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Abstract 

The rise of antibiotic resistance (AR) in clinical settings is one of the biggest modern 
global public health concerns. Therefore, the understanding of AR mechanisms, 
evolution and global distribution is a priority due to its impact on the treatment course 
and patient survivability. Besides all efforts in the elucidation of AR mechanisms in 
clinical strains, little is known about its prevalence and evolution in environmental 
uncultivable microorganisms. In this study, 293 metagenomic from the TARA 
Oceans project were used to detect and quantify environmental antibiotic resistance 
genes (ARGs) using machine learning tools. After extensive manual curation, we 
show the global ocean ARG abundance, distribution, taxonomy, phylogeny and their 
potential to be horizontally transferred by plasmids or viruses and their correlation 
with environmental and geographical parameters. A total of 99,205 environmental 
ORFs were identified as potential ARGs. These ORFs belong to 560 ARG families 
that confer resistance to 26 antibiotic classes. 24,567 ORFs were found in contigs 
classified as plasmidial sequences, suggesting the importance of mobile genetic 
elements in the dynamics of ARGs transmission. Moreover, 4,804 contigs with more 
than 2 ARGs were found, including 2 plasmid-like contigs with 5 different ARGs, 
highlighting the potential presence of multi-resistant microorganisms in the natural 
ocean environment. This also raises the possibility of horizontal gene transfer (HGT) 
between clinical and natural environments. The abundance of ARGs showed 
different patterns of distribution, with some classes being significantly more abundant 
in coastal biomes. Finally, we identified ARGs conferring resistance to some of the 
most relevant clinical antibiotics, revealing the presence of 15 ARGs from the 
recently discovered MCR-1 family with high abundance on Polar Biomes. Of these, 5 
were assigned to the genus Psychrobacter, an opportunistic pathogen that can 

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted December 21, 2019. . https://doi.org/10.1101/765446doi: bioRxiv preprint 

https://doi.org/10.1101/765446
http://creativecommons.org/licenses/by/4.0/


cause fatal infections in humans. Our results are available on Zenodo in MySQL 
database dump format and all the code used for the analyses, including a Jupyter 
notebook can be accessed on GitHub 
(https://github.com/rcuadrat/ocean_resistome).  
 
Keywords: Beta-lactamase, NDM-1, marine metagenomics, Colistin, deep learning, 
OLS, multidrug resistance 
 

Introduction  

 
Antibiotic-resistant bacteria cause over 700,000 deaths per year, making them a 
global public health issue and an economic burden to the entire world and in 
particular in the developing countries. If the emergence of multi-resistant bacteria 
continues at the same rate, projections show that by 2050 they can cause 10 million 
deaths per year, which would outnumber deaths caused by cancer [1,2]. Despite its 
danger for human health, antibiotic resistance (AR) is a natural phenomenon and is 
one of the most common bacterial defence mechanisms. For example, the 
resistance to β-lactam antibiotics, conferred by beta-lactamase activity, is estimated 
to have emerged more than 1 billion years ago [3,4]. The collection of antibiotic 
resistance genes (ARGs) in a given environment, also called resistome, is a natural 
feature of microbial communities, being part of both inter- and intra-community 
communication and in the defence repertoires of organisms sharing the same 
biological niche [5,6]. 
Over the years, reservoirs of ARGs have been detected in different natural 
environments, such as oceans [7], lakes [8], rivers [9], remote pristine Antarctic soils 
[10] and impacted Arctic tundra wetlands [11]. Studies also show that anthropogenic 
activity (e.g. over-usage of antibiotics and their subsequent release via wastewaters 
into the environment) could lead to the spread of clinical important ARGs across 
natural environment [12,13]. Therefore, the investigation of the natural context of 
ARGs, their geographic distribution, dynamics and, in particular, their presence on 
horizontally transferable mobile genetic elements (MGEs), such as plasmids, 
transposons, and phages, is crucial to assess their potential to emerge and spread 
[14–16]. Due to modern advances in DNA sequencing and bioinformatics, it is now 
possible to study the presence and prevalence of ARGs in different environments. 
However, most of the published studies targeted only one or a few classes of ARGs 
and were limited to specific environments and geographic locations. The oceans 
cover around 70% of Earth’s surface, harbouring a big diversity of microscopic 
planktonic organisms forming a complex ecological network which is still under-
studied [17,18]. To fix this, the number of ocean metagenomic projects stored in 
public databases have been growing, but the lack of related metadata made it 
difficult to conduct high-throughput gene screenings and correlations with 
environmental factors. Fortunately, the TARA oceans project [19] measured several 
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marine environmental conditions, such as temperature, salinity, geographical 
location, pH, etc, across the globe and stored them as structured metadata. 
Together with the metagenome sequences [19], this allows the use of the machine 
and deep learning approaches to search for gene and species distribution and their 
correlation to environmental parameters. 
In this study, we applied deepARG [20], a deep learning approach for ARG 
identification, to the 12 oceanic regions co-assembled TARA oceans contigs [21]. 
The results were then manually curated, a taxonomic classification was done, and 
analyses were performed for the gene abundance quantification together with 
association analyses between the quantification of ARGs and environmental 
parameters using Ordinary Least Squares (OLS) regression. We also explored the 
presence of ARGs in mobile genetic elements (MGEs) in TARA samples to 
investigate the potential of these oceanic environments to act as a reservoir of 
ARGs. 
 

Material and Methods 

 

Metagenomic data 

 
A total of 12 co-assembled metagenomes (from different oceanic regions explored 
by the Tara Oceans expedition), with contigs larger than 1 kilobase were obtained 
from the dataset published in 2017 by Delmont et al. [22]. Raw reads of 378 shotgun 
sequencing runs of 243 samples were obtained from the EBI ENA database 
(https://www.ebi.ac.uk/ena) with accession numbers: PRJEB1787, PRJEB6606 and 
PRJEB4419. 
Sample identifiers and metadata were obtained from Companion Tables Ocean 
Microbiome (EMBL) [23]. Tara Ocean samples were collected in seawater at 
different sites and depths and successively filtered using a single or a combination of 
membranes with pore sizes of 0.1�μm, 0.2�μm, 0.45�μm, 0.8�μm, 1.6�μm and 
3�μm to retain different size fractions as viruses, giant viruses (“giruses”), 
prokaryotes (bacteria and archaea).  

Environmental ARG prediction 

 
Open reading frame (ORF) prediction was performed on the 12 co-assembled 
metagenomes using the software MetaGeneMark v3.26 [24] with default parameters.  
The screening for ARGs was performed with DeepARG [20] on the extracted ORFs 
using gene models, classifying a gene as ARG if the probability was equal or greater 
than 0.8. In order to check if those contigs are plasmids or chromosomal sequences, 
contigs containing at least one putative ARG were analyzed with the tool PlasFlow 
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1.1 [25]. We also investigated the number and distribution of contigs with 2 or more 
putative ARGs to check for multiple resistance and/or whole ARG operons from 
environmental samples. ORFs of putative ARGs (and its respective contig) were 
submitted to Kaiju v1.6.2 [26] for taxonomic classification, with the option “run mode” 
set as “greedy”. Later, in order to check for misannotations and inconsistencies, we 
conducted a manual curation of each ARG among sequences from both deepARGdb 
[20] and those obtained from TARA contigs screening. Online BLASTp searches [27] 
were performed against the non-redundant protein database, with default 
parameters. Conserved domains (CDDs) and annotations in the source databases 
(ARDB, CARD and UniProt) were manually inspected. 
 

ARGs quantification and statistical tests on metagenomic samples 

 
Environmental ARGs, identified after the manual curation, were used as a reference 
for the mapping of all the raw reads from the 378 metagenomic and 10 
metatranscriptomic Tara Oceans samples, using BBMAP v37.90 [28].  The 
coverage, in terms of read counts and the abundance of each ARG was then 
calculated for each sample. Note that the abundance was calculated as Fragments 
Per Kilobase Million (FPKM). The Average Genome Size (AGS) and Genome 
Equivalents (GE) were estimated by the software MicrobeCensus v1.0.7 [29] in order 
to calculate Reads Per Kilo Genome equivalents (RPKG) as described by 
MicrobeCensus authors [29]. RPKG values for ORFs in each ARG family were 
summed for each sample. Environmental features, such as the sample depth, 
biogeographic biomes, ocean and sea regions and fractions (i.e. the concatenation 
of upper and lower filter size) were used for samples grouping and statistical tests. 
Pairwise Tukey HSD and multivariate linear regression using OLS models were 
conducted in Python 3.6 using the library ‘statsmodels’. The OLS  was performed 
considering the following formula: 
 
ARGRPKG ~ Marine provinces + Environmental Feature + Ocean sea regions + 
Fraction + Biogeographic biomes + Latitude + Longitude + NO2 + PO4 + NO2NO3 + 
SI + miTAGSILVATaxo Richness + miTAG_SILVA_Phylo_Diversity + 
miTAG_SILVA_Chao + miTAG_SILVA_ace + miTAG_SILVA_Shannon + 
OG_Shannon + OG_Richness + OG_Evenness + FC_heterotrophs_cells_mL + 
FC_autotrophs_cells_mL + FC_bacteria_cells_mL + FC_picoeukaryotes_cells_mL 
 
where ARGRPKG (the dependent variable) is the sum of RPKM of all ARGs in a given 
class and all the dependent variables are the selected environmental features. 
ANOVA was then conducted on the coefficients obtained from the OLS regression in 
order to infer the significance of a feature. A Python Jupyter notebook is provided 
with the code and the results for all the exploratory and statistical analyses [30].   
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Phylogenetic analysis of environmental ARGs 

 
Phylogenetic analyses were performed on the environmental genes identified as 
clinically relevant ARGs, such as the MCR-1 family and New Delhi metallo-beta-
lactamase, for which reference clinical sequences were found in public databases, 
such as NCBI and deepARGdb. Multiple protein sequence alignments and 
phylogenetic trees were generated using the standard pipeline found on Phylogeny.fr 
[31]. Sequences were aligned using MUSCLE [32] in order to extract conserved 
blocks with gblocks [33] and phylogenetic trees generated with phyML [34], using 
“WAG” as substitution model and “alrt” as the statistical test.  
 

Database design and implementation 

 
A manually curated MySQL database was created with the environmental ARGs 
described and all the subsequent analysis results. We provide the SQL dump at 
https://doi.org/10.5281/zenodo.3404245. 
 

Dash web application for data exploration and visualization 

 
We developed a Python dashboard web application where the user can explore the 
results through interactive graphics (plotted with the plotly library). The app includes 
a geographical scatterplot, where it is possible to see the abundance of each ARG 
(or antibiotic class) selected by the user (RPKG) across all the samples in a world 
map; a boxplot, where the environmental feature can be selected in order to group 
the samples and compare the abundances; a barplot with taxonomic classification of 
the selected ARG (different taxonomic levels for the visualization can be selected); 
another scatterplot with marginal distribution plots and trend line (OLS), where on the 
axis X is represented the selected ARG and on the axis Y the user can select 
environmental variables (e.g. oxygen concentration, salinity, temperature, depth, 
etc.). In addition, a table containing information about each ORF is displayed. The 
additional information includes ORF id, contig id, antibiotic class, deepARG 
probability value, plasmid classification by PlasFlow, taxonomic classification by 
Kaiju (on the deepest level), if the ARG is expressed in at least one sample, other 
ARGs in the same contig and the total of ARGs in the contig. A link to download the 
multi-fasta file of the selected ARG is also provided. The application can be 
accessed at http://resistomedb.com/.   
 

Pipeline and code availability 
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The code of the complete pipeline (Figure 1) is in Bash and Python and it is available 
at the project repository on GitHub [35].  
 

 
Figure 1: Flowchart used for ARG classification  
The single steps and data used in the pipeline applied for the analyses presented in this work. 

 
  
 
 
 
 
 
 

Results and Discussion 

 

Environmental ARGs prediction and manual curation 

 
A total of 41,249,791 ORFs were predicted by MetaGeneMark from 15,600,278 
assembled contigs and used as input for ARG screening using the deepARG tool 
[11]. The usage of deepARG on the predicted Tara Oceans ORFs resulted in the 
classification of 116,425 ORFs (0.28%) as putative ARGs, belonging to 594 gene 
families and 28 ARG classes. The number of contigs, ORFs and putative ARGs of 
the metagenomic co-assemblies from each oceanic region can be found in 

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted December 21, 2019. . https://doi.org/10.1101/765446doi: bioRxiv preprint 

https://doi.org/10.1101/765446
http://creativecommons.org/licenses/by/4.0/


Supplementary Table 1. Due to misannotations and misclassifications in the 
databases used for deepARG model training, it was necessary to conduct an 
extensive manual curation on the results. This curated dataset represents an 
important resource for further studies, including evolutionary and comparative 
studies.   
The manual curation was performed to investigate the incidence of misannotated 
ARGs in different scenarios (Supplementary Table 2): (i) misannotated genes or 
gene families in the databases with low supportive evidence for ARG prediction; (ii) 
housekeeping genes that confer resistance only when specific mutations arise; (iii) 
housekeeping genes conferring resistance when overexpressed; (iv): regulatory 
sequences, responsible for ARG activation or overexpression of housekeeping 
genes (leading to a resistance phenotype); (v) sequences with both similarity to 
ARGs and non-ARGs, belonging to the same superfamily and/or sharing domains. 
All misannotated ARGs identified in scenario (i) were completely removed from our 
database and downstream analysis. A total of 34 ARG families was identified as 
misannotated or with low-quality annotation in the source database. For instance, the 
msrB gene encodes an ABC-F subfamily protein, that leads to erythromycin and 
streptogramin B resistance, but the fasta sequence in the database belongs to the 
msrB gene encoding methionine sulfoxide reductases B, not conferring antibiotic 
resistance. Another misannotated ARG family is patA, an ABC transporter of 
Streptococcus pneumoniae, conferring resistance to fluoroquinolones, whose 
sequence is a putrescine aminotransferase (patA) in the CARD database. A total of 
99,205 ORFs remained after this step for non-quantitative analyses. 
Putative ARGs identified on the scenarios (ii), (iii), (iv) and (v) were kept in the 
MySQL database for further studies but not used in the quantification and statistical 
analyses. The scenario (ii) includes the identification of 10 families of housekeeping 
genes and the corresponding mutations that could infer resistance. In scenario (iii), 
we identified 9 ARGs whose overexpression can lead to resistance. For scenario (iv) 
we identified 41 regulatory sequences that have been identified as responsible for 
ARG expression or over-expression of housekeeping genes that are leading to the 
resistance phenotype. For scenario (v) we identified 187 families that cannot be 
distinguished from non-ARGs by similarity alone. After the removal of these genes, a 
total of 13,163 ORFs (from the initial 116,425) belonging to 313/594 families, were 
retained for quantification and further analysis (Supplementary Table 2). 
The most abundant ARGs of these 13,163 ORFs were QAC (multidrug efflux pumps 
named after their conferring resistance to quaternary ammonium compounds) with 
more than 3,000 overall occurrences, followed by TETB(60) with more than 2,000 
occurrences (Figure 2). The latter is an ABC transporter that confers resistance to 
tetracycline and tigecycline identified by screening a human saliva metagenomic 
library [36]. The ORFs conferring resistance to tetracycline combined are the most 
widespread, with several TET and TETA classes accounting for approximately 4,000 
occurrences. The main beta lactam-resistance conferring ARG was identified as 
K678_12262 with approximately 1,000 occurrences.   
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Figure 2: The 20 most abundant ARGs after manual curation  
Number of ORFs detected in all metagenomes; the corresponding resistance to antibiotic classes is 
depicted in the upper right. 

 
 

Multiple ARGs in chromosomes and plasmids and taxonomic 
classification 

 
We found a total of 24,567 putative ARGs (24.76% of the 99,205 ARGs excluding 
scenario (i)) present in contigs classified as plasmids. The presence of two or more 
ARGs in a single contig was also checked in order to identify possible multi-resistant 
organisms. The main objective of this analysis was to evaluate the potential of 
horizontal genetic transfer (HGT), as plasmids, bacteriophages, transposons, and 
extracellular DNA are the primary drivers of HGT. The occurrence of HGT of ARGs 
was already detected and characterized in clinical environments [37], in wastewater 
treatment plants (activated sludge) [14,38] and in fertilized soil [39], but still little is 
known about ARG HGT in aquatic environments, especially in open ocean regions. 
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The presence of ARGs in phages and its potential HGT was described in some 
studies, for example, in a Mediterranean river [40], in pig faecal samples [15], in 
fresh-cut vegetables and in agricultural soil [16]. 
For this analysis, we only removed the ARGs from the scenario (i), misannotated 
sequences, because the presence of putative ARGs in the same contig and/or 
plasmid can give us additional functional evidence. We identified 4,063 contigs with 
multiple putative ARGs in contigs classified as chromosomes (up to 11 ARGs in the 
same contig), and 741 in contigs classified as a plasmid (up to 5 ARGs in the same 
contig), suggesting the presence of multi-resistant microorganisms in these 
environments (Table 1). In figure S1, we show the distribution of the ARGs in the 2 
plasmids containing 5 ARGs each.  
 
Table 1: Distribution of multiple ARGs in chromosome and plasmids (classified by PlasFlow). 

 

Number of ARGs in chromosome in plasmid 

2 3503 689 

3 365 37 

4 116 13 

5 35 2 

6 22 0 

7 10 0 

8 6 0 

9 2 0 

10 2 0 

11 2 0 

 
 
The taxonomic classification of putative ARGs performed using Kaiju [26], allowed us 
to classify 97,244  ARGs (98.02% of all ARGs excluding scenario (i)) up to some 
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taxonomic level. Alphaproteobacteria (37,360 sequences) were revealed as the 
largest taxonomic unit. A total of 124 ARGs were classified as a virus. The most 
abundant taxonomic viral group was assigned to unclassified Prymnesiovirus (21 
ARGs) and Chrysochromulina ericina virus (CeV) (19 ARGs). However, all the 124 
viral ARGs are in scenario (v), and further investigations should be done in order to 
curate these sequences. 
For the contigs containing multiple ARGs, the taxonomic classification of each ARG 
was checked together with a full contig sequence classification by kaiju to verify if the 
ARGs in the same contig belong to the same organism, giving us an indication of 
possible mis-assembly or HGT. One contig with 11 ARGs (TARA_ANW-
k99_1343221) was classified as HGW-Alphaproteobacteria-12, while two of the 
single ARGs were classified as Parvibaculum lavamentivorans, an 
alphaproteobacterial species first isolated from activated sludge in Germany [41]. 
The other 9 ARGs, were classified as  HGW-Alphaproteobacteria-3, HGW-
Alphaproteobacteria-12, and as generic Alphaproteobacteria. A previous study 
showed the presence of ARGs in a strain of Parvibaculum from marine samples by 
functional metagenomics [7] which might hint to a broader ARG distribution among 
this clade. The other contig with 11 ARGs (TARA_ANE-k99_4428305) was classified 
(whole contig as well as the single ARGs) as Micavibrio sp., an obligately predatory 
bacterium exhibiting ‘vampire-like’ behaviour on gram-negative pathogens [42]. First 
isolated from wastewater samples, this genus has been considered as a potential 
new therapeutic approach against multi-resistant bacteria [43] including MCR-1 
positive strains [43], due to the fact that no species from the genus Micavibrio was 
found to be pathogenic for humans [44]. However, if Micavibrio species contain 
indeed multiple ARGs, this would raise concerns about any clinical therapeutic 
approaches with these bacteria. One of the putative plasmids containing five ARGs 
(contig TARA_PSE-k99_4996023 on figure S1) showed taxonomic agreement 
between the classification of its single ARGs, all assigned to Tistrella mobilis. This 
species was firstly isolated from Thailand wastewater [45], and later another strain 
was isolated from the Red Sea [46]. The other contig classified as a plasmid with 5 
ARGs was classified as Halomonas desiderata, a denitrifying bacterium isolated first 
from a municipal sewage treatment plant [47]. From the 5 ARGs in this contig, 2 
confer resistance to trimethoprim (DFRE and DFRA3). Previous work showed that 
another bacteria from the same genus (Halomonas marisflavi type strain) is resistant 
to trimethoprim in vitro [48]. However, in the same study, Halomonas desiderata did 
not show resistance phenotype for any of the antibiotics tested. For both genera, 
Tistrella and Halomonas, mega plasmids were described [46,49].  
 
 

ARGs quantification on metagenome and metatranscriptome samples 
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The average genome size of Tara Oceans samples were calculated by 
MicrobeCensus v 1.0.7 [29] and then used to estimate RPKG, a normalization 
method for gene abundance in microbial studies used to avoid the bias of genome 
sequence coverage between samples populated with different genome sizes [29], 
which is expected due to filtration methods applied in the TARA study.  
 
Since the Tara Oceans samples had different lower and upper thresholds of filtration 
size, we grouped samples by both thresholds to compare the AGS. MicrobeCensus 
uses a set of gene markers to infer the AGS, and since these gene markers are 
mainly present in cellular (not viral) genomes, the fractions enriched for virus and 
giant virus (< 0.22 um and 0.1-0.22 um) showed very biased and aberrant results for 
AGS, which was very high, up to 395.4 megabases; and genome equivalents. This is 
because the AGS values are inversely proportional to the number of reads mapping 
to the housekeeping gene markers, that are in very low abundance in virus-enriched 
samples. Based on that, we decided to remove virus-enriched fractions from the 
quantitative analysis, keeping  293 sample runs for downstream quantitative 
analyses. In order to compare the abundance of ARG classes across different 
marine regions, fractions and layers, we ran pairwise Tukey HSD tests on the ARG 
classes (the sum of RPKG for each class). For example, we wanted to investigate if 
the coastal biomes contained significantly more ARGs from any class than other 
more pristine biomes. The quinolone and bacitracin ARG classes were significantly 
more abundant in the coastal biome than in the westerlies biome (adjusted p-values 
0.0169 and 0.0076, respectively). Furthermore, the fosmidomycin and quinolone 
ARGs were significantly (adjusted p-value 0.0014 and 0.0438, respectively) more 
abundant in the coastal biome than in the trades biome (Figure 3, Supplementary 
Table 2). The high abundance of ARGs of quinolone class along other ARG classes 
was previously reported on China’s coastal environment [50]. These results could 
indicate that specifically, this class of ARGs is under anthropogenic pressure, and 
future studies should be carried to investigate it in greater detail.  
Surprisingly, the pristine polar biome showed significantly higher RPKG values for 
ARGs from the class Polymyxin than any other biome. Polymyxin B and E  (also 
known as Colistins) are last-resort antibiotics used against gram-negative bacteria 
when modern antibiotics are ineffective, especially in cases of multiple drug-resistant 
Pseudomonas aeruginosa or carbapenemase-producing Enterobacteriaceae [51,52]. 
We discuss mobilized colistin resistance genes (MCRs) in greater detail in a 
separate section later in this manuscript. 
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Figure 3: Significantly different abundances of ARG classes from Oceanic 
Biomes.  
Tukey HSD comparing the RPKG of ARG classes for 4 biomes of Tara Oceans study. A- RPKG for 
Quinolone ARGs; B- RPKG for Bacitracin ARGs; C- RPKG for Fosmidomycin ARGs; D- RPKG for 
Polymyxin ARGs. Reference for the test is in blue and in red the biome significantly different than the 
reference (p <0.05).   
 
When comparing abundances of classes on marine provinces, we found, for 
example, a significant difference (p < 0.05) of bleomycin class in 2 Indian provinces 
compared to most of the other provinces (Figure 4). Bleomycin resistance genes 
were previously reported to be in association with New Delhi metallo-β-lactamase 
(NDM-1) genes [53,54]. In this study, NDM-like genes (classified by deepARG as 
NDM-17 variant) were also found in greater abundance in India South Subtropical 
Gyre province. The first variant of NDM  was identified in Klebsiella pneumoniae 
strain isolated from a Swedish patient who travelled to  New Delhi, India [76], and it 
was spread globally in a few years and also in other species from the 
Enterobacteriaceae family, being classified as a potential worldwide public health 
problem [77]. This result raises concerns about the impact of antibiotics from the 
production of pharmaceuticals and wastewater in marine environments.  
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Figure 4: Bleomycin ARG abundance in marine provinces.  
Tukey HSD comparing the RPKG of ARGs from the class bleomycin. Reference for the test is in blue 
and in red the biome significantly different than the reference (p <0.05) 

 
 
In addition, we wanted to check the influence of other environmental parameters on 
the abundance of ARG classes. Our OLS models showed mostly geographical 
parameters affecting the variance of ARGs, in agreement with our Tukey HSD tests. 
However, for some classes, the influence of non-geographical parameters (such as 
nutrient concentration) on the abundance of ARGs could be demonstrated. For 

example, for quinolone, the model shows inorganic phosphate (PO4)3− inverted 

correlated (beta -0.13, p-value 0.0002), NO2NO3 (Nitrite+Nitrate concentration) direct 
correlated (beta 0.007, p-value 0.002). The R2 of this model is 0.57 and p-value 
9.82E-17. On the other hand, PO4 is positively correlated with polymyxin and 
fosfomycin (p-values 1.918251E-05 and 1.651744E-08, respectively). The role of 
inorganic nutrients concentration in antibiotic resistance genes abundance is poorly 
understood and sometimes controversial, with some studies suggesting that high 
concentration of nutrients is negatively correlated with ARGs because in nutrient-rich 
environments competitive interactions are less important [55]. However, in 
wastewater treatments plants [56] and agricultural soil receiving dairy manure [57] 
the abundance of ARGs are increased. Further studies should be conducted to 
better understand the role of different nutrients on the abundance of ARGs of 
different classes in both pristine oligotrophic and impacted environments. The 
supplementary table 3 shows all significant results ANOVA test on the coefficients of 
OLS  for each class.  
 

Mobilized colistin resistance  genes (MCR-1) and other polymyxin 
resistance genes 
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Most mechanisms conferring resistance to Colistin are directed against modifications 
of the lipid A moiety of lipopolysaccharide (LPS), with the addition of l-ara4N and/or 
phosphoethanolamine (PEtN) to lipid A as the main mechanisms [58]. We found 
evidence for the occurrence of mobilized colistin resistance genes related to the 
recently discovered MCR-1 [59], which relies on the PEtN addition to lipid A. MCR-1 
enzyme was described as 41% and 40% identical to the PEA transferases LptA and 
EptC, respectively, and sequence comparisons suggest that the active-site residues 
are conserved. However, until the discovery of the plasmid-borne mcr-1 in E. coli 
from pig [59], colistin resistance has always been linked to chromosomally encoded 
genes with few or no possibility of horizontal transfer. Further studies showed a high 
prevalence of the mcr-1 gene (e.g. 20% in animal-specific bacterial strains and 1% in 
human-specific bacterial strains in China) and the plasmid has been detected in 
several countries covering Europe, Asia, South America, North America and Africa 
[60–67]. Further MCR classes were described recently, with recent classification into 
9 phylogenetically different classes MCR-1 to 9 [68,69]. In the present study, we 
found 15 ORFs classified as MCR-1 by deepARG, they were most abundant in the 
Atlantic Southwest Shelves Province followed by its adjacent region, Antarctic 
Province (Figure 5). However, the employed version of deepARG did not classify 
these sequences into the more recently described MCR-2 to 9. Therefore, we 
performed a phylogenetic analysis (Figure 6), which included sequences of different 
MCRs (MCR-1 to 5)  and LptA (eptA as outgroup). The results suggested that 5 
ORFs (from genus Psychrobacter, family Moraxellaceae [65]) are close to the MCR-
1/2 clade with support value 1 (Figure 7). Members of the genus Psychrobacter were 
isolated from a wide range of habitats, including food, clinical samples, skin, gills and 
intestines of fish, seawater and Antarctic sea ice [67–71]. Importantly, at least 2 
isolates from this genus were already reported to be resistant to Colistin 
(Psychrobacter vallis sp. nov. and Psychrobacter aquaticus sp. nov) both isolated 
from Antarctica [72]. Coincidently, the regions with greater RPKG mean for MCR-1 in 
our study were Southwest Atlantic and Antarctic Province. Our results support that 
Psychrobacter might be an ecological reservoir for transfer of PEtN transferases to 
other pathogens and further studies should be conducted to better understand the 
dynamics and evolution of ARGs in this genus. In addition, some species of this 
genus were also reported to cause opportunistic infections in humans, including at 
least one case reported to be associated with marine environment exposure [74] In 
this context it is therefore important to increase monitoring, by, for example, including 
screenings for those genes.  
The residual MCR sequences, mostly belonging to the Thioglobus genus, were 
phylogenetically farther away from MCR-1/2 and might constitute new, distinct MCR 
classes. Important to note is that the phylogenetically very close relationship to MCR 
sequences does not prove the function as a colistin-resistant gene, which awaits 
further experiments to confirm this role.  
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Figure 5: MCR-1 distribution on Tara Oceans marine provinces. The boxplot 
shows the sum of RPKG values for all MCR-1 ORFs.  
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Figure 6: Phylogenetic tree of ocean metagenome MCR  
The tree was inferred by standard pipeline from phylogeny.fr (phyML with “WAG” model and statistical 
test Alrt for support values). Sequences from NCBI for outgroup eptA and for clinical MCR-1 to MCR-5  
were used in addition to the samples obtained from our results from Tara Oceans co-assemblies. The 
name of the Tara Oceans sequences displayed in the tree are defined with the id of sequence, co-
assembly id, taxon name from Kaiju and yes/no for plasmid classification from PlasFlow.The blue 
rectangles are marking the TARA sequences. The blue clade is MCR-1/2 clade, the grey clade is 
MCR-5, the green clade is MCR-3/4 and the red clade is eptA clade (outgroup). The red circles are 
marking the sequences in contigs classified as plasmids by PlasFlow.  

 
For plasmid classification, we relied on the results of PlasFlow, which only classified 
two of the sequences classified located on a plasmid. This can be explained by the 
small size of many contigs (with eight of them smaller than 3 kb). Additionally, a 
false-negative result from PlasFlow could be a result of a re-integration of plasmidial 
sequences into the chromosome - or that the here detected MCR genes may 
constitute an ancestor of the plasmidial E. coli MCR sequences, as was already 
suggested for Moraxella species [66]. The two ARGs classified to be located on a 
plasmid are detected in contigs with a size of 2 kb and 38 kb. The former, classified 
as belonging to a Thioglobus species, is difficult to be validated as a plasmidial 
sequence due to its small size. The latter could be classified as a sequence of a 
Poseidonibacter species, a marine group of bacteria recently reclassified from the 
Arcobacter genus which contains several pathogenic bacteria [70]. A toxin-antitoxin 
system is encoded two ORFs upstream the MCR gene, which might be an indication 
for a plasmidial location. However, no further genes usually located on Arcobacter 
spp. plasmids [71] were found on this contig, hampering its definite classification as 
a plasmidial mcr. That said, various mobile element genes located on this contig 
(Figure 7) strengthen the assumption that this contig is related to a mobile genetic 
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region. Interesting is the unusual synteny of MCR, PAP2 and a downstream encoded 
DAGK, of which the latter only appears in MCR-3 genetic environments [72]. Related 
genes (amino acid sequence identity of about 70%) with a conserved gene synteny 
are found in various Arcobacter species (Fig. 6). Several Arcobacter species which 
do contain a similar mcr gene were susceptible to colistin treatment (REF), arguing 
against this gene conferring colistin resistance. Further research would be necessary 
to confirm or refute colistin resistance in marine Poseidonibacter [73]. 
 

Fig 6: Genomic context of the mcr gene of contig TARA_PSE_k99_4834589  
This contig was classified to be plasmidial by PlasFlow. Depicted are the first 13 ORFs from 28, 
showing MCR-1 and surrounding genes and including the mobile element related genes. Tnp - 
Transposase, DAG - Diacylglycerol, PAP2 - phosphatase PAP2 family protein, Mcr - mobilized colistin 
resistance protein. Colour code: green - mobile element related gene, blue - Other/metabolic genes, 
yellow - DNA-related gene, light blue - Mcr-accessory genes, red - Mcr gene, grey - hypothetical 
protein. Annotations from MetaGeneMark were manually refined using the conserved domains 
database and blastp against the SwissProt database. Taxonomy of Arcobacter species is stated as 
currently in the Genbank database.  

 
The presence of MCR-related genes in both Antarctic and adjacent regions can also 
raise concerns about gene flow due to ice melting, a problem already discussed 
previously for other ARGs [73].  
 
  

Conclusions 

Our study uncovers the diversity and abundance of ARGs in the global ocean 
metagenome, conferring probably resistance to 26 classes of antibiotics. The 
extensive analysis leads to a detailed taxonomic classification and varying ARG 
abundance in different biomes. Potential horizontal gene transfer leads to the 
spreading of some ARGs, resulting also in putative multi-resistant strains. For a 
limited number of ARGs, gene transcription could be shown. Our study also exposes 
the importance of monitoring coastal water for anthropogenic impact, since the inflow 
of antibiotics by e.g. wastewater might strengthen (by selective pressure) the 
antibiotic resistance development by microorganisms. Antarctic soil and ice might be 
a huge potential reservoir for ARGs, and the discussion about ARG distribution 
should not neglect the future impact of this reservoir under the influence of climate 
change. This study could also bear an impact on investigations dealing with the 
evolutionary history of ARGs, with the here presented genes as ancestors of 
common ARGs in clinically relevant strains. Last but not least, the combination of 
multiple modern machine learning tools and other open-source data science libraries 

 

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted December 21, 2019. . https://doi.org/10.1101/765446doi: bioRxiv preprint 

https://doi.org/10.1101/765446
http://creativecommons.org/licenses/by/4.0/


such as Dash and Plotly produced a valuable resource for the scientific community 
working on further studies on antibiotic resistance in different environments.  
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