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Ribeiro1,2, Maria de Fátima Ferreira-da-CruzID
1,2*
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Abstract

Circumsporozoite protein (CSP) is the primary pre-erythrocytic vaccine target in Plasmodium

species. Knowledge about their genetic diversity can help predict vaccine efficacy and the

spread of novel parasite variants. Thus, we investigated pvcsp gene polymorphisms in 219 iso-

lates (136 from Brazilian Amazon [BA], 71 from Rio de Janeiro Atlantic Forest [AF], and 12 from

non-Brazilian countries [NB]). Forty-eight polymorphic sites were detected, 46 in the central

repeat region (CR), and two in the C-terminal region. Also, the CR presents InDels and a vari-

able number of repeats. All samples correspond to the VK210 variant, and 24 VK210 subtypes

based on CR. Nucleotide diversity (π = 0.0135) generated a significant number of haplotypes

(168) with low genetic differentiation between the Brazilian regions (Fst = 0.208). The haplotype

network revealed similar distances among the BA and AF regions. The linkage disequilibrium

indicates that recombination does not seem to be acting in diversity, reinforcing natural selec-

tion’s role in accelerating adaptive evolution. The high diversity (low Fst) and polymorphism fre-

quencies could be indicators of balancing selection. Although malaria in BA and AF have

distinct vector species and different host immune pressures, consistent genetic signature was

found in two regions. The immunodominant B-cell epitope mapped in the CR varies from seven

to 19 repeats. The CR T-cell epitope is conserved only in 39 samples. Concerning to C-terminal

region, the Th2R epitope presented nonsynonymous SNP only in 6% of Brazilian samples, and

the Th3R epitope remained conserved in all studied regions. We conclude that, although the

uneven distribution of alleles may jeopardize the deployment of vaccines directed to a specific

variable locus, a unique vaccine formulation could protect populations in all Brazilian regions.
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Introduction

Malaria is the most prevalent infectious disease globally, with an estimated 228 million cases

and 405 thousand deaths in 2018 [1]. Although Plasmodium falciparum is responsible for most

cases and deaths from malaria, P. vivax is by far the most widespread, accounting for almost

half of non-African malaria cases [2]. More than a third of the world’s population is at risk of

infection, posing a severe threat in Asia, Oceania, and South America, where P. vivax is

responsible for about 80% of malaria cases. In Brazil, malaria remains a public health concern,

and around 153 thousand cases were recorded in 2019, of which 90% caused by P. vivax [3].

Brazil presents two autochthonous profiles of malaria transmission: the most important

corresponds to the Amazon rainforest, where more than 99% of the malaria cases occur; the

second one takes place in non-endemic regions of Atlantic Forest (AF) and represents 0.08%

of all malaria cases in Brazil [4, 5]. Although malaria cases have substantially decreased in

Southeast Brazil after the malaria eradication campaign in 1960 [4], residual P. vivax cases per-

sist in AF areas until today, probably as a zoonotic transmission [6]. The singular epidemiolog-

ical aspect based on the bromeliad-malaria model sustains the autochthonous human cases in

the past few decades in Rio de Janeiro state (RJ) [6, 7]. In RJ, the vectors are Anophelesmosqui-

toes, widely found in AF, belonging to the subgenus Kerteszia, mainly An. K. cruzii, that utilize

bromeliads’ retained water as habitats for their immature stages [8]. The An. cruzii, known for

its acrodendrophilic habit, bites monkeys in the canopy and, eventually, humans at ground

level. This mosquito behavior makes possible zoonotic malaria transmission in Southeastern

Brazil, where monkeys are the parasite reservoir [7–9]. Genetic and morphological similarities

between P. vivax, which infects humans, and P. simium, which infects monkeys in the Atlantic

Forest, is consistent with host switches between them in recent evolutionary times [6, 10–12].

P. vivax responds slower than P. falciparum to control strategies due to relapse episodes

induced by the dormant liver stage—the hypnozoite–and early emergence of gametocytes

soon after the pre-erythrocytic phase, increasing the chances of infecting mosquitoes and

humans [4, 13, 14]. Besides that, the increasing number of P. vivax severe cases [15] and the

spread of drug resistance [16] strengthen the priority to vaccine development against vivax

malaria [17, 18].

Efforts to develop a pre-erythrocytic vaccine have focused on the circumsporozoite protein

(CSP), which is abundantly expressed on the sporozoite surface, and responsible for the motil-

ity and invasion of the sporozoite into hepatocytes [19]. CSP-synthetic peptides induced a

high and specific humoral response similar to those naturally acquired in endemic areas [20–

22]. The structure of CSP is similar among Plasmodium species infecting rodents, primates,

and humans. The CSP sequence comprises a central repeat region (CR) that is specific to each

species and two flanking conserved domains identical among plasmodial species: Region I,

located in the N terminal, participates in the binding on the salivary glands of the mosquito

and Region II, at C-terminal, is a cell-adhesive motif to the hepatocyte [23]. The repetitive CR

biological function of CSP is unknown. The P. vivax CSP has three types of nonapeptides in

tandem that identify the three variants: VK210 (GDRA(A/D)GQPA), VK247 (ANGA(G/D)
(N/D)QPG) and vivax-like (APGANQ(E/G)GGAA) [24]. VK210 is the most prevalent and

widespread worldwide [25], whereas the VK247 is detected in regions where P. vivax and P.

falciparum coexist, including Brazil [26–28].

VK247 seems to be more common in South-eastern Asia [29–32]. The vivax-like variant is

identical to those described for P. simiovale, and it had been detected in Papua New Guinea,

Brazil, Indonesia, and Madagascar [27, 33, 34]. In Brazil, the vivax-like variant had been dis-

closed in several Amazonian states [27] and an extra-Amazonian area in the state of Maranhão

[34].
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Although this molecule may represent a promising vaccine candidate, the pvcsp gene poly-

morphisms may affect the host immune response [34]. Consequently, polymorphism dynam-

ics of circulating genotypes from different geographical areas, even in a low transmission

setting, could be an obstacle to the development of effective vaccines against P. vivax [35–37].

So far, there is no data on pvcsp gene diversity in the Atlantic Forest region. Thus, this study

aimed to investigate the pvcsp polymorphisms in CR (286–825) and C-terminal (826–1,068)

nucleotides, in parasites from the Brazilian Amazon, where the vast majority of cases occur,

and also in RJ Atlantic forest that presents a particular zoonotic transmission malaria profile.

Material and methods

Samples

A total of 239 isolates with P. vivax infection diagnosed by thick blood smear and PCR [38]

were tested in this study. Samples were separated according to the site of infection: Brazilian

Amazon rainforest (BA), Rio de Janeiro Atlantic Forest (AF), and non-Brazilian (NB) samples

(Fig 1). Fifty samples were collected in Tucuruı́ Unit Health (S 3˚ 46’ W 49˚ 40’), a municipal-

ity in the State of Pará (BA region), while the remaining 189 samples (95 from BA, 82 from AF,

and 12 from NB) were collected from patients who have attended a reference center for

malaria diagnosis in the Extra-Amazonian region (Centro de Referência para Tratamento e

Diagnóstico da Malária—CPD-Mal/Fiocruz) (S 22˚ 540 W 43˚ 120), between January 2011 and

March 2018.

The study was approved by the Ethics Research Committee of Instituto Oswaldo Cruz, Fio-

cruz, Brazil (69256317.3.0000.5248). All volunteers signed a written informed consent before 5

mL of venous blood collection. The DNA was extracted from 1 mL blood samples using

Fig 1. Sampling P. vivax collection in Brazil and foreign countries. Rio de Janeiro Atlantic Forest and Brazilian

Amazon (green). Non-Brazilian samples comprised of P.vivax isolates from Africa, Central America, and South

America (red). This map was generated by the Malaria Atlas Project, University of Oxford (https://malariaatlas.org/).

All maps are available under the Creative Commons Attribution 3.0 license (CC BY 3.0; https://creativecommons.org/

licenses/by/3.0).

https://doi.org/10.1371/journal.pone.0241426.g001

PLOS ONE Genetic diversity of the Plasmodium vivax CSP in isolates from different endemicity Brazilian regions

PLOS ONE | https://doi.org/10.1371/journal.pone.0241426 November 9, 2020 3 / 20

https://malariaatlas.org/
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://doi.org/10.1371/journal.pone.0241426.g001
https://doi.org/10.1371/journal.pone.0241426


QIAamp™ DNA Blood Midi Kit (QIAGEN, Hilden, Germany), according to the manufactur-

er’s instructions.

Primers design and pvcsp amplification

The primer set pvcspf 5’ TCCTGTTGGTGGACTTGTTCC 3’ (forward), and pvcspr 5’
GCCAGCACACTTATCCATTGT 3’ (reverse), amplifying a fragment of 1,034 base pairs, was

designed using the CPS of Salvador 1 strain (Sal-1; PVX_119355; PlasmoDB: http://www.

plasmoDB.org) as a reference, employing the software Primer3web (http://bioinfo.ut.ee/

primer3/), and Oligo Analizer™ 3.1 (Integrated DNA Technologies, USA). Amplification speci-

ficity was assessed comparing the pvcsp primer sequences with CSP nucleotide sequences

using the Basic Local Alignment Search Tool (BLAST) algorithm at the National Center for

Biotechnology Information website.

The amplification of the pvcsp gene fragment was performed in a final volume of 20 μL con-

taining: 2 μL (100–200 ng) of DNA, 1 μM primers (forward and reverse), 5x HOT FIREPol™
Blend Master Mix (Solis Biodyne, Hannover, Germany); 1 mM triphosphate deoxynucleotides

(dNTP); 12.5 mM of MgCl2 plus enzyme buffer and dyes to increase sample density during the

agarose gel electrophoresis. The PCR condition comprised an initial hold (95˚C/12 min), fol-

lowed by 35 cycles (95˚C/30 sec, 55˚C/45 sec, and 72˚C/2 min), and a final hold (72˚C/7 min).

Negative and positive controls were included in all reactions. PCR products were visualized on

ethidium bromide-stained 2% agarose gel electrophoresis under UV transilluminator (Digi-

Doc-It, UVP, California, USA).

DNA templates were purified using Wizard™ SV Gel and PCR Clean-Up System (Promega,

Wisconsin, USA), following the manufacturer’s procedure. Subsequently, purified DNA was

sequenced using Big Dye™ Terminator Cycle Sequencing Ready Reaction version 3.1 (Applied

Biosystems, California, USA), with 3.2 μM of forward and reverse PCR primers. DNA

sequences were determined using ABI Prism DNA Analyzer™ 3730 (Applied Biosystems, Cali-

fornia, USA), at the Fiocruz Genomic Platform PDTIS/Fiocruz RPT01A.

The analysis of the genetic polymorphisms included single nucleotide polymorphism

(SNP) and the number of nonapeptide repeats in CR (Insertion and Deletion / InDel).

Nucleotide sequences were aligned using ClustalW multiple sequence aligner in BioEdit

software [19], and the electropherogram set to a 10-cutoff score was analyzed using NovoSNP

software [39]. The Sal-1 strain was the reference sequence. DNA sequences with singleton

mutation or containing overlapped peaks in the same locus were re-sequenced. DNA

sequences were deposited in GenBank™ (NIH genetic sequence database; www.ncbi/nlm/nih.

gov/GenBank) with accession nos. MN417517-MN417735.

Each nonapeptide repeat in CR corresponds to a “motif”. Each nucleotide sequence of the

nonapeptide repeat produced the “allotypes”. The order of repeats at the CR identified the

VK210 “subtypes”.

Genetic diversity, natural selection, and statistical analysis

Genetic diversity of pvcsp gene was estimated using the DnaSP 6.11 software [40]. Within-pop-

ulation diversity was measured based on the number of segregating sites (S), nucleotide diver-

sity (π), and haplotype diversity (Hd). The distribution of nucleotide diversity was investigated

by the sliding window method, in which π is calculated on each window containing a DNA

segment of 100 bp with 25 bp overlap.

The variance of allele frequencies between populations was estimated by the Wright’s fixa-

tion statistics (Fst) considering 1,000 pseudo-replicates bootstrapping [41]. To identify

sequences that do not fit the neutral theory model at equilibrium between mutation and
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genetic drift, Tajima’s D test [42] based on the number of segregating sites (θ) was carried out

with DnaSP 6.11 software [39].

The relationship between individual genotypes at the population level was assessed through

a haplotype network constructed on R with the “haploNet” function of the package “pegas”

under an infinite site model [43]. Arguments "size” of “plot” function were attributed to haplo-

type frequencies, and colors were defined as different regions of occurrence. Each haplotype’s

genetic distance was represented by the number of dots on links and was estimated by pairwise

differences [44]. The statistical analyses and graphs were performed utilizing GraphPad Prism

software version 8.1.2; differences were considered significant with p-value < 0.05.

Linkage disequilibrium (LD) to assess the nonrandom association of alleles located at differ-

ent loci of the pvcsp gene was evaluated for all pairwise combinations by D, D’ and R2 using

the DnaSP v.5 software and chi-square test. The coefficient of determination R2 is the square

of the correlation coefficient between two indicator variables. Monomorphic and non-diallelic

variants were removed from analyzes. R2 for each pair of genetic polymorphisms was plotted

on heatmap graphics with R using the “LDheatmap” package [45]. Genetic recombination was

calculated using the ZZ statistic (Za—Zns), where larger positive values are expected with

increasing recombination [46]. The average of R2 overall pairwise comparisons represents Zns

[46] and those among adjacent polymorphic sites corresponds to the Za [47].

Results

Genetic diversity

PCR products revealed a DNA fragment band ranging from 980 to 1088 bp; unspecific amplifi-

cations were not verified. The pvcsp gene was successfully amplified in 219 isolates (92%): 71

from AF and 136 from BA, comprising the states of Pará (52), Amazonas (46), Rondônia (17),

Acre (11), Amapá (8), and Roraima (2) (S1 Table). Additionally, 12 samples from nine coun-

tries spanning three continents were also tested (S1 Table): five from Africa [Burkina Faso (1),

Ivory Coast (1), and Angola (3)]; one from Central America (Haiti), and six from South Amer-

ica [Colombia (1), French Guyana (1), Peru (1), Suriname (1), and Venezuela (2)].

Multiple sequence alignment of the amplified pvcsp-gene fragment of these 219 isolates dis-

closed 48 polymorphic sites, 26 synonymous and 22 nonsynonymous distributed in 47 codons

(Fig 2 and S2 Table). Most of allelic codons differ by one nucleotide. The R269S/G codon dis-

played two nucleotide substitutions (A805G and A807T) (S1 File) while five codons presented

triallelic positions (A504T/C, T531C/A, T558C/A, A612T/C, and C785A/T). CR had a higher

polymorphic rate (46/96%) than C-terminal. Among the SNPs, seven were detected only in

Brazilian isolates: six synonymous (A504C, T531A, T558A, T615C, A693T, and T750C) in

CR, and one nonsynonymous (G904A) in C-terminal region. All other substitutions were

observed at least in one NB sample. (S2 Table). InDels increasing or decreasing the number of

nonapeptides from 22 to 18 repeats, respectively, were observed in CR. Insertions were more

frequent in AF (38%), and deletions were only detected in BA (4%) (Table 1). The presence of

InDels in CR does not seem to be related to those of SNPs in the non-repetitive region (C-ter-

minal), since only one sample from AF presented insertion and nucleotide polymorphism

simultaneously.

The nucleotide diversity in all Brazilian isolates was π = 0.0135 (± 0.0002). Similar diversity

was observed when AF and BA regions were analyzed separately, with the highest peak of

diversity occurring in CR (nucleotide positions 451 to 550) (π = 0.052) (Fig 3). The great hap-

lotype diversity in Brazilian and non-Brazilian regions was equally distributed: -0.99 for BA

and AF-, and 1.00 for NB (Table 1).
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The positive value in Tajima’s D test was significant only in BA samples (2.694; p<0.05)

(Table 1). These data together with the great nucleotide and haplotype diversities are sugges-

tive of balancing selection.

Variation in the central repeat region of pvcsp gene

All Brazilian and NB pvcsp sequences corresponded to the VK210 type. In CR, the polymor-

phic sites occurred from the sixth to the twentieth nonapeptide repeats: replacement variations

began in the eighth and extended to the last (20th) nonapeptide (Table 2 and Fig 4).

These SNPs spawned 13 nonapeptides allotypes in the CR. Among them, two nonapeptides

—allotypes 1 and 2 –were detected in all isolates (Fig 5). The allotype 1 was the most abun-

dant–GDRADGQPA—varying from seven to 19 repeats, and the type 2 –GDRAAGQPA—from

one to 14 repeats. Among the CR motif, three repeats—15, 19, and 20 –presented the largest

number of nsSNPs generating 4, 7, and 5 nonapeptide types, respectively (Fig 4 and S3 Table).

Fig 2. pvcsp codons in Brazilian isolates from two geographic regions: AF (71) and BA (136). AF: Rio de Janeiro Atlantic Forest; BA: Brazilian Amazon. The first

character represents the amino acid of the Sal-1 reference sequence, followed by the position of this residue (number), and the replacing amino acid observed at the

same position (last character). Graph was constructed using GraphPad Prism software version 8.1.2.

https://doi.org/10.1371/journal.pone.0241426.g002

Table 1. pvcsp genetic diversity and natural selection in Brazilian and non-Brazilian parasite’s samples.

Diversity Natural Selection

Region N SNP In/Del π (SE) nh Hd (SE) Tajima’s D

BA 136 48 22/18 0.0135 (±0.0002) 100 0.99 (±0.002) 2.694 (p<0.05)

AF 71 48 22/0 0.0135 (±0.0005) 61 0.99 (±0.002) 1.784

NB 12 41 0/18 NA 12 1.00 (±0.030) 0.885

BA: Brazilian Amazon; AF: Atlantic Forest; NB: Non-Brazilian samples; N: number of samples; π: nucleotide diversity; Nh: number of haplotypes; Hd: haplotype

diversity; SE: standard error; SNP: Single Nucleotide Polymorphism; In/Del: Insertion/Deletion represented by the number of nonapeptide repeats; NA: not applicable.

https://doi.org/10.1371/journal.pone.0241426.t001
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Length polymorphism (InDels) at CR presented nonapeptide tandem repeats ranging from 18

to 22; the Sal-1 reference strain had 20 repeats (Table 3). In Brazil, 43 samples (21%) presented

InDels: 37 (86%) with insertions and 6 (14%) with deletions. Insertions were observed in 27 sam-

ples from AF (38%) and 10 from BA (7%), most of them of Amazonas state (8/ 80%) (S1 Table).

Of these samples, 8 (22%) had 21 repeats, and 29 (78%) had 22 repeats, corresponding to an

increase of one (type 3: GDRAAGQAA or type 10: GNGAGGQAA) or two (type 2: GDRAAGQPA
and; type 10: GNGAGGQAA) nonapeptide repeats. Insertions were not detected in NB.

Deletions were observed in Brazil only in 6 samples (3%) from BA: one sample had 19

repeats (nucleotides 799–825), and 5 samples had 18 repeats (nucleotides 772–825). In NB,

deletions were detected in two samples (17%), one from Suriname and other Venezuela, both

with 18 repeats (Table 3, S1 and S3 Tables).

Concerning VK210, 24 subtypes were identified (Fig 6). Subtype VK210-1 was the most

common, accounting for 53% (116) of the isolates, and the frequencies of the remaining sub-

types varied from 5% (11) to 0.5% (one) (Fig 6). Interestingly, 18 VK210 subtypes were found

exclusively in Brazilian regions: five (VK210-4-5-6-7-8) in AF and BA, seven only in BA

(VK210-9-11-13-16-17-21-24), and six only in AF (VK210-10-15-18-19-20-23). However, the

lack of detection of VK210 subtypes in all studied locations may be related to different sam-

pling number among them.

Distribution of pvcsp haplotypes and phylogenetic analysis

Considering the arrangement of nonapeptide allotypes of VK210 subtypes and CR nonapep-

tide repeat length polymorphisms altogether, 168 haplotypes were identified (HCS01 –

HCS168). Among them, 100 were detected in BA, 61 in AF, and 12 in NB. Only one isolate

(BA/Amapá state) was identical to the reference Sal-1 strain (Fig 7 and S3 Table).

Four Brazilian haplotypes were also found in NB samples: HCS03 (Amazonas, Pará, Rondô-

nia and Angola); HCS11 (AF and Colombia), HCS15 (Amapá and Peru), and HCS19 (Pará

Fig 3. Nucleotide diversity across the pvcsp gene in Brazilian isolates. Sliding window representation (window length

of 100 bp with a step size of 25 bp) of 136 isolates from Brazilian Amazon and 71 from Atlantic Forest. Sal-1 strain: the

pvcsp reference sequence; nonapeptide types: 1 (blue), 2 (yellow) and 3 (purple). The π was calculated using the number

of SNPs.

https://doi.org/10.1371/journal.pone.0241426.g003
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and Suriname); only one Brazilian haplotype—HCS01 –was detected in AF and BA. All other

163 haplotypes were segregated according to BA, AF, and NB localities (Fig 7 and S3 Table).

Ninety-six out of 100 BA haplotypes were exclusively detected in this area, and among the 61

AF haplotypes, 59 were exclusive of this region. In NB samples eight out of 12 haplotypes were

not detected in Brazilian samples: Angola (HCS51 and HCS80), Ivory Coast (HCS22), Burkina

Table 2. Synonymous and nonsynonymous substitutions in the nonapeptide tandem repeat of central region gen-

erating different allotypes.

Repeat Nonapeptide sequences N of

SNPs

Nucleotide sequences

6 GDRADGQPA 1 GGA GAT/C AGA GCA GAT GGA CAG CCA GCA

7 GDRADGQPA 1 GGA GAC/T AGA GCA GAT GGA CAG CCA GCA

8 GDRA(D/A)GQPA 3 GGA/T GAC/T AGA GCA G(A/C)T GGA CAG CCA
GCA

9 GDRA(D/A)GQPA 4 GGA/T/C GAC/T AGA GCA G(A/C)T GGA CAG/A
CCA GCA

10 GDRA(A/D)GQPA 3 GGT/C/A GAT AGA GCA G(C/A)T GGA CAA/G CCA
GCA

11 GDRA(A/D)GQPA 3 GGT/C/A GAT AGA GCA G(C/A)T GGA CAG/A CCA
GCA

12 GDRA(D/A)GQPA 2 GGC/A GAT AGA GCA G(A/C)T GGA CAG CCA GCA

13 GDRA(A/D)GQPA 3 GGA/T/C GAT/C AGA GCA G(C/A)T GGA CAG CCA
GCA

14 GDRA(D/A)GQPA 4 GGC/A GAT AGA GCA G(A/C)T GGA CAG/A CCA
GCA

15 GDRA(A/D)(G/V)QPA 5 GGA/T GAT/C AGA GCA G(C/A)T G(G/T)A CAA/G
CAA GCA

16 GDRA(D/A)GQPA 3 GGA/T GAT AGA GCA G(A/C)T GGA CAA/G CCA
GCA

17 GDRA(A/D)GQPA 2 GGA/T GAT AGA GCA G(C/A)T GGA CAG CCA GCA

18 GDRA(A/D)GQPA 4 GGA GAT/C AGA GCA G(C/A)T GGA/T CAG/A CCA
GCA

19 GD(R/A)A(A/D/V)GQ(A/P)
A

3 GGA GAT AG(A/T) GCA G(C/A/T)T GGA CAG (G/
C)CA GCA

20 G(D/N)(R/G/S)A(A/G)GQ
(A/P)A

5 GGA (G/A)AT (A/G)G(A/T) GCA G(C/G)T GGA
CAG (G/C)CA GCA

Amino acids and nucleotides underlined represent synonymous substitution; amino acids and nucleotides in bold

are nonsynonymous substitution.

https://doi.org/10.1371/journal.pone.0241426.t002

Fig 4. Schematic representation of the nonapeptides in central region of the pvcsp gene. Each color represents one

of the 13 allotypes, according to the nonapeptide motifs. Motifs 1 to 5 are identical to Sal-1 reference strain; motifs 6

and 7 synonymous SNPs; motifs 21 and 22 insertions and motifs 19 and 20 deletions.

https://doi.org/10.1371/journal.pone.0241426.g004
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Faso (HCS86), Haiti (HCS62), French Guyana (HCS101), and Venezuela (HCS67 and

HCS110).

The haplotype network tree showed that BA samples were closely related to Sal-1 reference

sequence (Fig 7). Low genetic differentiation, consistent with a weak population subdivision,

was observed between AF and BA populations (Fst = 0.208/ p<0.001).

Linkage disequilibrium

Linkage disequilibrium was assessed for all possible pairwise combinations. The results consid-

ering all samples, showed an overall low occurrence of LD. Higher signals (R2� 0.75) were

observed between G802A, A805G, and A807T, suggesting a small LD block containing these

three polymorphisms. High LD levels were also found between A807T/C812G and between

insertions 826::27/854::27 (Fig 8A). When split by regions, results from BA showed high levels

of LD only between G802A, A805G, and A807T, while AF samples displayed a large LD block

including G802A, A805G, A807T, and C812G. Perfect LD (R2 = 1) was found for G802A and

A805G, and almost perfect for 826::27/854::27 insertions in AF samples (Fig 8B and 8C). The

ZnS, Za, and ZZ had low values across the pvcsp sequence, suggesting that meiotic recombina-

tion has not played a crucial role in shuffling nucleotide variation among DNA sequences

(Table 4).

Polymorphism in B- and T- cell epitopes

When analyzed four B-cell epitopes [19, 20], no SNPs were found in N- and C- terminal

regions coding peptides P8 (GDAKKKKDGKKAEPKNPREN), P24 (CSVTCGVGVRVRR
RVNAANK) and P25 (VRRRVNAANKKPEDLTLNDL), but P11 (GDRADGQPA; allotype 1), in

Fig 5. Allotypes distribution of P. vivax in Brazilian’s and non-Brazilian’s samples.

https://doi.org/10.1371/journal.pone.0241426.g005

Table 3. Number of InDel polymorphisms in pvcsp gene central region, compared to the Sal-1 reference strain’s pvcsp gene.

Polymorphism Number of Repeats BA (136) AF (71) NB (12) Total

Insertion 22 3 26 0 29

21 7 1 0 8

Deletion 19 1 0 0 1

18 5 0 2 7

Sal-1 Type 20 120 44 10 174

BA: Brazilian Amazon; AF: Atlantic Forest; NB: Non-Brazilian; Sal-1: reference strain

https://doi.org/10.1371/journal.pone.0241426.t003
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Fig 6. Distribution of VK210 subtypes according to regions. BA: Brazilian Amazon; AF: Atlantic Forest, NB: Non

Brazilian; (�) Salvador 1 strain VK210 type; nonapeptide allotypes: 1 (GDRADGQPA); 2 (GDRAAGQPA); 3

(GDRAAGQAA); 4 (GDRADVQPA); 5 (GDRAAVQPA); 6 (GDRAVGQPA); 7 (GDSAAGQPA); 8 (GDSAVGQPA); 9

(GDSADGQPA); 10 (GNGAGGQAA); 11 (GDSAGGQAA); 12 (GNRAAGQPA); 13 (GNSAGGQPA).

https://doi.org/10.1371/journal.pone.0241426.g006

Fig 7. Haplotype network of pvcsp gene. Node sizes are proportional to haplotype frequency, and branch lengths are indicative of the number of single nucleotide

differences between sequences. Node colors indicate sampling geographic origin.

https://doi.org/10.1371/journal.pone.0241426.g007
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CR, presented a nsSNP in five of the nonapeptide repeats (motifs 8, 9, 12, 14 and 16) generat-

ing, therefore, allotype 2 (Table 5).

In relation to the three TCD8+ cytotoxic cell epitopes (P1, P3 and P5) [48] located in the C-

terminal region, only P1 presented a nsSNP [YL(D/N)KVRATV] in 6% (13) of the Brazilian

samples: 7% (9) from BA and 6% (4) from AF (Table 5).

Considering now the three TCD4+ helper cell epitopes (P6, P15 and P25) [19, 49], only P15

(GDRAAGQAA/allotype 3), located in CR, was polymorphic. Of the 219 samples, only 39 (18%)

presented the P15 epitope sequence conserved but the number of repeats varied from 1 to 3:

six samples, three from BA and three from AF, had two repeats, as Sal-1 reference strain; two

samples from BA had three repeats and; 31 samples, 16 from BA, 12 from AF and 3 from NB

had one repeat. In relation to the polymorphic sequences at CR, the P15 epitope presented in

motif 19 three nsSNPs [GD(R/A)A(A/D/V)GQ(A/P)A] in 201 (92%) samples. The motif

20 disclosure four nsSNPs [G(D/N)(R/G/S)A(A/G)GQ(A/P)A] in 177 (81%) samples

(Table 5).

In the Th2R epitope [PNEKSVKEYL(D/N)KVRATVG] [33], located in the C-terminal

region, a nsSNP was identified in 13 (6%) of Brazilian samples: 4 (6%) from AF and 9 (7%)

from BA. No polymorphisms were detected in Th3R epitope.

Discussion

pvcsp is a single copy gene located in chromosome 8 of P. vivax. It is highly expressed on spo-

rozoites’ surface, playing an essential role in adhesion and invasion of hepatocytes [50]. Due to

its surface localization, along with the antibody protective response, this protein has been con-

sidered as a malaria pre-erythrocytic phase vaccine candidate [51]. The knowledge regarding

the nature and extent of pvcsp genetic diversity in Brazil is limited since the majority of pvcsp
studies had been focused on the immunological response triggered by CSP epitopes [22, 52] or

the characterization of pvcsp variants associated with the response to treatment, or even in the

detection of such variants in Anophelesmosquitoes [26, 34]. Now, we report for the first time

the genetic diversity, linkage disequilibrium, and natural selection of pvcsp gene in two differ-

ent epidemiological sites, the Brazilian Amazon rainforest (BA) and the Rio de Janeiro Atlantic

Forest (AF).

Only pvcsp’s gene variant VK210 was detected in both BA and AF; consequently, no associ-

ation with the presence of VK210 and the geographic origin of the parasites could be made.

Although other two variants—VK247 and vivax-like—have already been detected in P. vivax
parasites from the Brazilian Amazon [22, 26, 28, 53] and pre-Amazon [34], the cosmopolitan

variant VK210 also predominate in French Guyana [54], Nicaragua [55], Pakistan [30], Sri

Lanka [56], Myanmar [57], Cambodia [29], Iran [58], Vanuatu Island [59], and China [25].

It has been claimed that the presence and extension of pvcsp variants differ according to

transmission intensity [60]. However, this study and those performed in countries with differ-

ent transmission intensities, where only VK210 type was detected, as Sudan, Azerbaijan, Sri

Lanka [61], Honduras [62], and China [63], do not support this proposition. Additionally, the

fixation of this variant in Brazil, and perhaps around the world, seems not to be associated

with mosquito vectors infection, since malaria transmission in BA occurs mainly by An. Dar-
lingi and An. albitarsis, while in AF malaria transmission occurs almost exclusively by An.

(Kerteszia) cruzii vector [7]. Altogether, these findings indicate that VK210 may be the best-

adapted variant globally, possibly, due to the more successful evasion of such P. vivax parasite

variant from the immune system.

Sequence analyses revealed high CR diversity, contrasting to none or low diversity in the N-

and C- terminals (5’ and 3’ ends), respectively. Indeed, the pre-central (Region I) and the post-
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central (Region II) repeat sequences that contain both B- and T-cell epitopes [64] remained

conserved in this study. The motif known as Region II was also found conserved in previous

studies on the Brazilian Amazon [65], Peru [66], Iran, Sri Lanka, India [67], Cambodia, and

Colombia [29]. This constrained variation in terminal regions reinforces such protein struc-

tures importance for its interaction with Anophelesmosquito salivary gland and human hepa-

tocytes during the invasion processes [52]. Conversely, CR diversity could reflect the host’s

immune system’s evasion mechanism, as already observed for other surface antigens as pvdbp
gene [12, 68].

A large number of VK210’s substitutions and length polymorphisms have been found

worldwide [26, 69]. However, its nonapeptide repeat structure remained conserved, probably

by intragenic shuffling, as previously suggested for P. falciparum parasites [70]. In this study,

all P. vivax sequences contain one or more copies of two nonapeptide motifs displaying three

synonymous substitutions (allotypes 1 and 2). The persistence of these two common allotypes

suggests its maintenance by selective pressure. These silent polymorphisms could protect the

Fig 8. Linkage disequilibrium across the pvcsp gene of parasite populations from Brazilian Amazon and Rio de Janeiro Atlantic Forest. A: Parasites from Brazilian

Amazon and Rio de Janeiro Atlantic Forest; B: Brazilian Amazon; C: Rio de Janeiro Atlantic Forest; 771Δ54 deletion of 2 repeats; 798Δ27 deletion of 1 repeat; 826::27

insertion of 1 repeat; 854::27 insertion of 2 repeats.

https://doi.org/10.1371/journal.pone.0241426.g008

Table 4. Linkage disequilibrium test across the pvcsp sequence by ZnS, Za, and ZZ statistics.

AF BA Total

Za 0.125 0.072 0.060

Zns 0.047 0.054 0.038

ZZ 0.078 0.018 0.022

https://doi.org/10.1371/journal.pone.0241426.t004
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parasites against stochastic reductions in variability, such as those resulting from bottlenecks.

On the other hand, the allotype 3, considered a T-helper cell epitope, revealed an “excess” of

nonsynonymous substitutions in the great majority of the samples. The low Sal-1 allotype 3

frequency has already been reported in China [63], Mexico [69], Sudan [61], and also in Brazil

[27, 28, 71]. Thus, it is reasonable to speculate that such nonsynonymous polymorphisms are

not essential for P. vivax parasites’ survival, but they might help to evade the host immune

response.

The allotype 10 (GNGAGGQAA), also present in Belem 1 strain (GenBank: EU401923), a

Brazilian reference strain, was detected in high frequency (71%) mostly in BA isolates. Other

investigations in Korea [72], Cambodia [29], Vanuatu [59], and Iran [58] also revealed the

presence of this allotype, demonstrating its global distribution. In contrast, among the other

nine low-frequency allotypes, only one—allotype 12 (GNRAAGQPA)–was already reported in

Sri Lanka [56] and Cambodia [29]. The low prevalence of these novel VK210 subtypes might

suggest a relatively recent introduction and/or expansion of these genotypes into Brazilian ter-

ritory, as previously observed in Iran’s malaria transmission areas [58]. Inversely, allotype 13

(GNSAGGQPA), only detected in French Guyana, suggested that this allotype is not circulating

in Brazil. Unfortunately, the number of samples from Amapá state, which borders French Gui-

ana, was too small to confirm the lack of allotype 13 in Brazil.

Concerning InDel polymorphisms, the CR also varied in the number of tandem nonapep-

tide repeats (18 to 22), which is a significant factor leading to global isolates’ genetic pvcsp
diversity. Insertions, resulting in 21 nonapeptide repeats, were mostly detected in BA, while 22

repeats predominated in AF isolates. This number of insertions was similar to those observed

in China [63], Cambodia [29], and even in Brazilian Amazon [28]. Interestingly, the deletion

of one or two motifs, reducing the number of nonapeptide in tandem to 18 and 19, respec-

tively, was unique detected in BA and bordering countries (Suriname and Venezuela).

Remarkably, samples with deletion showed the most conserved DNA sequence, and,

inversely, those with insertion were more polymorphic. Therefore, most allotypes had been

arising in the final CR portion (motifs 19 and 20), suggesting more significant selective pres-

sure on these motifs, most likely mediated by the host immune system.

As the sexual recombination during meiosis in the mosquito, CR diversity could be raised

by intrahelical strand-slippage events during mitotic DNA replication [28, 70], including

inserting or deleting of a repeated motif without changing non-repetitive flanking sequences.

However, it is not trivial to discriminate against the influence of these two possibilities unless

in low endemic areas, where meiotic recombination rates are far more limited. Thus, the find-

ing of P. vivax populations with great genomic diversity in several low endemic regions across

the world [29, 36, 73], including the AF data here reported for the first time in Brazil, may rein-

force the role of mitotic recombination in accelerating CR evolution. However, although

human malaria has a very low endemicity in the AF region, parasites are continuously

Table 5. Polymorphisms in B- and T-cell epitope regions of pvcsp.

Peptide Residues Position Epitope n of SNPs n of isolates

Th2R PNEKSVKEYL(D/N)KVRATVG 292–309 T-helper 1 NS 13

P1 YL(D/N)KVRATV 300–308 T-cytotoxic 1 NS 13

P11 GDRA(D/A)GQPA 96–104 B 4 (3S / 1NS) 219

P15 (motif 19) GD(R/A)A(A/D/V)GQ(A/P)A 258–266 T-helper 3 NS 201

P15 (motif 20) G(D/N)(R/G/S)A(A/G)GQ(A/P) 267–275 T-helper 4 NS 177

Epitopes previously identified [19, 20, 33, 48, 49]; NS: nonsynonymous; S: synonymous.

https://doi.org/10.1371/journal.pone.0241426.t005
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circulating in monkeys/mosquitoes and facing the immune response of this animal host over

and over and, consequently, meiotic recombination could also play a role in genetic diversity.

The genetic diversity in South America has been attributed to different parasite lineages

originating from geographically diverse regions [12, 36, 73], showing that the demographic

history of P. vivax could also affect the pvcsp population structure. Despite the considerable

distance between the Brazilian Amazon and Atlantic Forest, the low mobility of infected peo-

ple between these areas, and the smaller parasite population’s size in AF that generally could

reduce gene flow between BA and AF, identical polymorphisms were found in parasite popula-

tions of these regions.

The low genetic differentiation between AF and BA populations was also verified with a

haplotype network, in which sequences of both regions are interlinked and have similar dis-

tances between their haplotypes. AF isolates were formed more clusters than the BA ones.

Thus, the isolates of the same geographic region may share similar evolutionary histories. The

extensive haplotype distance in BA parasite populations could be a result of i) BA geographic

area is much larger than the AF; ii) BA area concentrates approximately 99% of Brazilian P.

vivax cases, increasing the chances of recombination; and iii) BA parasites showed more varia-

tion in SNP numbers than AF.

Although AF and BA have distinct epidemiological profiles, including different vector spe-

cies, transmission rates, and hosts with different immune pressure, migration rates, and

regional-temporal fluctuations, we did not detect any fixed nucleotide differences in isolates

from these geographic areas. Remarkably, AF autochthonous cases, indicative of zoonotic

transmission to humans [6, 10], where parasite populations suffered a bottleneck effect, fol-

lowed by selective expansion to adapt to non-human host, and different species of anopheline,

no systematic genomic changes leading to any consistent signature was recorded.

Contrary to the expectations, all sampled P. vivax populations harbored high genetic diver-

sity and low level of genetic differentiation between AF and BA parasite populations. These

findings were already observed in parasite populations from Colombian geographically dis-

tinct regions [74].

The low values of linkage disequilibrium across the pvcsp sequence suggest that recombina-

tion has not played a crucial role in shuffling the nucleotide variations. Alternatively, the cen-

tral region of CSP may contain a mutational “hot spot” that could mask the presence of

recombination in the pvcsp [75].

On the other hand, insertion positions of a small block at the end of the central region with

high LD in AF samples could suggest a recent bottleneck and/or clonal expansions, as expected

in places with a reduction in transmission rates.

To better understand if selection acts upon the pvcsp gene, Tajima’s D neutrality test was

performed, and the results suggest that diversity was mediated by balancing selection, probably

by the presence of multiple B- and T- cell immunodominant epitopes [19, 20, 48, 49].

It is well known that a single amino acid change or clustered replacements in B- or T- cell

epitopes may potentially reduce the antibody response and the peptide-binding pocket of

HLA, respectively. Here, we investigated eleven epitopes previously described to trigger the

host immune response [20, 33, 48, 49]. Nine of them were in the N- and C- terminal regions,

and two in the CR one. The Th2R and Th3R T-cell P. vivax peptides are located in the C-ter-

minal region and they are orthologous to those of P. falciparum CSP [76]. The Th2R peptide

sequence comprised the P1 T-cytotoxic epitope; polymorphisms in these peptides were present

in a small number of Brazilian isolates (13/6%) from AF (4/6%) and BA (9/7%). The Th3R

remained conserved in the parasite populations here studied, similar to those of two sub-spe-

cies of P. ovale [77], but different to P.malariae [78], P. knowlesi [79] and P. falciparum [76]

parasites, in which both Th2R and Th3R epitopes were polymorphic.
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To summarize, this study provides information on the genetic polymorphisms of pvcsp-

gene in isolates from different Brazilian endemic areas, showing high CR diversity and low

geographic pvcsp population’s structure, probably modulated by natural selection and host

immunity. Although the uneven distribution of allelic genes may jeopardize vaccines’ deploy-

ment directed to a specific variable locus, a unique vaccine formulation could protect human

populations in all Brazilian regions.
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Data curation: Natália Ketrin Almeida-de-Oliveira, Anielle de Pina-Costa, Patrı́cia Brasil,
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