LocARNA is a tool for RNA sequence multiple alignments
(Will et al., 2007, 2012; Smith et al., 2010). The LocARNA
multiple alignments are shown in conjunction with the predicted
structure by RNAalifold (Bernhart et al., 2008). LocARNA
computes pairwise alignments by dynamic programming using a
progressive alignment strategy. LocARNA is part of the Freiburg
RNA tools web server (Smith et al., 2010). LocARNA only
needs RNA sequences as an input and simultaneously performs
folding and alignment of the sequences. Specifications of other
constraints or fixed input structures are also possible. Current
limits are 2,500 nt for the longest sequence. The server is available
at http://rna.informatik.uni-freiburg.de/LocARNA/Input.jsp.

IPknot
IPknot is a method for Integer Programming (IP)-based
prediction of RNA secondary structures with a broad class of
pseudoknots (Sato et al., 2011; Kato et al., 2012). The input data
can be either a single RNA sequence or an alignment of RNA
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sequences. IPknot accepts maximum length sequences of 1500 nt
and allows multiple alignments of RNA sequences in ClustalW
format or multiple FASTA formats to predict their consensus
secondary structure. IPknot is available at http://rtips.dna.bio.
keio.ac.jp/ipknot/.

Prediction of RNA Tertiary Structure
Similar to what is observed in proteins, the functions of an
RNA molecule depend on its structure and dynamics, which
are determined by its nucleotide sequence. The number of
computational methods and algorithms to predict the 3D
structure of proteins from its amino acid sequence is vast.
Unfortunately, only a few are available for the prediction of RNA
structure (Chojnowski et al., 2014).

To determine a 3D configuration with the best possible
accuracy, knowledge-based approaches are the most suitable.
Comparative (or homology-) modeling, for instance, which is
based on sequence similarity, works properly when there is an
experimentally elucidated structure to be used as a template
(Baker and Sali, 2001). However, RNA templates are rarely
available.

Physics-based approaches are successful for the prediction of
relatively small molecules. These tools are comparatively more
appropriate for building models of RNAmolecules with less than
∼40 nt and display reasonable reliability for molecules up to
∼80 nt. The prediction of larger molecules is possible, but the
reliability of the model decreases as the length of the sequence
increases (Magnus et al., 2014).

The combination of knowledge- and physics-based
approaches resulted in the development of the so-called de
novo folding methods, which is the assembly of the target
structure from small fragments derived from other known
structures (Bujnicki, 2006). Here, we compiled some programs
using different approaches to predict RNA 3D modeling.

MC-fold|MC-Sym
MC-Sym provides tertiary structures using the MC-Fold’s
secondary structures (Parisien and Major, 2008). The
RNA-structure-prediction method is based on Nucleotide
Cyclic Motifs (NCM), in which all nucleotides in fragments
are circularly connected by covalent, stacking or pairing
interactions. NCM property provides enough base-pairing
context information to derive an efficient scoring function
and allows the use of the same algorithm to predict both
secondary and tertiary structures. MC-Sym exhaustively or
probabilistically explores the conformational search space of
an RNA molecule and produces structures satisfying secondary
structure constraints. MC-fold|MC-Sym is available at http://
www.major.iric.ca/MC-Fold/.

iFoldRNA
The iFoldRNA web server performs automated prediction of
RNA structure and analyses of thermodynamic folding. In its
previous version (Sharma et al., 2008), only prediction of short
RNA molecules (<50 nt) was conceivable. The current version
allows prediction of a few hundred nucleotides (Krokhotin et al.,
2015). iFoldRNA also enables the automatic inclusion of two

categories of constraints: base-pairing and nucleotide solvent
accessibility. The prediction of 3D RNA structures is performed
using a coarse-grained 3-bead RNA model (phosphate, sugar,
nucleobase). Simulations are carried out using the Discrete
Molecular Dynamics (DMD) simulation engine (Ding et al.,
2008). A set of RNA molecules at different temperatures
undergoes replica exchange to enhance conformation sampling.
The server is available to the academic community at http://
redshift.med.unc.edu/ifoldrna/.

ModeRNA
ModeRNA (Rother et al., 2011) builds models using the
atomic coordinates of a known RNA molecule (template) and
the alignment between the target and template sequences.
The program interprets the sequence alignment as a set of
instructions and uses it to build a model structure by copying
the template structure, with the subsequent introduction of
the variable parts. ModeRNA can model post-transcriptionally
modified nucleosides and offers many functions to analyze
and manipulate RNA structures, such as cleaning structures,
analyzing geometry and obtaining the secondary structure. The
latest version (1.7.1) can be accessed online at http://iimcb.
genesilico.pl/modernaserver/.

MacroMoleculeBuilder (MMB; Previously RNABuilder)
MMB (Flores et al., 2011) is a modeling program based on the
fulfillment of constraints and restrictions applied to the template
to build the models. It uses internal coordinates to calculate
distances. It also considers base pairings, base stacking and
torsion angles, and interatomic distances with aligned regions
of the template structure to use them as restraints to model
the target sequence. Then, it performs a Monte Carlo (MC)
simulation of an unfolded RNA chain or preliminary model.
MMB works with protein, DNA and RNA, and is available at
https://simtk.org/projects/rnatoolbox.

FARNA/FARFAR
FARNA/FARFAR builds de novo models of small RNA motifs
using fragments (1–3 nucleotides long) from existing RNA
structures whose sequences match subsequences of the target
RNA. The Fragment Assembly of RNA (FARNA) (Das and
Baker, 2007) algorithm is a MC process for low-resolution
conformational sampling. Combined with the FARNA protocol,
the method for Fragment Assembly of RNA with Full Atom
Refinement (FARFAR) (Das et al., 2010) optimizes the models
using the physically realistic full-atom Rosetta energy function.
FARNA/FARFAR protocol is available for sequences up to
32 nt at the Rosetta Online Server That Includes Everyone
(ROSIE) (Lyskov et al., 2013) (http://rosie.rosettacommons.org/
rna_denovo).

Vfold Model
The Vfold model (Cao and Chen, 2011) is based on a multi-
scaling strategy to predict RNA free energy landscapes and 3D
structures based on an input sequence. The secondary structure
is predicted from the nucleotide sequence, and the free energy
landscape is employed to build the ensemble of 2D structures
with the identification of the lowest free energy state. Thus, a
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3D coarse-grained structure is constructed as a scaffold, based
on the PDB-based fragment to find the lowest free energy state.
Then, all atoms are added to the coarse-grained scaffold. Lastly,
AMBER energy minimization is carried out to compute the final
atomistic 3D structure. The web server (Xu et al., 2014) and the
source codes are freely accessible at http://rna.physics.missouri.
edu/.

RNAComposer
RNAComposer is a server for the prediction of the 3D structure
in RNA molecules of up to 500 nt (Popenda et al., 2012;
Biesiada et al., 2016). The server predicts RNA structure based
on the secondary structure in dot- bracket notation provided
by the user. It also allows the incorporation of distance
restraints derived from the experimental data to strengthen
the 3D predictions. The secondary structure is divided into
fragments containing overlapping canonical base pairs to build
the model. The fragments are related to 3D elements found in
RNA FRABASE database (Popenda et al., 2008, 2010), which
is a dictionary containing RNA 3D structure elements derived
from structures deposited in the RCSB PDB. RNAComposer
automatically assembles the 3D elements using overlapping
canonical base pairs followed by the energy minimization in
the torsion angle space and subsequently in the Cartesian atom
coordinate space. For the construction of models, jobs may be
submitted to http://rnacomposer.cs.put.poznan.pl/.

3dRNA
The 3dRNA (Zhao et al., 2012; Wang et al., 2015) is an
automated program that provides larger RNA models and
complex topologies based on secondary structures. The 3D
structure is constructed from smallest secondary elements (SSEs)
in two steps: the assembly of SSEs into duplexes or hairpins, and
then into whole structures, as the 3D structures of hairpins and
duplexes can typically be created with high accuracy. 3dRNA can
be found at http://biophy.hust.edu.cn/3dRNA.

SimRNA
SimRNA (Boniecki et al., 2015) is a computational method
for RNA folding simulations and 3D structure prediction. This
tool uses a coarse-grained representation of the nucleotide
chain (three pseudoatoms per nucleotide) and a knowledge-
based energy function and MC sampling scheme to produce
moves in the 3D space with a statistical potential to estimate
the free energy. Additionally, the available online program
called SimRNAweb (Magnus et al., 2016) (http://genesilico.pl/
SimRNAweb/submit) offers a user-friendly interface that permits
the input of a sequence to fold RNA using de novo methods.
Alternatively, the user can provide secondary structure and
distance restraints and a 3D structure in the PDB format to
jump-start the modeling close to the expected final outcome.

Comparison among Tools for Riboswitch
Aptamer Prediction and Candidate
Evaluation Based on RNA Structure Models
Riboswitches undergo conformational changes upon ligand
binding and act as a switch at the transcriptional or translational

levels. Given that riboswitches are functional entities that can
undergo conformational changes, knowing their structures is of
essential importance to understand the molecular mechanisms
associated with their regulatory functions. Hence, predicting the
structure of riboswitches can provide useful insight into the
mechanism through which small molecules bind to RNAs, as well
as shed light on how this process induces conformational changes
in riboswitches.

The application of energy minimization methods for
secondary structure prediction of the riboswitch expression
platform domain is still limited as it involves conformational
change. However, the prediction of this domain may be useful
to support experimental assays. Barash and Gabdank (2010)
predicted a single point mutation positioned in the non-
conserved TPP riboswitch region responsible for transforming
the terminator to an anti-terminator state.

The recent developments in the secondary structure
prediction allow to include probing data, like SHAPE and
DMS, for restriction and prediction of a structure with high
accuracy (reviewed in Sloma and Mathews, 2015). Among the
programs listed by us, the RNAstructure includes an option of
incorporating the probing data as restraints.

Prediction of a single RNA sequence is still limited, especially
when long RNA sequences (reviewed in Hamada, 2015) are
involved. Comparative approaches using homologous sequence
information increase the accuracy of as secondary structure
prediction. In many circumstances, homologous RNA sequences
of the target RNA sequence can be obtained, and it would be
of interest to know the common secondary structure to those
sequences (Gardner and Giegerich, 2004).

The common secondary structure is a fundamental element
in riboswitch aptamers prediction. Programs such as Infernal,
Riboswitch Finder, RiboSW, DRD, and Riboswitch Scanner use
structural conformations for homologous searching. Secondary
structure information is also crucial for tertiary structure
prediction. In template-based methods, it assists in modeling
mutations or structural changes, whereas in de novo methods,
it allows for base pair constraints when creating 3D models.
For instance, the MC-sym tool was used to construct models of
the SAM-I riboswitch RNA segment by incorporating elements
of the expression platform, and allowing the formation of an
antiterminator (AT) helix in the 3D structures (Huang et al.,
2013).

RNAComposer uses 2D restraint to create models and has
provided positive results regarding the structural prediction
of riboswitches. The server has been tested using a set often
riboswitches containing pseudoknots and extensive tertiary
interaction (Purzycka et al., 2015). In this set, nine examples
were characterized with high accuracy and acceptable recovery
of canonical and non-canonical base pairing and stacking.
Input and output files of tertiary structure tools are shown in
Figure 4.

Prompted by the increasing number of 3D RNA prediction
framework methods, the RNA-Puzzles was started in 2012 (Cruz
et al., 2012). RNA-Puzzles is a CASP-like (Moult et al., 2014)
event in which collective blind experiments for the evaluation
of 3D RNA structure prediction are carried out (Cruz et al.,
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FIGURE 4 | Input and output files of RNA tertiary structure prediction tools.

2012; Miao et al., 2015). In the three rounds of RNA-Puzzles,
predictions based on homology models already attained a
high-level precision, providing useful insight to understand the
RNA structure (Miao et al., 2017). Moreover, the prediction of
ligand binding and subsequent conformational changes can also
be described, but cannot be reliably guaranteed. Moreover, the
prediction of ligand binding and subsequent conformational
changes can also be described, but cannot be reliably
guaranteed.

Gong et al. (2017) demonstrate in their review other
approaches that aid the investigation of folding kinetics of
aptamers and co-transcriptional folding kinetics using coarse-
grained SOP model and, BarMap and helix-based computational
approach, respectively. A new method StreAM-Tg (Jager et al.,
2017) also allows analyzing structural transitions. This method
gain insights into RNA dynamics based on a coarse-grained
representation of RNAMD simulations.

Current modeling methods for template-based predictions
have consistently reached a high accuracy level, i.e., now it is
possible to model nearly all the structural details, provided that
a reliable homologous structure is identified. Also, the ligand
binding sites were readily inferred via homology (Miao et al.,
2017). Different classes of riboswitches can be found in the RCSB
PDB (Table 2), facilitating the use of model-based approaches
such as ModeRNA and MMB.

In the case of targets without sequence homology with
previously experimentally resolved structures, modeling quality

strongly depends on the size of the target. The third edition
of RNA-Puzzles provided models for two small RNAs—the
ZMP riboswitch (60-nt) and L-glutamine riboswitch (61-nt)—
with approximately 6 Å of RMSD with the crystallographic
structure. Although the tools are less accurate, they can
correctly predict the overall global folding. Thus, the larger
the targets without a template—ydaO riboswitch (108-nt)—,
the less accurate will the predictions be (10 Å best-case
RMSDs).

CONCLUSION

In this review, we focused on the most frequently used software
and web-based tools for riboswitch prediction that encompass
RNA secondary and tertiary structures. Moreover, the study
of riboswitches contributed to the analysis of computational
methods used for the structural prediction of RNAs. The
Rfam database, used by various RNA motif prediction tools, is
maintained and extended by the Infernal software. Prediction
of the secondary structure is useful not only for the functional
analysis of RNAs but also to improve the search for structural
RNAs in genomes and build 3D models. Although the prediction
of single long sequences is still limited, comparative approaches
like RNAalifold increase the prediction accuracy. For tertiary
structure prediction, the availability of a homologous structure
increases the quality of the predicted models. RNA-Puzzles
experiments have shown that, in the absence a homologous
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TABLE 2 | Classes of riboswitches that present experimentally resolved 3D structures.

Class No. of structures PDB ID Rfam accession

AdoCbl-variant 4 4frg:b; 4frg:x; 4frn:a; 4frn:b RF01689

c-di-GMP-I 17 3irw:r; 3iwn:a; 3iwn:b; 3mum:r; 3mur:r; 3mut:r; 3muv:r; 3mxh:r; 3ucu:r; 3ucz:r; 3ud3:r; 3ud4:r;

4yaz:r; 4yaz:a 4yb0:r; 4yb0:a; 4yb1:r

RF01051

c-di-GMP-II 2 3q3z:v; 3q3z:a RF01786

Cobalamin 2 4gma:z; 4gxy:a RF00174

FMN 6 3f2q:x; 3f2t:x; 3f2w:x; 3f2x:x; 3f2y:x; 3f30:x RF00050

glmS 39 2gcs:b; 2gcv:b; 2h0s:b; 2h0w:b; 2h0x:b; 2h0z:b; 2ho6:b; 2ho7:b; 2nz4:p; 2nz4:q; 2nz4:r;

2nz4:s; 2z74:b; 2z75:b; 3b4a:b; 3b4b:b; 3b4c:b; 3g8s:p; 3g8s:q; 3g8s:r; 3g8s:s; 3g8t:p;

3g8t:q; 3g8t:r; 3g8t:s; 3g96:p; 3g96:q; 3g96:r; 3g96:s; 3g9c:p; 3g9c:q; 3g9c:r; 3g9c:s;

3l3c:p; 3l3c:q; 3l3c:r; 3l3c:s; 4meg:b; 4meh:b

RF00234

Glycine 19 3owi:a; 3owi:b; 3oww:a; 3oww:b; 3owz:a; 3owz:b; 3ox0:a; 3ox0:b; 3oxb:a; 3oxb:b; 3oxd:a;

3oxd:b; 3oxe:a; 3oxe:b; 3oxj:a; 3oxj:b; 3oxm:a; 3oxm:b; 3p49:a

RF00504

Lysine 16 3d0u:a; 3d0x:a; 3dig:x; 3dil:a; 3dim:a; 3dio:x; 3diq:a; 3dir:a; 3dis:a; 3dix:a; 3diy:a; 3diz:a;

3dj0:a; 3dj2:a; 4erj:a; 4erl:a

RF00168

MFR 16 3ski:a; 3ski:b; 3skl:a; 3skl:b; 3skr:a; 3skr:b; 3skt:a; 3skt:b; 3skw:a; 3skw:b; 3skz:a; 3skz:b;

3slm:a; 3slm:b; 3slq:a; 3slq:b

RF01510

preQ1-II 1 2miy:a RF01054

PreQ1-III 1 4rzd:a RF02680

Purine 40 1y26:x; 1y27:x; 2b57:a; 2ees:a; 2eet:a; 2eeu:a; 2eev:a; 2eew:a; 2g9c:a; 2xnw:a; 2xnz:a;

2xo0:a; 2xo1:a; 3ds7:a; 3ds7:b; 3fo4:a; 3fo6:a; 3g4m:a; 3gao:a; 3ger:a; 3ges:a; 3gog:a;

3got:a; 3la5:a; 3rkf:a; 3rkf:b; 3rkf:c; 3rkf:d; 4fe5:b; 4fej:b; 4fel:b; 4fen:b; 4feo:b; 4fep:b; 4lx5:a;

4lx6:a; 4tzx:x; 4tzy:x; 4xnr:x; 5c7u:b

RF00167

SAM 28 2gis:a; 2ydh:a; 2ygh:a; 3gx2:a; 3gx3:a; 3gx5:a; 3gx6:a; 3gx7:a; 3iqn:a; 3iqp:a; 3iqr:a; 3v7e:c;

3v7e:d; 4aob:a; 4b5r:a; 4kqy:a; 5fjc:a; 5fk1:a; 5fk2:a; 5fk3:a; 5fk4:a; 5fk5:a; 5fk6:a; 5fkd:a;

5fke:a; 5fkf:a; 5fkg:a; 5fkh:a

RF00162

SAM-I-IV-variant 2 4l81:a; 4oqu:a RF01725

THF 10 3sd3:a; 3suh:x; 3sux:x; 3suy:x; 4lvv:a; 4lvw:a; 4lvx:a; 4lvy:a; 4lvz:a; 4lw0:a RF01831

TPP 24 2cky:a; 2cky:b; 2gdi:x; 2gdi:y; 2hoj:a; 2hok:a; 2hol:a; 2hom:a; 2hoo:a; 2hop:a; 3d2g:a; 3d2g:b;

3d2v:a; 3d2v:b; 3d2x:a; 3d2x:b; 3k0j:e; 3k0j:f; 4nya:a; 4nya:b; 4nyb:a; 4nyc:a; 4nyd:a; 4nyg:a

RF00059

ydaO-yuaA 4 4qlm:a; 4qln:a; 4w90:c; 4w92:c RF00379

ykoK 3 2qbz:x; 3pdr:x; 3pdr:a RF00380

structure, targets greater than 100-nt have less accurate models,
although it is possible to predict the overall folding.
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