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Abstract

Local climate conditions play a major role in the biology of the Aedes aegypti mosquito, the

main vector responsible for transmitting dengue, zika, chikungunya and yellow fever in

urban centers. For this reason, a detailed assessment of periods in which changes in cli-

mate conditions affect the number of human cases may improve the timing of vector-control

efforts. In this work, we develop new machine-learning algorithms to analyze climate time

series and their connection to the occurrence of dengue epidemic years for seven Brazilian

state capitals. Our method explores the impact of two key variables—frequency of precipita-

tion and average temperature—during a wide range of time windows in the annual cycle.

Our results indicate that each Brazilian state capital considered has its own climate signa-

tures that correlate with the overall number of human dengue-cases. However, for most of

the studied cities, the winter preceding an epidemic year shows a strong predictive power.

Understanding such climate contributions to the vector’s biology could lead to more accu-

rate prediction models and early warning systems.

Introduction

Dengue Fever is a tropical mosquito-borne viral disease present in more than 110 countries

and a current threat to half of the world population [1, 2]. The dengue virus is primarily trans-

mitted to humans through infected Aedes aegypti mosquitoes. This main disease vector is well

adapted to urban environments, which allow viruses to spread easily through cities. In addi-

tion, local climate conditions play a critical role in the development of vector populations in

major urban centers.

The first cases of dengue in Brazil date from the end of the 19th century, and despite the

elimination of the Aedes aegypti in 1955, the mosquito was reintroduced in the country in the

70s. A historically important outbreak occurred in 1981 in Boa Vista, in the state of Roraima,

following several outbreaks in Central America involving the DENV-1 and DENV-4 serotypes

[3, 4]. Since then, dengue has become one of the major public health problems in Brazil, with

several epidemics reported yearly across the country. While dengue symptoms are usually lim-

ited to fever and muscle/joint pain, some develop more severe forms of the disease such as

hemorrhagic fever or shock syndrome.
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The proliferation of Aedes aegypti and the sustained transmission of dengue are influenced

by a complex interplay of multi-scale factors such as the circulation of different serotypes [5,

6], the movement of infected and susceptible humans within a city [7, 8], and mosquito popu-

lation size. There is also a growing body of evidence showing that local climate conditions

such as temperature and precipitation may highly influence the biology of the mosquito [9–

12]. Complicating our understanding is the fact that several cities exhibit an intricate alterna-

tion between epidemic and non-epidemic years. This suggests that climate conditions that

favor dengue transmission are more complex than generally appreciated [13, 14].

In this work, we analyze climate and epidemiological data from seven major Brazilian cities

(Aracajú, Belo Horizonte, Manaus, Recife, Rio de Janeiro, Salvador and São Luı́s), which had

epidemic and non-epidemic years in the recent past. Fig 1 is a schematic overview of our

method. We estimate the correlation of climate conditions in different epochs preceding epi-

demic periods using a data-driven methodology based on machine learning algorithms for

clustering and classification [15, 16] known as Support Vector Machines (SVM) [17, 18],

which were applied to climate variables that are key to the life cycle of the mosquito. We also

explore the predictability of our method combining periods of high association between cli-

mate conditions and dengue epidemics with different prediction approaches. The insights of

this work may help tailor public health policies for each different city by increasing vector con-

trol measures during neglected critical epochs and ultimately improving the forecasting of

dengue epidemic years—which would allow the public health system to make earlier logistic

preparations or mosquito eradication programs.

Materials and methods

Description of epidemiological and climate datasets

All epidemiological data utilized in this work were taken from the publicly available datasets of

the Brazilian Notifiable Diseases Information System (SINAN, [19]). This includes the total

Fig 1. Schematic overview. We analyze time series data for climate variables from seven Brazilian state capitals

(Aracajú, Belo Horizonte, Manaus, Recife, Rio de Janeiro, Salvador, and São Luı́s) and their connection to dengue

epidemic years. (i) Illustrative example showing data from Rio de Janeiro. Two parameters define the epochs in which

climate conditions are considered: the starting date t0 (month/day) and period length of p (days). (ii) We locate

periods along the year where the separability between epidemic and non-epidemic climate is higher. Keeping track of

signature differences at key epochs may significantly improve dengue forecasting in the upcoming years.

https://doi.org/10.1371/journal.pone.0220106.g001
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number of dengue cases per year (from 2002 to 2017) for all Brazilian state capitals. While we

cannot be sure that all dengue cases occurred within the area measured by the climate vari-

ables, we are confident that the numbers reported are sufficient for disambiguating between

a dengue and non-dengue year. A year is conventionally classified as an epidemic year for a

given city if the incidence of dengue is above 100 cases per 100,000 inhabitants in the period

January–December and classified as a non-epidemic year otherwise, based on the Brazilian

Ministry of Health classifications of dengue incidences [20]. In order to find critical climate

signatures that may have contributed to the epidemic outcomes, we restrict ourselves to seven

state capitals that displayed at least 3 epidemic years and 3 non-epidemic years in the period

2002–2012. This allowed us to investigate the correlation between distinct climate conditions

and the complicated alternations between epidemic and non-epidemic years over time. The

climate data utilized in this work was obtained from the National Institute of Meteorology

(INMET) [21] and included time series for the average temperature (in Celsius) and precipita-

tion (in millimeters) for the state capitals Aracajú, Belo Horizonte, Manaus, Recife, Salvador,

and São Luı́s (from 1/1/2001 to 12/31/2012) and for Rio de Janeiro (from 1/1/2002 to 12/31/

2013).

Defining periods of critical climate conditions for dengue

In this work, we investigate the correlation of climate conditions on dengue epidemics at dif-

ferent periods along the yearly cycle. We let (t0, p) denote a sampling period of p days starting

at the date t0. Then, for a fixed period, we evaluate a score quantifying the discrepancy between

climate conditions in epidemic years and non-epidemic years. See Fig 1 for an illustrative

example using data from the city of Rio de Janeiro: periods with high climate separability
between epidemic years (red dots) and non-epidemic years (blue dots) might be of critical

importance to the cycle of the urban mosquito population and consequently, to the occurrence

of dengue in the following year.

In what follows, we define the SVM scores as a proxy for the cluster separability. Our

method highlights potentially critical periods for the occurrence of dengue. Finally, since den-

gue outbreaks in Brazil typically take place between March–May in a given year, we limit the

range of (t0, p) from June (of the previous year) to May.

SVM scores for cluster separability

Our SVM score for measuring discrepancies between climate conditions in epidemic/non-epi-

demic years is based on a supervised learning technique for classification. Fig 2 outlines the

main steps of our SVM algorithm: (i) For a fixed (t0, p) interval, we evaluate two climate indi-

cators—the arithmetic mean of the average temperature hTji and average frequency of rain

events hδji
−1, where δj represents time intervals between consecutive peaks on precipitation

data (see Fig 2i). We find the precipitation local maxima in the time series using Matlab’s find-
peaks function, calculate the time intervals δj between them, and define the precipitation rate

as the average peak interval. No specific thresholds were used in this step. (ii) We label the

climate indicators in a 2D plot as an epidemic year (red) or as a non-epidemic year (blue)

according to our dengue outbreak criteria. (iii) We repeat the process for t0 and p within a rect-

angular range R in the parameter space. Then we have a collection of red/blue points (dashed

ellipses in Fig 2iia). In our simulations, the rectangular range R was 5 × 6, i.e, spanning 5 con-

secutive starting dates (t0) and 6 consecutive duration lengths (p). In this work we use both

Linear and Radial Basis Function (RBF) kernels for the SVM training step on the (t0, p)-rectan-

gles R. We cross-validated the climate indicators (red/blue dots) in the t0 × p period by sub-

sampling 80% of the dataset and testing the classification accuracy in the remaining 20%. We
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evaluated the percentage of correctly classified test points and define the SVM score as the aver-

age accuracy after re-sampling the training/test data for 100 trials. No normalizations steps

were used within the SVM steps, i.e., the climate indicators were simply the average tempera-

ture values and precipitation rates. Finally, we plot heatmaps (Fig 2iic) of the SVM scores for

different (t0, p)-rectangles within a range of t0 and p values. We remark that high/low SVM

scores are consistently associated with separable/overlapping clusters of epidemic vs non-epi-

demic points (red vs blue dots). Thus, the SVM score is a good proxy for the geometrical sepa-

rability of the clusters. We postulate that periods with high SVM scores might be of critical

importance to the cycle of the urban mosquito population and consequently, to predict the

occurrence of dengue in a given out-of-sample test year. The t0 values range from June 1st to

February 21st and p ranges from 10–100 days (except for Rio de Janeiro, ranging from 5–100

days), which completely covers (from June 1st to May 31st) the periods that may influence den-

gue outbreaks.

The down-selection to the two parsimonious variables is consistent with well established

and commonly used techniques such as LASSO and model/variable selection through infor-

mation criteria such as AIC (Akaike Information Criteria) and BIC (Bayesian Information

Criteria). These methods specifically penalize the number of predictive terms so that a parsi-

monious model is selected. In the application here, the two variables selected generalize

their predictive power across all the different cities despite the different specific patterns of

Fig 2. Outline of SVM methodology. A supervised learning technique for classification: (i) We calculate and plot

mean of average temperature hTji and frequency of rain events hδji
−1 for a fixed (t0, p) interval of all years, using red

and blue colors or periods preceding epidemic and non-epidemic years respectively. (ii)(a) For each (t0, p) interval of

the rectangle R (called (t0, p)-rectangle), we apply (i) to obtain a cloud (dashed circles) of points in the plane, for each

year. (b) Linear and RBF kernels are used to execute the SVM train/test and cross-validation routines. (c) the SVM

score for R is obtained. We plot t0 × p heatmaps with Regions of High and Low SVM scores, which indicates where

temperature and precipitation are better correlated with the occurrence of dengue.

https://doi.org/10.1371/journal.pone.0220106.g002
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clustering (See Supplementary Information). More broadly, the down selection is consistent

with the philosophy of the Pareto optimal solution, or Occam’s razor: explain the majority of

observed data with an interpretable, parsimonious model. See S1 Appendix for details.

Out-of-sample prediction

Our training dataset for each state capital consists of 11 years (2002–2011) of temperature and

precipitation time series. Due to the small number of years available and due to methodologi-

cal constraints (that require a certain number of both epidemic and non-epidemic years in the

training set), we can select 10 years for training and test/predict the remaining out-of-sample

year with a few different strategies. This is effectively a leave-one-out cross-validation proce-

dure enforced by the limited number of years in the dataset. Ideally, one would like to use a

more sophisticated cross-validation procedure, but most other methods require substantially

more data, i.e. number of dengue versus non-dengue years. Fig 3 illustrates the steps below:

1. Choose SVM kernel and compute heatmap: The user should choose between a linear/

nonlinear (RBF) kernel to classify the climate data in the hTji × hδji−1 plane. See Fig 3i for

an example. This classifier will provide an SVM score (color-coded in the heatmap) for

each (t0, p)-rectangle.

2. Choose the SVM threshold α: Once the SVM heatmap is ready, we must select the (t0, p)

rectangles that will be used to predict the testing year. We introduce a threshold parameter

α 2 [0, 1] and pick rectangles with SVM score� α × max(SVMscore). Fig 3ii shows that

higher values of α diminishes the number of selected rectangles in the t0 × p plane.

3. Choose a prediction strategy: Fig 3iii illustrates the last choice needed to compute the

probability of dengue occurrence in the testing year.

• Earliest as Possible (EP): this strategy uses the rectangle in the t0 × p plane with earliest t0,

and in case of a tie, it chooses the one with the lowest p. We denote the index of this

Fig 3. Outline of the prediction method. For each state capital, we calculate the dengue probability for an out-of-

sample year using the remaining 10 years as a training set: the user (i) chooses between a linear/nonlinear (RBF)

classification kernel to build a heatmap of SVMscore for a wide range of t0 and p values, (ii) selects (t0, p) rectangles with

SVMscore� α × max(SVMscore) for a threshold parameter α, and (iii) computes the probability of dengue occurrence

in the testing year using the Earliest as Possible (EP) strategy or the Average of All (AA) strategy. EP uses only the first

selected rectangle (boxed in green) while AA takes an average of the probabilities of all selected rectangles (circled in

magenta). See text for details.

https://doi.org/10.1371/journal.pone.0220106.g003
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rectangle as j = 1 (see Fig 3). It then computes the dengue probability, denoted by Prob

(j = 1), as the fraction of those test climate data points that fall into the dengue hTji × hδji−1

semi-space. We address the evaluated quantity as the EP probability

ProbEP ¼ Probðj ¼ 1Þ: ð1Þ

• Average of All (AA): this strategy computes the probability of dengue occurrence in the

testing year using all N selected (t0, p) rectangles in step (ii) and taking an average of their

probabilities. We address the AA probability as

ProbAA ¼
1

N

XN

j¼1

ProbðjÞ: ð2Þ

Predicting the dengue outcome of an out-of-sample year requires choosing (i) a classifica-

tion kernel (linear vs nonlinear), (ii) a threshold α value (0.9, 0.95 or 1), and (iii) a strategy for

calculating the probability of dengue occurrence (EP vs AA). Probability values above/below

0.5 led to epidemic/ non-epidemic predictions, respectively.

The results were then summarized in confusion matrices containing all four types of cor-

rect/wrong predictions: True Positives (TP), True Negatives (TN)/False Positives (FP), and

False Negatives (FN). Our prediction accuracy

Accuracy ¼
TPþ TN

TPþ FPþ FNþ TN
ð3Þ

was the outcome was the outcome measure by which we compared the different prediction

methods.

Results

In this section, we highlight significant differences between climate conditions during epi-

demic/non-epidemic years for a period starting at day t0 and duration of p days along the

yearly cycle. Before delving into our dengue prediction results, it is highly informative to inter-

pret high/low SVM scores for distinguishing epidemic and non-epidemic correlations. Fig 4

demonstrates the clustering of data, or lack thereof, for Rio de Janeiro and Recife, considering

all 11 years of training data (Figs C and D in the S1 Appendix show similar results for all state

Capitals). The left side of the panel shows representative data for time windows achieving a

high correlation score. Remarkably, the red (epidemic) and blue (non-epidemic) dots are well

separated and distinguishable by visual inspection. On the other hand, the right side shows

data structures with low correlation scores. Note the significant overlap between the red and

blue dots, suggesting that using this region for prediction of an epidemic is highly suspect.

This result illustrates that each city has a unique pattern of clustering that can be capitalized on

in order to provide predictive metrics for dengue epidemic years.

Validation of the training dataset (2002–2012)

The different choices in (i) SVM kernel (linear or RBF), (ii) SVM threshold α (0.9, 0.95 or 1),

and (iii) prediction strategy (EP or AA) lead to 12 possible confusion matrices for each state

capital. We report the best choices for each city in Table 1 and leave the full report of our

results for the SI. For the 5 state capitals where the EP strategy had best results, we found their

respective EP-windows, i.e., a median date-range that comprises all EP-chosen rectangles used

in the prediction. For state capitals where the AA strategy performed better, we highlighted the

AA-months that were common to all out-of-sample predictions. Finally, we showed specific

Forecasting dengue in Brazil with climate conditions
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climate signatures for state capitals with good EP predictions. In what follows, we compute the

heatmaps as described in the methods section (see also Fig 2). Here we present the best predic-

tion results for Rio de Janeiro and Salvador and leave the details for the other capitals in the S1

Appendix.

Rio de Janeiro. Fig H in the S1 Appendix shows the best prediction result for Rio de

Janeiro using (i) an RBF kernel, (ii) an SVM threshold of α = 1, and (iii) the EP-strategy to cal-

culate the outbreak probability. Most EP-chosen rectangles occurred in the winter and in the

spring. The corresponding EP-window ranged between June 19th and September 25th, when

most Epidemic years (all except 2012) had average temperatures above 23 Celsius and precipi-

tation rates below 0.15 (see prediction tables at the S1 Appendix for details). All years except

2010 (FP) and 2012 (FN) were correctly predicted (82% accuracy).

Salvador. Fig I (top) in the S1 Appendix shows the best prediction result for the city of

Salvador using (i) an RBF kernel, (ii) an SVM threshold of α = 0.95, and (iii) the AA-strategy

to calculate the outbreak probability. The (t0, p) rectangles used in the prediction covered most

of the year but were especially clustered around December-February (boxed in magenta). All

years except 2002 (FN) and 2010 (FN) were correctly predicted (82% of accuracy).

Fig 4. Examples of high and low cluster separability plots with the full training dataset. For each state Capital, we

selected special time windows in which there was a clear separation between climate signatures preceding epidemic

and non-epidemic years. This picture illustrates the cases of Rio de Janeiro and Recife. The Left side of the panel shows

distinct data separation, while in the right side the climate variables seem to be poorly distinguishable, therefore not

suitable for dengue prediction. This separability notion is made quantitatively precise by the SVM scores (see text for

details). Examples for the other capitals can be found in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0220106.g004

Table 1. Best prediction results: Training set. We report the choices of SVM kernel, threshold, and strategy that resulted in highest prediction accuracy for each state cap-

ital, along with their respective EP-Windows or AA-months. �Similar results were found with the AA-strategy for Belo Horizonte. ��Both strategies gave good results for

Salvador. See text and S1 Appendix for details.

Capital Kernel α Strategy Accuracy EP-Window/AA-months

Aracajú RBF 0.9 EP 91% Jun 1–19

Belo Horizonte RBF 1 EP 73%� Jun 13–Aug 25

Manaus Linear 0.95 AA 64% Aug–Oct

Recife Linear 1 AA 82% Dec–Jan

Rio de Janeiro RBF 1 EP 82% Jun 19–Sept 25

Salvador Linear/RBF 0.9/0.95 EP/AA 73%/82% Aug 30–Dec 11��

São Luı́s RBF 1 AA 82% Dec–Mar

https://doi.org/10.1371/journal.pone.0220106.t001
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Predictions using (i) a linear kernel, (ii) α = 0.9, and (iii) the EP-strategy also gave good

results (highlighted in Fig I (bottom) in the SI appendix). Eight years were correctly predicted

(73% accuracy) but the years of 2008 (FP), 2010 (FN) and 2012 (FN) were not. The EP strategy

was just slightly less accurate than the AA strategy, yielding EP-windows within August 30th

and December 11th (spring and summer). The epidemic years typically showed lower precipi-

tation rates in the selected EP-rectangles.

Other Capitals. Each state Capital has an optimal choice of SVM kernel, α value and pre-

diction strategy, as Table 1 shows. In the S1 Appendix, we present the different prediction

results for Aracajú, Belo Horizonte, Manaus, Recife and, São Luı́s. See Figs E, F, G, and J in the

S1 appendix for a comprehensive description of their prediction outcomes.

SVM classification and climate signatures. Fig 5 shows the corresponding favorable cli-

mate conditions for all capitals with predictive EP-periods. The EP prediction strategy uses

only one rectangle from the t0 × p heatmap, i.e., the one with the lowest t0. This allows us to

show the specific temperature and rain values that distinguished epidemics and non-epidemic

years in that EP window. Contrastingly, the AA strategy averages over several rectangles

throughout the entire year, making the analysis of specific climate conditions for each window

impractical. The EP rectangles occur in June (winter) for the first three capitals and in the

spring/summer for Salvador. The classifiers (curves in black) take very distinct shapes for the

different cities. For Belo Horizonte, the different clusters were separated by an ovoid-shape

kernel and most epidemic years had a precipitation rate between [0.02,0.08]. For Rio de

Janeiro, most epidemic years have average temperatures above 23˚ C and the clusters are sepa-

rated by an hyperboloid-shape kernel. In Aracajú, an S-shape kernel separates the clusters

around a temperature threshold of 25.2˚ C. Finally, favorable climate conditions for dengue

epidemics occur in Salvador during the spring for a frequency of rain events below 0.2. It is

hard to infer specific relationships between optimal temperature and rain events however,

because the cities have significantly different sizes, geography, vegetation, topography and

other factors that might impact the mosquito development. Rio de Janeiro, for instance, exhib-

its a vast array of sub-regions ranging from highly-populated urban centers to forests [22].

Predictions for the holdout dataset (2013–2017)

We used the model trained with data from earlier years 2002-2012 to predict dengue outcomes

in a holdout dataset (usually from 2013-2017, but may vary depending on data availability).

See S1 Appendix for details. It should be noted that approximately seven months after

Fig 5. Favorable climate conditions for epidemics in predictive EP-periods. The EP strategy uses the rectangle in the t0 × p plane with

earliest t0. Four capitals exhibited highly predictive EP rectangles, and we show the corresponding epidemic vs non-epidemic climate

conditions. Belo Horizonte: EP-window from June 13th to August 25th. Most epidemic years had a precipitation rate in the interval

[0.02,0.08] and different clusters were separated by an ovoid-shape kernel. Rio de Janeiro: EP-window ranged between June 19th and

September 25th. Most epidemic years had average temperatures above 23˚ Celsius and precipitation rates below 0.15. Clusters were

separated by an hyperboloid-shape kernel. Aracajú: EP-window from June 1st–19th. There is a clear separability between dengue and no-

dengue regarding a temperature threshold around 25.2˚ Celsius. Clusters were separated by an S-shape kernel. Salvador: EP-windows

from August 30th–December 11th. Clusters were separated by a single linear threshold of hδii
−1 below 0.2. The picture shows climate

signatures considering training years 2003–2012 for Rio de Janeiro and 2002–2011 for the other capitals.

https://doi.org/10.1371/journal.pone.0220106.g005
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submission of the manuscript, SINAN released new dengue data for the years 2013-2017 [19].

Table 2 shows the accuracy for each state capital using the corresponding kernel, parameters,

and strategy defined in the training step. The state capital of São Luı́s exhibited the best accu-

racy (100% corresponding to 3 correct predictions from a total of 3 test years), followed by

Manaus and Salvador (80% accuracy corresponding to 4 correct predictions from a total of 5

test years). For Rio de Janeiro, Aracajú, Belo Horizonte and Recife, we obtained accuracies

below 70%. Overall, we obtained a 74% accuracy considering the predictions from the 7 state

capitals, correctly predicting the outcome of 23 out of 31 experiments.

Discussion

Understanding how Ae. aegypti mosquitoes respond to climate conditions is crucial for devel-

oping climate-based early warning systems for dengue prediction. While several works report

and quantify how climate may influence the mosquito development on a weekly scale [23–25],

we suggest that long-term effects occurring even months before the outbreaks may also play an

important role. We developed a new data-driven method, based on Support Vector Machine

(SVM) algorithms to identify, in a systematic manner, a set of critical periods and climate

signatures in the annual cycle that may be decisive for the development of dengue epidemic

years. We applied our methods to temperature and precipitation time series data for seven

state capitals in Brazil where there was a significant alternation between epidemic and non-epi-

demic years in the recent past. We explored a few strategies to estimate the predictive power of

our method, and the most accurate results for each state capital led to interesting time periods

and climate patterns associated with the occurrence of dengue epidemics.

Critical seasons for each state capital

In accordance to other reported studies [13, 26, 27], we obtained strong evidence that the cor-

relation between climate and epidemics varies significantly across different state capitals, thus

rejecting simplistic or universal explanations involving temperature and rain precipitation in

urban centers. Remarkably, the average temperature and the frequency of precipitation

showed a strong predictive power throughout the winter season for the cities of Aracajú, Belo

Horizonte, Manaus and Rio de Janeiro (see Table 3). As a consequence, intensifying mosquito

control campaigns during the winter season may prove an interesting epidemic control strat-

egy, especially due to the smaller size of the vector populations during that period. In Brazil,

the national and local campaigns are usually restricted to spring and summer periods [28, 29].

In fact, the Brazilian government announced that a special task force for fighting mosquitoes

Table 2. Best prediction results: Holdout dataset. �We obtained 80% accuracy (4/5) with α = 0.9 for both EP and AA

strategies and both RBF and linear kernels. �� We obtained 100% accuracy (5/5) with α = 0.95, EP strategy and RBF

kernel.

Capital Accuracy

Aracajú 60% (3/5)

Belo Horizonte 60% (3/5)

Manaus 80% (4/5)

Recife 60% � (3/5)

Rio de Janeiro 67% (2/3)

Salvador 80%�� (5/5)

São Luı́s 100% (3/3)

TOTAL 74% (23/31)

https://doi.org/10.1371/journal.pone.0220106.t002
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was to be formed November 3rd, 2016 [30]. We believe this starting date to be too late since

critical climate conditions were detected in some cities even 9 months prior to epochs with

higher dengue incidence.

Appending new data and updating our method

Our training sets and our classifiers used in intermediate methodological steps should be

updated as new climate/epidemic data are made available. See Fig 6 for a schematic representa-

tion of how new climate data (black crosses) should be assimilated by the training dataset to

improve the separability within the SVM heatmap and increase the statistical robustness of

our prediction method. Thus, our method and its accuracy should be continuously updated in

time to provide more reliable separability regions and accurate climate-based forecasts.

Impacts of climate variables on the Aedes aegypti life cycle

Temperature and precipitation are important environmental factors affecting all biological

processes of the Ae. aegypti. In fact, there are even precise mathematical expressions relating

developmental rates with temperature [12, 31]. The rates at which mosquitoes acquire and

transmit viruses are also temperature-dependent [32–35]. Precipitation events in their turn are

extremely important for dengue transmission [36, 37]. The abundance of Ae. aegypti is regu-

lated by rainfall during the water-dependent stages (egg, larva and, pupa), which provides

breeding sites and stimulates egg hatching [38, 39].

The relations between lower temperatures, rain, and size of the mosquito population are

usually studied in countries with temperate climates, where excessive rain propitiate egg

Table 3. Season highlights. We found that each state capital has its own preferred seasons in which climate signatures

may impact Dengue occurrence. Peaks of dengue happen typically during the fall (March–May).

Capital Winter Spring Summer

Aracajú ×
Belo Horizonte ×

Manaus × ×
Recife ×

Rio de Janeiro × ×
Salvador × ×
São Luı́s ×

https://doi.org/10.1371/journal.pone.0220106.t003

Fig 6. Appending data for further analysis. For a high scored (t0, p)-rectangle (green box), we plot the respective

climate indicators with their epidemic/non-epidemic (red/blue) labels. A classifier is used to predict the outcome of

newly available climate data (black crosses). Depending on the outcome, the new data is appended to the SVM-

training set. This procedure will also update the SVM score and the importance of the chosen (t0, p)-rectangle for

dengue prediction.

https://doi.org/10.1371/journal.pone.0220106.g006
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hatching but the lower temperature might prove fatal for the larvae [40, 41]. The Brazilian

tropical climate, however, may present adequate temperatures for vector proliferation even in

the winter. Thus, we conjecture that winter rain-events may play an important role in the first

mosquito generation in that year. A larger initial population, when compounded over several

reproductive cycles, could lead to an epidemic outbreak in the summer. As shown in Fig 5,

favorable climate conditions in Belo Horizonte, Rio de Janeiro, and Salvador are mostly a func-

tion of the rain events. The development of the mosquito population in the winter season is

not a central subject of epidemic studies in tropical countries, and our work suggests that this

can be a promising avenue for future studies.

Kesorn et al. (2015) [42] recently addressed a decade-long limitation of dengue surveillance

systems, namely, that environmental factors can be unreliable and degrade the predictions

when applied to areas with similar climate. The prediction accuracy of their model increased

dramatically when, instead of using climate parameters in a classical framework, they utilized

the Ae. aegypti female and larvae mosquito infection rates. Our work, on the other hand, was

able to successfully predict dengue years using solely climate variables. This raises an impor-

tant question: how reliable are climate parameters for dengue prediction? One possible expla-

nation is that these parameters are reliable only at coarser spatial scales, and the large distances

between cities in a continental country such as Brazil lead to meaningful climate differences.

Another explanation is that our methodological innovations did improve the reliability of

local climate factors; Kesorn et al. (2015) dismissed temperature as a good predictor by visual

inspection of its time series, while we allow a wide range of time-lags linking temperature and

future outcomes. It would be interesting to see if our approach could improve the reliability of

climate signatures in other contexts.

Daily changes in temperature are known to affect the efficiency of the Ae. aegypti [43, 44].

Kesorn et al. (2015) also showed that the infection rates for the female Ae. aegypti and larvae

correlate strongly with the number of human-reported dengue cases. On this regard, our

method is agnostic as to which specific mechanisms led to an increase in the number of

human cases. The factors above may be the missing link between climate variables and

observed human cases. However, as also pointed out by the authors, it is not always possible to

obtain data on mosquito infection rates. To the best of our knowledge, there are no available

data on female and larvae mosquito infection rates for the Brazilian cities that we studied.

Moreover, it would be extremely challenging to obtain a single infection rate on our spatial

scale, especially for large capitals such as Rio de Janeiro and Salvador.

Machine learning for dengue prediction

There is a broad array of methods to examine the influence of climate variables on dengue

outbreaks: wavelet-analysis for time series [26], autoregressive integrated moving average

(ARIMA) models [45], fuzzy association rule mining techniques [14], rule-based classifiers

[46], Bayesian methods [47, 48] and others. See Racloz et al. [49] for a systematic literature

review. More recently, a number of machine learning methods emerged to address the predic-

tion of dengue outbreaks. Baqueiro et al. [50] produced a comprehensive comparison of gener-

alized additive models (GAMs), artificial neural networks (ANNs) and seasonal autoregressive

integrated moving average models (SARIMA) for the city of São Paulo. They obtained accurate

predictions for dengue within a one-month time window. Our method provides larger time

windows, and thus more time for implementing disease surveillance or outbreak prevention

measures. In a similar study, Guo et al. [51] analyzed climate data from Guangdong, China, to

forecast dengue outbreaks using support vector regression (SVR) algorithm, step-down linear

regression model, gradient boosted regression tree algorithm (GBM), negative binomial
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regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear

regression models. The authors explored a four-year time series of weekly dengue cases, which

can be a major issue for their prediction routine if the data is not reported in a timely fashion.

Their SVR algorithm exhibited the best prediction performance with a 12-week time-window,

which was also effective in other regions of China. Their results reported SVM-based models

as highly predictive tools for dengue epidemics, but we provide additional plots for key climate

signatures (see Fig 5). Our major methodological innovation is to frame the dengue-forecast-

ing problem within an SVM setting that localizes the important periods for dengue prediction

and their associated climate patterns. Other machine learning methods used recently include

C-Support Vector Classification (C-SVC) [52], Random Forests [53], Decision Tree-Based

Approaches [54] and even the curious combination of ARIMA models with Google Trends

data [55]. Due to the nuanced and complex differences between the specific settings, we will

leave a more detailed comparison of the methods for future works.

Limitations of our methods

There are several limitations to our work and all of our results must be interpreted with cau-

tion and parsimony. We also acknowledge that using a binary threshold for classifying a year

as epidemic/non-epidemic is somewhat arbitrary, but we decided to abide by the convention

established by the Brazilian Ministry of Health. Moreover, we did not consider several other

factors believed to be important for explaining dengue dynamics in details, such as circulation

of different strains of the dengue virus [5, 6], human mobility within and among the cities [7,

8, 56, 57], human demographic dynamics [58, 59] and global warming and climate changes

[60, 61]. Therefore it is important to acknowledge that there might be potential confounding

between epidemic years and the coincidence of favorable climate conditions, given that other

processes are not represented in the model.

Finally, we acknowledge that our machine learning method is agnostic as to which sequence

of events was responsible for increasing/decreasing the number of human dengue cases from

year to year. To be an effective vector, mosquitoes must have a high vector competence and

vectorial capacity. The first refers to their ability to receive a disease agent microorganism

from the reservoir host and then later transmit the infectious agent to another susceptible host.

The vectorial capacity includes a number of factors like vector competence, mosquito popula-

tion density, host preferences, biting rate, immunity of the mosquitoes, and others. All these

factors may have been affected by the climatic differences from year to year. While we cannot

disambiguate which changes occurred, our predictive windows along the yearly cycle may pro-

vide insight as to when they occurred.

Future work

Since our methods led to promising forecasting results for various capitals of Brazil, in the

future we would like to apply the same approach to other cities and climate-datasets worldwide.

We also hope to better compare our methods with other machine learning techniques in future

works. With respect to the definition of epidemic and non-epidemic years, we acknowledge

that labeling years as dengue vs non-dengue might be too coarse and further insight might be

gained by a richer categorization of epidemic years. Exploring the use of more categories or

classes (such as high/medium/low years) may be an interesting approach for future studies.

Conclusion

Epidemic control of dengue is one of the most urgent public health challenges in tropical

countries such as Brazil. A better understanding of the multi-scale and long-term effects of
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climate conditions on the development of Aedes aegypti populations is crucial for improving

the timing of vector-control efforts and other policies. In this work, we show that two specific

climate variables—mean of temperature and frequency of precipitation—may be crucial for

dengue prediction in Brazil. Remarkably, for Aracajú, Belo Horizonte, Manaus, and, Rio de

Janeiro, a prediction can be made approximately six to nine months before the epidemic

outbreak, which usually takes place in the months of March-May. Interestingly, the summer

season in Rio de Janeiro offers little insight into this matter, since the data of years with and

without dengue are qualitatively similar from a climate perspective. Yet public strategies have

typically been enacted and decided during this time period, which is both too late and does not

leverage the predictive capabilities of the climate data. This work also highlights that climate

patterns with predictive success are quite distinct from city to city. This is large to be expected

as climatic effects, such as proximity to the ocean, to the jungle/forest, dense populations, etc

will likely play a significant role in how precipitation and temperature affect the growth of the

disease vector Aedes aegypti.
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Aplicada (IMPA/Brazil), and his internship at the University of Washington funded by the

Brazilian National Council of Research (CNPq).

Author Contributions

Conceptualization: Lucas M. Stolerman, Pedro D. Maia, J. Nathan Kutz.

Data curation: Lucas M. Stolerman.

Formal analysis: Lucas M. Stolerman.

Methodology: Lucas M. Stolerman.

Supervision: J. Nathan Kutz.

Writing – original draft: Lucas M. Stolerman, Pedro D. Maia.

Writing – review & editing: Lucas M. Stolerman, Pedro D. Maia, J. Nathan Kutz.

Forecasting dengue in Brazil with climate conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0220106 August 8, 2019 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220106.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220106.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220106.s003
https://doi.org/10.1371/journal.pone.0220106


References
1. World Health Organization. dengue and severe dengue. WHO Factsheet No 117. Geneva. 2015; Avail-

able from: http://www.who.int/mediacentre/factsheets/fs117/en/.

2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution

and burden of dengue. Nature. 2013; 496, 504–507. https://doi.org/10.1038/nature12060 PMID:

23563266

3. Figueredo LTM. Dengue in Brazil: Past, Present and Future Perspectives. dengue Bulletin. 2003; 27,

25–33.

4. Fares RC, Souza KP, Añez G, Rios M. Epidemiological Scenario of dengue in Brazil. Biomed research

international. 2015. https://doi.org/10.1155/2015/321873 PMID: 26413514

5. Rabaa MA, Simmons CP, Fox A, Le MQ, Nguyen TTT, et al. dengue virus in sub-tropical northern and

central Viet Nam: Population immunity and climate shape patterns of viral invasion and maintenance.

PLoS Negl Trop Dis. 2013; 7 (12) e2581. https://doi.org/10.1371/journal.pntd.0002581 PMID:

24340118

6. Raghwani J, Rambaut A, Holmes EC, Hang VT, Hien TT, et al. Endemic dengue associated with the co-

circulation of multiple viral lineages and localized density-dependent transmission. PLoS Pathog. 2011

7: e1002064. https://doi.org/10.1371/journal.ppat.1002064 PMID: 21655108

7. Adams B, Kapan DD. Man bites mosquito: understanding the contribution of human movement to vec-

tor-borne disease dynamics. PloS one.2009 4(8), e6763. https://doi.org/10.1371/journal.pone.0006763

PMID: 19707544

8. Stolerman LM, Coombs D, Boatto S. SIR-Network Model and Its Application to dengue Fever. SIAM

Journal on Applied Mathematics SIAM Journal on Applied Mathematics. 2015. 75(6), 2581–2609.

https://doi.org/10.1137/140996148

9. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A. Effect of temperature on the vector effi-

ciency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg. 1987. 36: 143–152. https://doi.org/10.

4269/ajtmh.1987.36.143 PMID: 3812879

10. Foo LC, Lim TW, Lee HL, Fang R. Rainfall, abundance of Aedes and dengue infection in Selangor,

Malaysia. Southeast Asian J Trop Med Pub Health. 1985. 16: 560–568.

11. Hopp MJ, Foley JA. Global-scale relationships between climate and the dengue fever vector, Aedes

aegypti. Clim Change. 2001. 48: 441–463. https://doi.org/10.1023/A:1010717502442

12. Lana RM, Morais MM, Lima TFMd, Carneiro TGdS, Stolerman LM, dos Santos JPC, et al. (2018)

Assessment of a trap based Aedes aegypti surveillance program using mathematical modeling. PLoS

ONE 13(1): e0190673.

13. Adde A, Roucou P, Mangeas M, Ardillon V, Desenclos J-C, Rousset D, et al. Predicting dengue Fever

Outbreaks in French Guiana Using Climate Indicators. PLOS Negl Trop Dis. 2016; 10: e0004681.

https://doi.org/10.1371/journal.pntd.0004681 PMID: 27128312

14. Buczak AL, Baugher B, Babin SM, Ramac-Thomas LC, Guven E, Elbert Y, et al. Prediction of high inci-

dence of dengue in the Philippines. PLOS Neglected Tropical Diseases, 2014; 8:24:e2771. https://doi.

org/10.1371/journal.pntd.0002771

15. Murphy KP. Machine learning: a probabilistic perspective. MIT press; 2012 Sep 7.

16. Bishop CM. Pattern recognition. Machine Learning. 2006; 128.

17. Cortes C, Vapnik V. Support-vector networks. Machine learning.1995. 20(3), 273–297. https://doi.org/

10.1023/A:1022627411411

18. Burges CJ. A tutorial on support vector machines for pattern recognition. Data mining and knowledge

discovery 2.2.1998. 121–167. https://doi.org/10.1023/A:1009715923555

19. Brazilian National Surveillance System (SINAN) Total number of dengue cases in state capitals Avail-

able from (website in Portuguese): http://portalsinan.saude.gov.br/dados-epidemiologicos-sinan

20. Ministry of Health, Epidemiological Report—dengue Fever (January to June, 2008). Available from

(website in Portuguese): http://bvsms.saude.gov.br/bvs/publicacoes/informe_epidemiologico_dengue_

janeiro_junho_2008.pdf

21. Brazilian National Institute of Meteorology (INMET) Temperature and precipitation time series. Avail-

able from (website in Portuguese): http://www.inmet.gov.br/projetos/rede/pesquisa/
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