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Abstract

Background

Tests are scarce resources, especially in low and middle-income countries, and the optimi-

zation of testing programs during a pandemic is critical for the effectiveness of the disease

control. Hence, we aim to use the combination of symptoms to build a predictive model as a

screening tool to identify people and areas with a higher risk of SARS-CoV-2 infection to be

prioritized for testing.

Materials and methods

We performed a retrospective analysis of individuals registered in "Dados do Bem," a Brazil-

ian app-based symptom tracker. We applied machine learning techniques and provided a

SARS-CoV-2 infection risk map of Rio de Janeiro city.

Results

From April 28 to July 16, 2020, 337,435 individuals registered their symptoms through the

app. Of these, 49,721 participants were tested for SARS-CoV-2 infection, being 5,888

(11.8%) positive. Among self-reported symptoms, loss of smell (OR[95%CI]: 4.6 [4.4–4.9]),

fever (2.6 [2.5–2.8]), and shortness of breath (2.1 [1.6–2.7]) were independently associated

with SARS-CoV-2 infection. Our final model obtained a competitive performance, with only

7% of false-negative users predicted as negatives (NPV = 0.93). The model was incorpo-

rated by the "Dados do Bem" app aiming to prioritize users for testing. We developed an

external validation in the city of Rio de Janeiro. We found that the proportion of positive

results increased significantly from 14.9% (before using our model) to 18.1% (after the

model).
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Conclusions

Our results showed that the combination of symptoms might predict SARS-Cov-2 infection

and, therefore, can be used as a tool by decision-makers to refine testing and disease con-

trol strategies.

Introduction

The current COVID-19 pandemic caused by the SARS-CoV-2 requires extensive testing pro-

grams to understand the transmission, diagnose, and isolate the positive cases. Given the high

mortality and absence of a specific treatment or a reliable vaccine, large testing programs are

an essential part of epidemic control. The frequency of testing, however, is very heterogeneous

among countries. Brazil currently has the second-highest number of COVID-19 cases, even

with lower test rates (120,548 tests per one million inhabitants, as of December 02, 2020) [1],

which makes screening systems essential to prioritize testing. In the past, some successful

monitoring systems have already been introduced, such as the Influenzanet consortium, which

enables monitoring the community in real-time and estimating risk factors for common dis-

eases such as influenza [2].

Some screening tools also have already been introduced, aiming to predict the epidemic

trend of COVID-19. Zhu et al. [3] proposed an online learning framework for public health

emergency surveillance based on the heart rate and sleep data collected from wearable devices.

The results showed that the predictive model could alert the infection outbreak in advance.

Quer et al. [4] developed a smartphone app that collects self-reported symptoms, personal sen-

sor data, and diagnostic testing results from individuals in the United States. They assessed the

difference between COVID-19 positive versus negative cases in symptomatic individuals.

Mehl et al. [5] analyzed the added value of a mobile phone app-based symptom assessment

tool, known as Ada, that collects individual information and then guides them to the most

appropriate care. Menni et al. [6] used information from an app-based symptom tracker from

UK and USA. They concluded that the combination of symptoms could be used as a screening

tool to identify people with a possible positive result for COVID-19. However, little is known

about symptoms association and model potential usage as a screening tool in low- and

medium-income countries (LMIC) such as Brazil.

Thus, our study aims to use the combination of symptoms and machine learning tech-

niques to develop a predictive model that identifies people and areas with a higher risk of

SARS-CoV-2 infection. We used data from an app-based symptom tracker known as "Dados
do Bem" [7], which is an initiative that became available for the city of Rio de Janeiro, one of

the centers of the outbreak in the country. With our model, we could estimate the proportion

of infected participants and then categorize risk levels of infection prevalence within the geo-

graphical area of Rio de Janeiro. The results revealed that incorporating our model in the app

increased the test results’ positivity rate and reached a higher seroprevalence than the city-level

prevalence reported by Hallal et al. [8], thus showing an improvement of the testing strategy.

Materials and methods

Study design and data source

This study is a retrospective analysis of prospectively collected data from individuals registered

in the "Dados do Bem" app. This large Brazilian initiative combines an app-based symptom
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Universidade Católica do Rio de Janeiro (PUC-Rio).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0248920


tracker and a public testing initiative for the users. The app interface and the survey questions

are provided in S1 Fig.

The free smartphone application was launched in Brazil on April 28, 2020. Through a short

survey, it collects geo-referenced data from subscribed users, their demographic and occupa-

tional characteristics, self-reported symptoms, as well as whether the participant is a health

professional and was in contact with a SARS-CoV-2 infected person. The app then combines

the surveyed information and selects individuals for testing through selection criteria (see S1

File). Those indicated by a previously positively tested participant have the highest priority to

be tested, followed by health professionals. The test used at the study time was the antibody

WondfoCOVID-19 IgM/IgG test (sensitivity = 86.43%, specificity = 99.57%) [9], available only

for Rio de Janeiro.

Study population

We included participants registered through the smartphone app from its launch date until

July 16, 2020. To train the model, we selected participants who responded to the questionnaire,

made the antibody WondfoCOVID-19 IgM/IgG test in a location designated by the app within

the city of Rio de Janeiro, and obtained a result (positive or negative). For identifying risk

areas, we also included the participants that had not been tested, applying the model to esti-

mate their test results.

Outcomes and variables

Our primary outcome was the test result (positive or negative) at the user level. Our goal was

to identify clinical manifestations and individual factors associated with positive testing.

Hence, we collected and assessed participant demographics (age, gender), nine symptoms

(loss of smell or anosmia, fever, myalgia, cough, nausea, shortness of breath, diarrhea, coryza,

and sore throat), and whether the user lives together with someone with a confirmed SARS--

CoV-2 infection.

Statistical analysis

We described the characteristics and symptoms of positive and negative tested participants,

displaying the mean and standard deviation for continuous variables and the frequency for

categorical variables. We then analyzed the individual association between symptoms and the

test result using a logistic regression model adjusted to age and gender. That is, we fitted 11

(one for each feature) logistic regression models, where the response variable was the test

result, and the explanatory variables were age, gender, and each of the features. The intention

was to remove the confounding effects of age and gender in analyzing the symptoms, obtain-

ing an odds ratio with less interference. We provided the corresponding Odds Ratio (OR) with

a 95% confidence interval.

We aim to identify a combination of symptoms to build a prediction model for determining

a participant with SARS-CoV-2 infection. For that, we compared five different machine learn-

ing techniques: Logistic Regression (LR) stepwise, Naïve Bayes (NB), Random Forest (RF),

Decision Tree using C5.0 (DT), and eXtreme gradient Boosting. To address the imbalanced

response variable (only 11.8% are positive tests) during model training, we also evaluated four

different data balancing techniques: Downsampling, Upsampling, Synthetic Minority Over-

sampling Technique (SMOTE) [10], and Random Over-Sampling Examples (ROSE) [11]. Def-

initions about these methods and balancing approaches can be seen in S2 File.

We divided the data into a training set (80%) and a testing set (20%), keeping the same pro-

portion of majority and minority classes among subsamples. The training set creates predictive
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models, and the remaining validate the proposed model. During model training, for each com-

bination of machine learning techniques and balancing strategies, we applied grid-search

hyperparameter optimization with 5-fold cross-validation, using the Area Under the ROC

Curve (AUC) as the target metric. It is independent of a specific cut-off value [12], which

allows for a better evaluation of the model behavior during the training process.

After obtaining the best hyperparameters for each model, we applied Matthews Correlation

Coefficient (MCC) to evaluate the results in the test sets since it is a balanced measure among

True Positives, True Negatives, False Positives, and False Negatives, which are based on a preset

score threshold [13]. The chosen cut-off point for predicted values was 50%, i.e., participants with

a probability higher than 50% were classified as "positive," otherwise "negative" [14]. In addition

to the MCC value, we considered the model intelligibility for choosing our final model.

Finally, we evaluated the distribution of SARS-CoV-2 infection risks over the geographic

area of Rio de Janeiro modeled as a grid map (each grid is a 400m x 400m square area). Along

with the participants with confirmed test results, we applied the chosen model to the sample of

participants that were still untested in the period of this study to obtain their estimated test

result. We then calculated the proportion of estimated SARS-CoV-2 infections for each grid

according to Eq 1.

Grid risk ¼
Number of positive users in the grid according to the model

all grid users
ð1Þ

To avoid misinterpreting proportions in grids with scarce data, we considered grids with at

least 10 participants (~94% of all observations). Then, we evaluated the distribution of the grid

risks among all grids and classified them into five risk groups using the mean ± 0.5 and 1.5

standard deviations (SD) as thresholds: "very low" (< mean-1.5�SD), "low" (from mean-1.5�SD

to mean-0.5�SD), "medium" (from mean-0.5�SD to mean+0.5�SD), "high" (from mean+0.5�SD

to mean+1.5�SD), and "very high risk" (>mean+1.5�SD). Using this classification, we built a

risk map for Rio de Janeiro.

All analyses were performed in R 3.6.3, using ’tidyverse’ package for data wrangling and

plots; and ’caret’ for the prediction models, with ’glm’ for Logistic Regression, ’ranger’ for Ran-

dom Forest, ’C50’ for Decision Trees, ’xgbTree’ for the eXtreme gradient Boosting, and ’naive-
bayes’ for the Naïve Bayes model. The code used for estimating the models is available in a

Github repository (https://github.com/noispuc/Dantas_etal_PLOSOne_App-based-

symptom).

External validation design

Our final model was incorporated into the app on July 17, 2020. To verify the gains using this

proposed model, we performed a validation using Rio de Janeiro’s data. We compared the pro-

portion of positive results before the model was implemented in the app (using data from June

15, 2020, to July 16, 2020) and after its implementation (using data from August 01, 2020, to

September 01, 2020). The two-week interval between incorporating the model into the app

and the validation was necessary as there were still tests scheduled according to the previous

prioritization policy.

We used the unpaired two-samples Wilcoxon test to investigate the hypothesis that the dif-

ference between the proportion of positive results before and after the model implementation

is statistically significant, with a confidence level of 0.95. We evaluated if the mean of the pro-

portions of positive results before implementing the model can be considered less than the

average proportion of positive results after its implementation. Since this compares non-nor-

mally distributed data, the Wilcoxon test is the most appropriate hypothesis test.
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Ethics statement

The study is retrospective. All data acquired were anonymized, and the "Dados do Bem" app

follows the Brazilian General Data Protection Regulation (Lei Geral de Proteção de Dados—
LGPD). All users provided informed consent of de-identified data-use to non-commercial

research upon registration in the app. All answers were optional.

Results

Characteristics and self-reported symptoms associated with SARS-CoV-2

infection

From April 28, 2020, to July 16, 2020, 337,435 individuals registered their symptoms through

the smartphone app. Of these, 49,721 users were then tested, from which 5,888 (11.8%)

received a positive result for SARS-CoV-2 infection.

According to the self-reported information (Table 1), most participants were women

(61.9%), health professionals (55.8%), with a median age of 41 years old (IQR: 33–51). Among

those who tested positive for SARS-CoV-2 infection, cough was the most frequent symptom

(59.6%), followed by myalgia (57.4%), coryza (56.3%), loss of smell/anosmia (52.9%), and fever

(44.8%). When evaluating the association between each symptom and the test result, adjusted

for age and gender (Fig 1), we found a similar result: loss of smell (odds ratio [OR]: 4.6; 95%

CI: 4.4–4.9), fever (OR: 2.6; 95% CI: 2.5–2.8), and shortness of breath (OR: 2.1; 95% CI: 1.6–

2.7) were associated with a positive result for SARS-CoV-2 infection.

Combination of symptoms and predictive modeling

To develop a model to predict positive participants based on the available dataset, we ran 25

different combinations of machine learning techniques and sampling strategies. We compara-

tively evaluated the performance of the models on the test set according to the metrics of

Table 1. Characteristics and symptoms of the study population tested for SARS-CoV-2 infection.

Total Positive test Negative test

Participants, n (%) 49,721 5,888 (11.8) 43,833 (88.2)

Characteristics

Female, n (%) 30,769 (61.9) 3,641 (61.8) 27,128 (61.9)

Age (years), median [IQR] 41 [33–51] 43 [34–53] 40 [33–51]

Cohabitation—lives with a SARS-CoV-2 infected person, n (%) 20,944 (42.1) 3,398 (57.7) 17,546 (40.0)

Health professional, n (%) 27,737 (55.8) 3,099 (52.6) 24,638 (56.2)

Self-reported symptoms, n (%)

Coryza 25,973 (52.2) 3,315 (56.3) 22,658 (51.7)

Cough 23,430 (47.1) 3,507 (59.6) 19,923 (45.5)

Myalgia 20,858 (42.0) 3,380 (57.4) 17,478 (39.9)

Sore throat 20,794 (41.8) 2,459 (41.8) 18,335 (41.8)

Fever 13,042 (26.2) 2,640 (44.8) 10,402 (23.7)

Diarrhea 12,573 (25.3) 1,778 (30.2) 10,795 (24.6)

Loss of smell 11,835 (23.8) 3,112 (52.9) 8,723 (19.9)

Nausea 6,461 (13.0) 1,025 (17.4) 5,436 (12.4)

Shortness of breath 354 (0.7) 74 (1.3) 280 (0.6)

No symptoms above 10,865 (21.9) 844 (14.3) 10,021 (22.9)

Results are displayed in median (interquartile range, IQR) for continuous variables and percentage values for categorical variables.

https://doi.org/10.1371/journal.pone.0248920.t001
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Sensitivity, Specificity, Predictive Positive Value (PPV), Negative Predictive Value (NPV),

F1-Score, and MCC. The logistic regression, gradient boosting, and random forest techniques

presented the best median MCCs, followed by the decision tree and naïve Bayes, as shown in

Fig 2. The results of all combinations and metrics can be seen in the S1 Table.

According to Fig 2, the performance of the balancing strategies varied among the methods.

SMOTE had the worst results in the LR, RF, and NB models, while downsampling, ROSE, and

upsampling performed best in these models. On the other hand, SMOTE was the best in the deci-

sion tree model, while the upsampling approach obtained the worst results for this technique.

Our final model resulted from the logistic regression method combined with the upsam-

pling balancing strategy (Eq 2). The logistic regression model was chosen since it is the most

Fig 1. Association between symptoms and the SARS-CoV-2 infection. The Odds Ratio (OR) with 95% confidence

intervals using logistic regression models for each feature was adjusted by age and gender.

https://doi.org/10.1371/journal.pone.0248920.g001

Fig 2. Boxplots representing the Matthews Correlation Coefficients (MCC) of each model and balancing

technique combination (points) for all methods. Boxplots represent the distribution of MCC values for each model

and balancing technique combination. The higher the MCC value, the better the model.

https://doi.org/10.1371/journal.pone.0248920.g002
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intelligible; that is, a single feature’s contribution to the final prediction can be easily under-

stood in the model [15].

Probability of testing positive ¼
eprediction

1þ eprediction
; where

prediction ¼ � 1:078þ ð1:309 � loss of smellÞ þ ð0:481 � feverÞ þ ð0:407 � COVID at homeÞ

þ ð0:338 � shortness of breathÞ þ ð0:237 �myalgiaÞ þ ð0:153 � coughÞ

þ ð0:035 � nauseaÞ þ ð0:033 � gender½male�Þ þ ð0:008 � ageÞ

� ð0:441 � sore throatÞ � ð0:227 � coryzaÞ � ð0:045 � diarrheaÞ

ð2Þ

The probability of an individual be a positive case can be calculated by Eq 2, using the log-

odds of the positive test occurring (prediction).

Regarding the classification metrics (Fig 3), our model performed as follows: Sensitivity

(Recall) = 0.60; Specificity = 0.75; PPV (Precision) = 0.25; NPV = 0.93; F1 = 0.35; MCC = 0.25;

AUC = 0.68. Thus, evaluating the predicted probability values, we observed that our model

correctly predicts almost all negative tests with only 7% of false-negative users among the pre-

dicted as negatives (NPV = 0.93).

The characteristics of the false-negative and false-positive cases predicted by our model can

be seen in Table 2.

We observed that most of the false-positive cases present the top-four predictors with the

highest positive coefficients. Simultaneously, only four false negatives reported the loss of

smell—the strongest predictor of a positive test. The probability density function and fre-

quency of the model’s predicted values using a testing set, compared to the real (observed) val-

ues, can be seen in S2 Fig.

SARS-CoV-2 risk areas in Rio de Janeiro

To optimize the testing strategy, we applied the predictive model (Eq 2) to the 287,714 individ-

uals who registered in the app and were still untested for SARS-CoV-2. According to our

model, 99,431 (34.5%) of these participants were classified as positive. We calculated the pro-

portion of positive test results for each grid in Rio de Janeiro by Eq 1, visualizing the predicted

SARS-CoV-2 infected cases (Fig 4). As of July 16, 2020, we observed that the southern (richer)

Fig 3. Confusion matrix and performance metrics of the final model.

https://doi.org/10.1371/journal.pone.0248920.g003
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Table 2. Characteristics and symptoms of false-negative and false-positive users predicted from our model.

False-negative False-positive

Participants, n (%) 471 2,164

Characteristics

Female, n (%) 258 (54�8) 1,356 (62�7)

Age (years), median [IQR] 42 [34–51] 42 [32–52]

Cohabitation—lives with a SARS-CoV-2 infected person, n (%) 179 (38�0) 1,464 (67�7)

Self-reported symptoms, n (%)

Loss of smell 4 (0.8) 1,694 (78.3)

Fever 88 (18.7) 1,288 (59.5)

Myalgia 156 (33.1) 1,473 (68.1)

Cough 197 (41.8) 1,511 (69�8)

Nausea 43 (9.1) 429 (198)

Sore throat 173 (36.7) 1,062 (49.1)

Coryza 200 (42.5) 1,321 (61.0)

Diarrhea 88 (18.7) 731 (33.8)

Shortness of breath 2 (0.4) 32 (1.5)

https://doi.org/10.1371/journal.pone.0248920.t002

Fig 4. SARS-CoV-2 infection risk map (grid) of Rio de Janeiro state, displaying the city of Rio de Janeiro (capital, left) and the city

of Niteroi (right). The grid risk considered the proportion of potential positive infection (observed test results + estimated from the

prediction model) for each grid (400mx400m area). The risk groups were obtained as very low (<17%), low (�17% and<33%), medium

(�33% and<48%), high (�48 and<63%), and very high (�63%). The map shows the distribution of risks as of June 10, 2020. Map

created by Dados do Bem app using OpenStreetMap @ 2020Mapbox.

https://doi.org/10.1371/journal.pone.0248920.g004
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areas in Rio de Janeiro presented lower proportions of potential positive participants than the

northern (poorer) areas.

External validation

The "Dados do Bem" app incorporated our final model on July 17, 2020, using it to prioritize

users for testing in some Brazilian states. The external validation using data from Rio de

Janeiro comprised 57,762 tests from August 01 to September 01, resulting in 18.1% positive

results (10,466/57,762). If we consider data from June 15 to July 16 (before model implementa-

tion), we observed only 14.9% of positivity (5,296/35,626), thus indicating that the incorpo-

rated model increased the proportion of positive tests. The hypothesis test results showed a

statistically significant difference between positive results proportion before and after the

model implementation (p-value < 0.001 with a 95% confidence level).

Discussion

Extensive testing programs for SARS-CoV-2 are, in general, not available in low- and middle-

income countries, conferring the under-reporting of confirmed cases into a problem. A previ-

ous study estimated that only 9.2% of Brazilian cases are being notified [16]. Restricting tests

hinder the monitoring of the epidemic progression, resource planning, and evaluation of the

effectiveness of the control measures. Besides, it leads to false conclusions that the disease is

under control.

Since it is impossible to test all individuals, some studies suggest that the combination of

symptoms could be used as a screening tool to identify people with potential SARS-CoV-2

infection who could be selected for testing [4, 6, 17]. It can be useful for planning public poli-

cies and for preventing the spread of the pandemic. That said, our study used data on individ-

ual symptoms and demographics obtained from an app-based system, known as "Dados do
Bem," to develop a model that predicts individuals with a higher probability of testing positive

for SARS-CoV-2 infection.

Some works criticize the use of symptom-based screening strategies to quantify an individ-

ual likelihood of having COVID-19 due to the non-specific nature of some symptoms and the

existence of co-infections with other respiratory viruses [18]. However, our results evidenced

that such a strategy contributes to optimizing the overall testing strategy. Out of the 287,714

new users still not tested, our model estimated that the virus could infect 99,431 who, there-

fore, should be prioritized for testing. It reduced the need for extensive testing to only 34.5% of

the registered untested users. This is undoubtedly beneficial as a public policy, especially in

Brazil, a country with the second highest COVID-19 cases and one of the lowest test rates1.

Our model was incorporated into the app and used to select patients for testing. We chose

the city of Rio de Janeiro to evaluate the benefit of using our model. Out of the 57,762 users

selected according to the model, 18.1% were tested positive. This positivity rate is statistically

significant compared to the observed positivity rate without a model (14.9%). It indicates that

our model contributed to improve the test strategy and to select the users most likely to be pos-

itive in the current scenario. Hallal et al. [8] performed a SARS-CoV-2 antibody prevalence

study analyzing 25,025 participants in the first survey (May 14–21) and 31,165 in the second

(June 4–7) and showed that city-level prevalence in Rio de Janeiro was 2.4% (0.7–5.6%) in the

first survey and 7.5% (4.5–11.7%) in the second one. Therefore, we note that the seropreva-

lence obtained throughout the utilization of the "Dados do Bem" app was higher than the city-

level prevalence, thus leading to an improved testing strategy and helping achieve better use of

scarce test resources.
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In addition to forecasting the likelihood of each user acquiring the virus, our model also

assesses these participants’ geographical distribution, being a source of information to build a

risk map for Rio de Janeiro, as shown in Fig 4. The "Dados do Bem" app currently uses this

map for categorizing risk areas, thus supporting decision-makers to identify areas with a

higher risk of infection prevalence and accordingly refine testing and disease control

strategies.

The risk map analysis developed in this work is exemplified in Fig 5, which presents the risk

map of the south zone of Rio de Janeiro. The chosen area includes both high-income neigh-

borhoods (such as "Ipanema," "Leblon," and "Gávea") and slums (such as "Rocinha"). The

selected grid in Ipanema is classified as "low risk," which means that the proportion of positive

tests in this grid was between 17% and 33%. The other selected grid is in Rocinha, which,

although located less than three miles from Ipanema, is classified as a "very high risk" grid,

meaning that the proportion of positive tests living in this grid was higher than 63%. Higher-

risk areas in poor communities were also noted in other regions of the city (Fig 5). Many

higher-risk grids were in the north zone of the city, where the most deprived communities are

located ("Complexo do Alemão" and "Complexo do São Carlos," for example). The presence of

social inequalities in Brazil has been pointed out by previous studies [19–23], which noted that

it could be associated with spreading the disease.

Regarding our results of the reported symptoms, loss of smell (anosmia) was the strongest

indicator of SARS-CoV-2, followed by fever, shortness of breath, myalgia, cough, nausea, diar-

rhea, and coryza. The significant influence of loss of smell and cough is in line with previous

studies carried out in high-income countries such as the US and UK [6, 24–26], and the

Fig 5. Risk map of two neighborhoods of Rio de Janeiro (Rocinha–very high risk and Ipanema–low risk). Map created by Dados do Bem app using OpenStreetMap @

2020Mapbox.

https://doi.org/10.1371/journal.pone.0248920.g005
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influence of fever, myalgia, and nausea was pointed as significant in some studies [25, 26].

However, other authors noted it as not associated [6, 24]. Previous studies observed that sore

throat, diarrhea, and shortness of breath are not significant predictors for the SARS-CoV-2

infection [6, 24–26].

Menni and colleagues [6, 17] used real-time tracking of self-reported symptoms similar to

ours to predict potential SARS-CoV-2 infection in a cohort of individuals from the US and

UK. This model was applied to compare the incidence in the UK regions. The authors noted

that, in southern Wales, users reported symptoms that predicted, 5 to 7 days in advance, two

spikes in the number of confirmed positive SARS-CoV-2 infection reported by public health

authorities. The prediction models presented NPV of 0.75 and 0.87 in the UK (15,638 partici-

pants) and the US (2,763 participants). Compared to them, our best model obtained a compet-

itive performance (NPV of 0.93).

Sebo and colleagues [26] studied a sample of 1,543 primary care patients tested in two labo-

ratories in the Lyon area (France). They found that the two symptoms most strongly associated

with a positive test were loss of taste (ageusia) and loss of smell. Combining these symptoms

resulted in an even stronger association (i.e., the odds of having a positive test were six times

greater than the odds of having a negative test). A recent literature review of studies analyzing

the presence of loss of taste and smell in SARS-CoV-2 infected patients concluded that, from a

total of 10,818 patients, 8,823 presented ageusia (81.6%) and 8,088 presented anosmia (74.8%)

[27]. Our results reinforce the literature conclusions about the strong influence of loss of smell.

This study presents some limitations. First, the symptoms are self-reported. Hence, the par-

ticipant may report apparent manifestations of the disease, which may not be precise as a phy-

sician’s physiological evaluation. Second, we could not know when a symptom appeared to

indicate the disease’s stage at the testing moment. Third, a non-negligible number of false neg-

atives may be present, considering the serological test’s sensitivity. However, identifying

potential clusters and optimizing testing resources using a combination of self-reported symp-

toms is a viable strategy for many countries. A similar combination of symptoms can explain

the SARS-CoV-2 infections in developed countries, such as the United Kingdom and the

United States, and LMIC, such as Brazil. Fourth, we do not guarantee that the dataset repre-

sents the Brazilian population since our objective was not to perform an epidemiological

study. Instead, we aimed to analyze the combination of self-reported symptoms from all users

who registered in the city of Rio de Janeiro and obtained a test result (either positive or nega-

tive) until July 16, 2020.

Conclusions

Our work used data regarding individual symptoms and demographics obtained from an app-

based system to predict individuals with a higher probability of being infected by SARS-CoV-

2. We developed a screening model and incorporated it into the app, aiming to prioritize users

for testing. After applying the model, out of the 57,762 users selected, 18.1% were tested posi-

tive. This positivity rate was more significant than the one observed without a model (14.9%),

which indicates that our model contributed to improve the test strategy and select the users

most likely to be positive in the current scenario. Moreover, we developed a risk map derived

from the model, which may help decision-makers locate regions with a higher risk of positive

tests, allowing better testing and disease control policies.
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