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Integração de Modelos 

Biológicos

Doutorando Fernando Medeiros

Apresentação baseada em: Toward whole-cell models for science and engineering por Jonathan Karr
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Desafio central: prever o fenótipo do genótipo



Exemplo: biossíntese de drogas
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Example: drug biosynthesis
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Exemplo: biossíntese de drogas



A previsão do fenótipo a partir do genótipo requer modelos “célula inteira”

Exemplo: biossíntese de drogas



Integrated

Comprehensive Dynamic

Gene-complete

Whole-cell modeling principles



“A modelagem de células 
inteiras pode permitir 

bioengenharia racional e 
medicina de precisão.”

“Propomos vários princípios-
chave da modelagem de 

células inteiras.”

“Descrevemos como construir 
um modelo de célula inteira, 
destacando as ferramentas 

disponíveis.”

“Descrevemos os principais 
desafios de modelagem 

computacional e experimental 
de células inteiras em código 

aberto”

“Alcançar modelos completos 
de células inteiras requer uma 

forte comunidade 
interdisciplinar.”



Disponibilidade dos Dados
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Objetivos do Whole-cell model



Whole-cell modeling

A grand challenge of the 21st century

– Masaru Tomita

A biologia precisa urgentemente de uma base teórica para unificá-la

– SydneyBrenner

O teste final de entender uma célula simples, mais do que 

ser capaz de construir uma, seria construir um modelo
computacional da célula.

– Clyde Hutchison



Single-cell variation
Microscopy

Transcription
RNA-seq

Protein expression
Mass-spec, Western blot

Desafio de modelagem de dados 

heterogêneos



MetabolicSignaling

Transcriptional regulatory

Modelling challenge
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Predictive modeling methodologies

S
c
o
p
e

Boolean
Bolouri, 2000’s

FBA
Palsson, 1990’s

ODE
Shuler, 1970’s

PDE
Gillespie

Luthey-Schulten, 2011

Detail



Predictive modeling methodologies



Uptake
FBA

Composition

Metabolism
FBA

Composition

Transcription  
Stochastic binding  
Gene expression

Translation  
Stochastic binding  
Gene expression

Replication  
Chemical kinetics  
DNA sequence

Solution: integrated models
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Model Validate

Engineer

Whole-cell modeling



Validate

Engineer

Model

Whole-cell modeling



Model construction

1. Definir sistema

2.Definir escopo

3.Curar dados

4.Escolha a representação

5.Identifique parâmetros

6. Testar previsões



Comparative genomics
Fraiser et. al, 1995

Genome-wide essentiality
Glass et. al, 1999

M. genitalium is well-characterized



Genomic-scale data
Kühner et. al, 2009

M. genitalium is well-characterized



Genomic transplantation
Lartigue et. al, 2009

Genomic synthesis
Gibson et. al, 2009

M. genitalium has unique engineering tools



2. Escolher o escopo do modelo



2. Escolher o escopo do modelo

• Representamexplicitamentecadametabólito, gene, RNA e proteína;

• Modelamexplicitamentea funçãode cadaprodutogênicocaracterizado;

• Explicao custometabólicode todosos produtosgênicosnão
caracterizados

• Representamoléculas importantese bemcaracterizadas individualmente



3. Fazer curadoria dos dados

Karr et al., 2013



Uptake

FBA
Composition

Metabolism
FBA

Composition

Transcription  
Stochastic events  
Gene expression

Translation  
Stochastic events  
Gene expression

Replication

Chemical kinetics
DNA sequence

Sub-modelsStates

4. Selecionar a representação matemática mais adequada

Mass, shape

Metabolite, RNA,  
protein counts

Mammalian host

Transcript, polypeptide  
sequences

DNA polymerization,  
proteins, modifications

FtsZ ring
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Simular o algoritmo
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Muitos recursos são compartilhados
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O modelo da Mycoplasma contém 28sub-models

Karr et al., 2012



Karr et al., 2012

Example sub-model: Transcription



Example sub-model: Transcription

Karr et al., 2012



Free

Bound

Promoter  

Bound
Active

3. Bind RNA polymerase

1. Update  RNA polymerase states 2. Calculate promoter affinities

AUGAUCCGUCUCUAAUGUCUAC  

UTCAACGUGAGGUAAUAAAGUC  

UCCACGAUGCUACUGUAUC

GCCUCAUACUGCGGAU  

UUACGUAUCAGUGAUCAGUACU

4. Elongate and terminatetranscripts

Sequence
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HcrAFur GntR LuxR Spx

glpF dnaJ dnaK gntR trxB polC

Example sub-model: Transcrição



A redução do modelo permite a identificação de parâmetros

3. Manually tune parameters  

using full model

Time

1. Reduce model

Experiment Model
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2. Identify reduced model  

parameters using  

traditional methods



Software: wholecell.org



• ODE models

• COPASI: copasi.org

• V-Cell: nrcam.uchc.edu

• Systems biology toolbox

• Boolean models

• CellNOpt

• Flux-balance analysis

• openCOBRA: opencobra.sourceforge.net

• RAVEN

• Integrative models

• E-Cell: e-cell.org

• Whole-cell: wholecell.org

• Standards

• SBML: sbml.org

• CellML: cellml.org

Software





Metabolite concentrations



RNA synthesis rates



Karr et al., 2012

DNA binding



Translation



Model

Engineer

Whole-cell modeling

Validate



Matches training data
Cell mass,volume

Biomass composition

RNA, protein expression, half-lives

Superhelicity

Matches published data
Metabolite concentrations

DNA-bound protein density

Gene essentiality

Matches newdata
Wild-type growth rate

Disruption strain growth rates

Matches theory
Mass conservation

Central dogma

Cell theory

Evolution

No obvious errors
Plot model predictions

Manually inspect data

Compare to known biology

Software stable
Simulation code is stable

Tests passing

Validate model against experiments and theory
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Model reproduces observed metabolomics

Karr et al., 2012
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• Como podemos modelar fisiologia mais complexa?

• Como podemos modelar organismos mais complexos?

• Larger bacteria

• Eukaryotes

• Multicellularity

• Humans

• Como podemos usar modelos para direcionar a engenharia?

Desafios
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Leituras recomendadas: FBA


