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A B S T R A C T

COVID-19 is now identified in almost all countries in the world, with poorer regions being particularly more
disadvantaged to efficiently mitigate the impacts of the pandemic. In the absence of efficient therapeutics or
large-scale vaccination, control strategies are currently based on non-pharmaceutical interventions, comprising
changes in population behavior and governmental interventions, among which the prohibition of mass
gatherings, closure of non-essential establishments, quarantine and movement restrictions. In this work we
analyzed the effects of 707 governmental interventions published up to May 22, 2020, and population
adherence thereof, on the dynamics of COVID-19 cases across all 27 Brazilian states, with emphasis on
state capitals and remaining inland cities. A generalized SEIR (Susceptible, Exposed, Infected and Removed)
model with a time-varying transmission rate (TR), that considers transmission by asymptomatic individuals, is
presented. We analyze the effect of both the extent of enforced measures across Brazilian states and population
movement on the changes in the TR and effective reproduction number. The social mobility reduction index,
a measure of population movement, together with the stringency index, adapted to incorporate the degree of
restrictions imposed by governmental regulations, were used in conjunction to quantify and compare the effects
of varying degrees of policy strictness across Brazilian states. Our results show that population adherence to
social distance recommendations plays an important role for the effectiveness of interventions and represents
a major challenge to the control of COVID-19 in low- and middle-income countries.
1. Introduction

COVID-19, a disease caused by the SARS-CoV-2 coronavirus,
emerged in December 2019 in China and was recognized as a pan-
demic by the World Health Organization on March 11, 2020 (World
Health Organization, 2020). At that moment, Brazil had already con-
firmed 53 cases. On March 20, with 972 confirmed cases, the Brazilian
Ministry of Health recognized community transmission of COVID-19
throughout the national territory, 24 days after the first confirmed case
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of COVID-19 was identified (da Saúde declara transmissão comunitária
nacional, 2020). Brazil is a country with 209.5 million individuals and
stark socioeconomic disparities throughout its territory. It is the largest
country in South America and the fifth largest nation in the world.
Accordingly, the many challenges imposed by the COVID-19 pandemic
are unprecedented in this country.

The political-administrative organization of Brazil comprises three
spheres of governance: The Union (federal government), the 27 states
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(including the Federal District, where the capital city, Brasilia, is
located) and 5,570 municipalities. To reduce the transmission of
SARS-CoV-2, federal, state and city governments implemented a series
of interventions by means of government decrees (Aquino et al., 2020).
This included recommendations to identify and isolate confirmed cases
and contacts; to restrict unnecessary movements; to practice social
distancing; to increase hygiene awareness; to follow respiratory eti-
quette; to wear masks in public, among others. In the absence of more
intensive mitigation policies implemented by the federal government
(such as lock-downs and movement restrictions), most measures were
adopted by local governments (state/municipalities) (Aquino et al.,
2020). However, adherence to these policies varied greatly throughout
the country, and while some regions enacted more strict controls,
others have been more lax.

The COVID-19 crisis has called attention to the importance of
mathematical modeling to inform governmental policies and in quanti-
fying the effects of the pandemic at multiple levels (Panovska-Griffiths,
2020). Models have been adapted to address questions such as the role
of asymptomatic individuals to SARS-CoV-2 transmission chains (Li
et al., 2020b), to assess the effectiveness of testing and quarantine
strategies in informing economic reopening (Berger et al., 2020) and
epidemic suppression by partial lockdown strategies (Roche et al.,
2020), to quantify the needs for hospital beds under various social
distancing scenarios (Oliveira et al., 2021; Ferguson et al., 2020;
Moghadas et al., 2020), among others, eg. Prem et al. (2020), Leung
et al. (2020), Weitz et al. (2020), Kissler et al. (2020a). By drawing on
a generalized SEIR model that simulates the dynamics of viral spread
in a population entirely susceptible to the new virus, it is possible to
define and estimate the transmission rate (TR) at which an infected
individual will transmit the disease to a susceptible person (Keeling and
Rohani, 2011). Therefore, the higher this rate, the greater the number
of new cases in a region over time. Downward changes on the TR are
expected with the implementation of mitigation policies such as non-
pharmaceutical interventions (NPI), the only option to limit the spread
of SARS-CoV-2 in the absence of effective therapies or vaccination with
sufficient population coverage.

In this work, we comparatively analyze the evolution of the COVID-
19 transmission rate and effective reproduction number across all 27
Brazilian states, with emphasis on state capitals and remaining inland
cities, establishing links with measures of governmental restrictions
(NPIs) implemented in each region together with the human behavior
response, particularly the adherence to recommendations of social
distancing. The varying degree of enforced policies across the country
offers an opportunity to study the impacts of interventions, including
their breadth and timing, on the TR of SARS-CoV-2 throughout Brazil-
ian states. These findings can be extrapolated to similar settings in other
low- and middle-income countries to drive improvements in mitigation
policies against subsequent waves of SARS-CoV-2 and other potentially
pandemic pathogens.

2. Methodology

Data sources

The number of confirmed cases of COVID-19 for each Brazilian
municipality, up to May 22, 2020, was obtained from the Ministry
of Health of Brazil and are publicly available (Coronavírus, 2020; Io,
2020). Since the capitals of each state have different dynamics and
largely concentrated COVID-19 cases in the initial wave of the epidemic
(an assumption informed by previous works (Candido et al., 2020)), we
analyzed the transmission dynamics for each state in the following way:
(1) The entire state, (2) the state capital alone; and (3) the remaining
state municipalities grouped as a single place by summing up their
reported cases. Throughout the text we refer to the latter as inland
2

cities, although strictly not all of these are distant from the shore.
To evaluate state-wide enforced governmental measures, we col-
lated government decrees and resolutions scattered throughout various
state government gazettes and other official repositories up to May 22,
2020, since each state uses different platforms to communicate their
legislation. We annotated the type of measure enforced, the implemen-
tation date, the duration and whether it was valid to the whole state
or limited to specific regions (see Supplementary Material).

In addition to state level decrees we also collated COVID-19-related
federal regulations, which affect equally all states (Bolsonaro, 2020).
However, federal-level regulations did not interfere on measures en-
forced by state or municipalities, and most of them were later repealed.
Indeed, on April 8, 2020 the Brazilian Federal Supreme Court ruled
in favor of the decentralization of operations aimed at controlling
COVID-19 in the country, empowering the actions of state and mu-
nicipal governments (Brazilian Judicial System, 2020). The evaluation
of municipal-level regulations was not performed due to the large
number of Brazilian cities, a total of 5,570, each having their own
system for publications of legislation, with variable degrees of update
frequency and usually providing unstructured data and burdensome
access options, which would make their manual processing unpractical.
For this reason, in this work we only considered regulations issued by
the 27 state governments, which totaled 707 decrees.

As a proxy of the population adherence to recommendations of
social distancing, we used information from InLoco (2020), a Brazilian
technology start-up that developed an index of social mobility, which
seeks to help in fight the pandemic in Brazil. Data for the index con-
struction is obtained from the unidentified, aggregated geo-movement
patterns extracted from 60 million mobile devices throughout the
country. The index ranges from 0 to 100% and measures the proportion
of devices from a given municipality that remained within a 450 meter
radius from the location identified as home by the device. The higher
the index, the greatest the population adherence to social distancing
recommendations. The data is available at InLoco (2020). Examples of
other works that used the Social mobility reduction index (SMRI) can
be found in Peixoto et al. (2020), Ajzenman et al. (2020).

Stringency index

To comparatively evaluate the governmental measures implemented
by the Brazilian states, we constructed a stringency index, denoted
by 𝜄, similarly to that implemented in Thomas Hale APTP Sam Web-
ster and Kira (2020). To score each employed policy we adapted the
methodology to the Brazilian context by taking into account the specific
measures established by the different state governments and described
in the Data Sources section.

Measures were classified into two categories: Ordinal and cumula-
tive. Ordinal class of measures, denoted by 𝑂, are those in which there
is a clear order on the intensity of the restriction, so that there are
less possibilities of reclassification. For instance, a decree prohibiting
agglomerations of more than 100 people, followed by a second decree
restricting to 500 people, belong to the ordinal category, where the
first is more intense than the second. Cumulative class of measures,
denoted by 𝐶, are those with no clear order of intensity, allowing for
a wide range of possibilities to classify the restriction. For instance,
closure of malls and prohibition to accessing parks and beaches have
no clear order to which of these measures is more intense and may lead
to subjective classification.

Every class of measures is a collection of sub-measures depending
on how each government decided to response and enforce measures. In
this work we have seven classes of measures, of which four are ordered
and three are cumulative, further described in Supplementary Table 1.
Cancellation of public events (𝑂1) presents six sub-measures. Similarly,
health etiquette policies (𝐶1) has two sub-measures.

The evaluation of the ordered class of measures varies from 0 (when
no measure is applied) to 𝑗 (when the most stringent sub-measure

is applied), where the index 𝑗 varies from 0 to 𝑁𝑂𝑖

, the number of
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sub-measures of the ordinal class of measures 𝑂𝑖 (we similarly denote
𝑁𝐶𝑖

, as the number of sub-measures for the cumulative class). For the
cumulative class of measures, we evaluate each sub-measure as 0 if the
sub-measure was not applied or 1 otherwise, so that the value of the
class will be the sum of points of the sub-measures 𝑠𝐶𝑖

. Additionally,
to take into account whether the measure was enforced for the whole
state or limited to a particular region, each class has a target 𝐺. If
the measure is ordinal, then we consider 𝐺 = 𝐺𝑂𝑖

, taking either the
value 0, if the most stringent sub-measure is applied for specific areas
of the state, or 1, if it is enforced for the whole state. If the measure
is cumulative, and since it will be a sum of the sub-measures, then
𝐺 = 𝐺𝐶𝑖

is the sum of targets for each sub-measure 𝑠𝐺𝐶𝑖
, which again

is either 0 if the sub-measure is applied to specific areas or 1 if it
is applied to the whole state without exceptions. A summary of the
seven measures, as well as their number of sub-measures and targets
are presented in Table 1.

The index for the ordinal classes is given by

𝜄𝑂𝑖
=

𝑗
𝑁𝑂𝑖

(2 − 𝐺𝑂𝑖
)
.

hus, the value of the stringency 𝜄𝑂𝑖
is the value of the most stringent

easured applied, 𝑗, normalized by the number of sub-classes, 𝑁𝑂𝑖
,

multiplied by the term (2 − 𝐺𝑂𝑖
), which is 1 when the target is for the

whole state or 2 otherwise (that is, the stringency 𝜄𝑂𝑖
is divided by two).

For the cumulative classes the index is defined by

𝜄𝐶𝑖
=

𝑠𝐺𝐶𝑖
+

(𝑠𝐶𝑖−𝑠𝐺𝐶𝑖
)

2

𝑁𝐶𝑖

,

here the sum 𝑠𝐺𝐶𝑖
reflects the measures that were applied to the whole

tate, and the term (𝑠𝐶𝑖
− 𝑠𝐺𝐶𝑖

)∕2 evaluates the measures that were not
applied for the whole state. Lastly, the whole expression is normalized
by the number of sub-classes 𝑁𝐶𝑖

.
Therefore, the total state index 𝜄, for a given day, will be taken as

the average of the value of the classes 𝜄𝑂𝑖
and 𝜄𝐶𝑖

, yielding

𝜄 = 100 ×
∑4

𝑖=1 𝜄𝑂𝑖
+
∑3

𝑖=1 𝜄𝐶𝑖

7
.

xamples of these estimates are given in Supplementary Note 1.

he mathematical model

We generalize the usual SEIR model by separating the infectious
ompartment into two: Asymptomatic/non-detected and symptomatic
ases, denoted by 𝐼𝑎 and 𝐼𝑠, respectively, following our previous mod-
ling strategy (Oliveira et al., 2021). It is reasonable to consider that
he compartment 𝐼𝑎 encompasses many of the sub-notified cases since
he majority of asymptomatic and mild cases are not accounted for
n the official data, in spite of their important role to the SARS-
oV-2 transmission chain Li et al. (2020b). The system of differential
quations reads:

𝑑𝑆
𝑑𝑡

=
−𝛽(𝑡)𝑆𝐼𝑠 − 𝛽(𝑡)𝛿𝑆𝐼𝑎

𝑁
(1)

𝑑𝐸
𝑑𝑡

=
−𝛽(𝑡)𝑆𝐼𝑠 − 𝛽(𝑡)𝛿𝑆𝐼𝑎

𝑁
− 𝜅𝐸 (2)

𝑑𝐼𝑎
𝑑𝑡

=(1 − 𝑝)𝜅𝐸 − 𝛾𝑎𝐼𝑎 (3)
𝑑𝐼𝑠
𝑑𝑡

=𝑝𝜅𝐸 − 𝛾𝑠𝐼𝑠 (4)
𝑑𝑅
𝑑𝑡

=𝛾𝑎𝐼𝑎 + 𝛾𝑠𝐼𝑠 (5)

he epidemiological parameters presented in Eqs. (1)–(5) are described
n Table 2, along with their estimates (or search ranges, when fitted),
hich were informed by previous works.

As described in Oliveira et al. (2021), the parameter 𝛿, a factor
ssociated with the infectivity of asymptomatic/non-detected infec-
ions, plays an important role on the viral transmission dynamics. As
3

escribed by Eq. (1), it influences the non-linear term, and thus cannot
e neglected from the system, unless it is assumed that the infectivity
f asymptomatic individuals is equivalent to that of symptomatic cases,
.e. 𝛿 = 1. However, several studies suggest 𝛿 < 1 (Li et al., 2020b;
issler et al., 2020b; Cheng et al., 2020), which guided our modeling
hoice that defined the search interval for this parameter (Table 2).

Additionally, to account for variations in the TR over time, we
ssume that the TR 𝛽 is a function given by:

(𝑡) = 𝛽0(𝑡1 − 𝑡) +
𝑛−1
∑

𝑖=1
𝛽𝑖(𝑡𝑖+1 − 𝑡)(𝑡 − 𝑡𝑖) + 𝛽𝑛(𝑡 − 𝑡𝑛), (6)

here {𝑡1, 𝑡2,… , 𝑡𝑛} represent a set of points in time defining the change
n the TR, 𝛽𝑖 are TRs in the interval [𝑡𝑖, 𝑡𝑖+1], and (𝑥) = 1 if 𝑥 > 0,
(𝑥) = 0 if 𝑥 < 0 and (𝑥) = 1∕2 if 𝑥 = 0.

The key novelty here is that the influence of governmental measures
n social mobility and human behavior can dictate changes on the TR
𝛽𝑖’s) on inferred points 𝑡𝑖’s. To do so, we assume that the 𝑡𝑖’s change in
n interval search based on variations in stringency and social mobility,
escribed previously. Additionally, to evaluate if one or more changes
o the transmission rate was required, we assessed the value obtained
sing the Bayesian information criterion (BIC) as well as by visual
valuation of the fitted results. The visual evaluation is important since
he calculation of the BIC may yield small variations when the number
f parameters is increased due to the inherent noise in the data.

The time of changing transmission rate and the rate itself, as well as
he 𝛿 parameter are estimated using the Particle Swarm Optimization
PSO) metaheuristic. Under the PSO framework, we used maximum
ikelihood estimation to optimize the model to the series of daily
onfirmed cases for each state, capital cities and remaining inland cities
p to May 22, 2020. PSO was implemented using pyswarms library
ersion 1.1.0 for Python 3 (http://python.org) (Miranda, 2018), and
as executed with 150 particles through 500 iterations with cognitive
arameter 0.1, social parameter 0.3, inertia parameter 0.9, evaluating
ive closest neighbors through Euclidean (or L2) distance metric. In
ddition to the point estimates obtained by the PSO method, percentile
onfidence intervals were also estimated for these parameters. The in-
ervals were constructed using the weighted non-parametric bootstrap
ethod, considering 100 replicates of the original series of new cases.

imilar work to evaluate the impact of non-pharmaceutical measures
n the TR and dynamic spread of the disease are presented in Chowell
t al. (2004), Dehning et al. (2020), Flaxman et al. (2020). The pa-
ameters 𝑝, 𝜅, 𝛾𝑎, 𝛾𝑠 were informed by the literature and kept fixed.
he remaining estimated model parameters and search intervals were

nformed both by the literature and the analyses presented in this work,
nd are presented in Table 2.

asic and effective reproduction number

Based on the obtained parameter values we also evaluated the basic
eproductive number 0 and the effective reproductive number (𝑡),
lso denoted by 𝑡, as described in Oliveira et al. (2021). The basic
eproductive number 0 characterizes the disease spread during the
ery early time interval after it has been introduced, thus it is evaluated
n the first transmission rate estimated by the model. Its expression is
iven by (see Oliveira et al. (2021), Wallinga and Lipsitch (2007), Van
en Driessche and Watmough (2002)):

0 =
𝛽0𝑝
𝛾𝑠

+
𝛽0𝛿(1 − 𝑝)

𝛾𝑎
. (7)

We also obtain the time series of the effective reproductive number
(𝑡), which indicate the current trend of the epidemic. Details of this
calculation can be found in Supplementary Note 5 of our previous
work (Oliveira et al., 2021). By writing the infection-age structured
epidemic model of our system of Eqs. (1) to (5) (Wallinga and Lipsitch,
2007; Fraser, 2007), we obtain:

(𝑡) =
𝑆(𝑡) 𝛿(1 − 𝑝)𝛽(𝑡)

+
𝑆(𝑡) 𝑝𝛽(𝑡)

. (8)

𝑆(0) 𝛾𝑎 𝑆(0) 𝛾𝑠

http://python.org
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Table 1
Classification of governmental responses to COVID-19 in Brazil (state-wide).

Measure adopted Type Class of measures Targeting index Number of sub-classes N

Cancellation of public events Ordinal 𝑂1 𝐺𝑂1
6

Closure of
schools/universities

Ordinal 𝑂2 𝐺𝑂2
2

Home-office for
governmental employees

Ordinal 𝑂3 𝐺𝑂3
4

Isolation Ordinal 𝑂4 𝐺𝑂4
2

Closure of non-essential
businesses and public
activities

Cumulative 𝐶1 𝐺𝐶1
7

Transport lock Cumulative 𝐶2 𝐺𝐶2
6

Health etiquette policies Cumulative 𝐶3 𝐺𝐶3
2

Table 2
Key epidemiological parameters used in the SEIR model, with their respective value (when fixed) or the search intervals used for parameter estimations, informed
by the literature.

Parameter Description Search interval Fixed Reference

𝛽 Transmission rate [0,2] – (Li et al., 2020b; Lin et al., 2020; Chowell et al.,
2004; Dehning et al., 2020)

𝑡𝑖 Time of when transmission
rate change

Defined in the Result section – (Chowell et al., 2004; Dehning et al., 2020)

𝛿 Asymptomatic infectivity [0,0.7] – (Li et al., 2020b; Kissler et al., 2020b; Ferretti et al.,
2020; Ferguson et al., 2020; Mizumoto et al., 2020;
Cheng et al., 2020)

𝑝 Proportion of latent (E) that
proceed to 𝐼𝑠

– 0.2 (Li et al., 2020b; Mizumoto et al., 2020; Nishiura
et al., 2020)

𝜅 Mean exposed period, or
incubation time

– 1/4 (Li et al., 2020b; Ferretti et al., 2020; Sanche et al.,
2020; Li et al., 2020a; Linton et al., 2020)

𝛾𝑎 Mean asymptomatic period – 1/3.5 (Li et al., 2020b)
𝛾𝑠 Mean symptomatic period – 1/4 (Li et al., 2020b; Lin et al., 2020; Kissler et al.,

2020c)
Eq. (8) would be similar to the general form given by (𝑡) = 0𝑆(𝑡)
only for a portion of the evaluated period, since we consider changes
on time in the transmission rate 𝛽 and the 0 expression only takes
nto account the transmission rate before the first change, that is, for
< 𝑡1.

Additionally, Eq. (8) can be also given by:

(𝑡) =
𝑏(𝑡)

∫ ∞
0 𝑏(𝑡 − 𝑥)𝑔(𝑥)𝑑𝑥

, (9)

here the numerator 𝑏 represents daily number of new cases and the
enominator corresponds to the convolution on 𝑏 and 𝑔, that is the
isease probability distribution function for the time interval between
he infection of an individual and its secondary cases. The function 𝑔
s derived from the differential equations of the model and receives
ontributions from the three compartments 𝐸, 𝐼𝑎, 𝐼𝑠 that impact the
valuation of 0 and (𝑡), as presented in Oliveira et al. (2021).
he advantage of Eq. (9) is that it allow us to evaluate the effective
eproduction number directly on the available data and 𝑔, a probability
istribution function that can take different shapes and makes our
esult more flexible to compare directly with the data, being 𝛿 the only
stimated necessary parameter used to feed equation (9).

Finally, since the data are reported as daily case counts, to calculate
xpression (9), we discretize the generation time distribution 𝑔, such

that ∑𝑡𝑖
𝑔(𝑡𝑖) = 1, see Fraser (2007). Thus,

(𝑡) =
𝑏(𝑡𝑖)

∑

𝑖
𝑏(𝑡𝑖−𝑗 )𝑔(𝑡𝑖)

. (10)

Visualization app

To facilitate visualizing the results of the analysis performed in
this work, a web-based application was developed using R/Shiny
(http://shiny.rstudio.com). The application can be found at https://
modelingtaskforce.shinyapps.io/transmission_rate_app/.
4

3. Results

The entry of SARS-CoV-2 in the Brazilian states

Brazil had a total of 334,555 registered COVID-19 cases up to May
22, 2020. The first confirmed case of COVID-19 in Brazil occurred in the
state of São Paulo, southeastern region, on February 26, 2020. Within
an interval of seven to 12 days (from March 4 to March 9) the states10

of ES, DF, BA, AL, RJ and MG had confirmed cases of COVID-19. From
March 10 to March 25 the disease spread to the remaining 20 Brazilian
states (Fig. 1A).

By the moment that state authorities were unable to relate con-
firmed cases through chains of transmission, SARS-CoV-2 community
transmission began to be declared in each region (Fig. 1A; Supplemen-
tary Table 2). Supplementary Figure 1 shows the temporal variation
from the first reported case to the declaration of community trans-
mission in the state. As depicted in Supplementary Figure 1, 40.7%
(11/27) of the states took between 0 and 10 days to declare community
transmission, 51.9% (14/27) took between 11 and 30 days, while only
two states (Tocantins and Roraima), corresponding to 7.5%, took more
than 30 days to declare community transmission. This scenario is fur-
ther complicated by the delays in reporting cases. Although each state
declared community transmission at some point, there are uncertainties
around these dates due to delays in both the registration of cases
and the communication from the local level (municipality) to state
authorities, as exemplified in the states of Paraná and Roraima (Bittar,
2020; Araújo, 2020).

10 Two-letter state abbreviations are as follows: AC, Acre; AL, Alagoas; AP,
Amapá; AM, Amazonas; BA, Bahia; CE, Ceará; DF, Distrito Federal; ES, Espírito
Santo; GO, Goiás; MA, Maranhão; MT, Mato Grosso; MS, Mato Grosso do Sul;
MG, Minas Gerais; PA, Pará; PB, Paraíba; PR, Paraná; PE, Pernambuco; PI,
Piauí; RJ, Rio de Janeiro; RN, Rio Grande do Norte; RS, Rio Grande do Sul;
RO, Rondônia; RR, Roraima; SC, Santa Catarina; SP, São Paulo; SE, Sergipe;

TO, Tocantins.

http://shiny.rstudio.com
https://modelingtaskforce.shinyapps.io/transmission_rate_app/
https://modelingtaskforce.shinyapps.io/transmission_rate_app/
https://modelingtaskforce.shinyapps.io/transmission_rate_app/
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Fig. 1. (A) A timeline of events associated with the spread of SARS-CoV-2 across the 27 Brazilian states. The dates of first registered cases are shown (red dots), followed by the
moment that community transmission was declared in each state (blue dots). The dates when the TR were observed to change (𝛽0 → 𝛽1 and, when applicable, 𝛽1 → 𝛽2, are shown
as triangles). The orange segments indicate the interval between the initial NPIs enforced by states and the first observed peak in stringency. Dates refer to the year 2020. (B)
Estimates of 𝑅0 (and corresponding 95% confidence intervals) for each state, their capitals and remaining inland cities. Data for the Federal District (DF), the smallest Brazilian
federal unit and the only one that has no municipalities, is only shown at the state-level.
In the supplemental web-page (see Data availability section), we
present the incidence of COVID-19 for each state, capitals and inland
cities. As shown, in the early stage of the pandemic in Brazil, the North
region was the most affected, accounting for the highest incidence,
followed by CE and MA in the Northeastern region. Once the entry of
the virus was confirmed within each state, the capitals were the most
affected cities initially (Candido et al., 2020; Candido et al.), emerging
as the epicenter of the epidemic in each state (see Supplementary
Figures 2 and 3). Subsequently, SARS-CoV-2 disseminated throughout
the inland cities with a different speed, as shown in the top panel plots
of Supplementary Figures 2 and 3, where the incidence of COVID-19 is
reported for the Brazilian states, capitals and inland cities.

Governmental measures and population adherence

Next, we evaluated the timing of governmental interventions on the
number of cases, the breadth of these interventions as measured by
the stringency index, and their effects on influencing people’s behavior,
particularly adhesion to social distancing recommendations.

A total of 707 regulations published by the 27 Brazilian state
governments were annotated according to the methods described to
construct the stringency index. The first measures enforcement of the
state governments were implemented between March 11 and March 24,
with exception of MT that present a larger time window interval, as
shown in Fig. 1A and Supplementary Table 2. The states of TO, RR,
PI, PA, MT, AP, RO, MA, PB and AC adopted measures even before the
first registered case. In contrast, some regions which were first affected
by COVID-19 were among those that delayed the implementation of
measures to contain viral spread. For instance, São Paulo adopted
measures only 2 weeks after the confirmation of the first case, on
5

March 13, the same day of community transmission declaration in
the state. A similar scenario occurred in Rio de Janeiro, where the
first restriction measures were only implemented in parallel to the
declaration of community transmission.

Among the measures classified in Table 1, strict quarantine mea-
sures (𝑂4), restrictions on public transportation (𝐶3) and mandatory
use of mask (𝐶3) were the most weakly implemented measures enforced
by the states. Such measures contributed to an average level of 14% in
stringency in the studied period, and were adopted only partially in AP,
BA, CE, MA and MT. Only an average of 16.9% of public transportation
measures were applied in states. In the collected decrees, SP, DF and
MS did not enact restrictions on public transport and PA, PB, PI, RN,
GO and ES had a very low average of 4% in such measures. On the
other hand, the mandatory use of masks contributed, in average, to 33%
of the index, with only one state (MS) failing to enact such measures
(Supplementary Table 3).

To assess the dynamics of implementation, continuance and lifting
of NPIs by Brazilian states, Fig. 2 shows the variation of the stringency
index over time for each region relative to the number of confirmed
COVID-19 deaths per 100,000 inhabitants. All states increased strin-
gency after an incidence of 10 cases per 100k inhabitants. In addition,
the states of AP, AM, RR, CE and PE displayed the highest stringency
index in the last period evaluated. Of note, those states were close to
reaching full occupancy of their health care systems, with more than
75% of ICU occupation (Paulo, 2020). These results evidenced that
heightening the level of measures only when the number of cases and
hospitalizations is already mounting represents a flawed strategy un-
able to avert the impacts of a surge of COVID-19 in healthcare demands.

Variable adherence to social isolation recommendations was seen
across the states, with values of the SMRI close to 30% at the beginning
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Fig. 2. Evolution of the governmental measures adopted for each Brazilian state with respect to COVID-19 death incidence. The figure shows the variation of the stringency index
over time for each state relative to the number of confirmed death per 100,000 inhabitants The number of confirmed deaths per 100,000 population is shown in logarithmic scale
on the 𝑥-axis.
of March, followed by a peak to around 60% at the end of that month.
This was observed in both state capitals and inland cities. The evolution
of the stringency index for each state, as well as the SMRI for capitals
and inland cities is presented in the lower panel plots of Supplemen-
tary Figure 2 an 3, as well as in the supplementary web-page. Used
in conjunction, both measures offer a quantitative evaluation of the
degree of policies enforced by Brazilian state governments, as well as
their effectiveness in reducing the circulation of people, which lead to
decreased contacts. Our results showed that, once the SMRI reached
its maximum, it was followed by a decreasing trend even with the
maintenance of measures by state governments.

With respect to the breadth and intervention period of governmental
measures, our results led to the identification of three stringency index
patterns: (1) Increase-and-decrease (ID), where the stringency index
increases initially, but is followed by the lifting of measures leading
to its reduction (such as Santa Catarina in Fig. 3a); (2) Increase-and-
steady (IS), where stringency measures reach a peak that remains
constant over time (depicted by São Paulo in Fig. 3b); (3) Increase-
and-increase (II), where the stringency index increases successively,
probably a mechanism to cope with the accelerated growth of the
epidemic in some regions (illustrated by Amapá in Fig. 3c). Seven
states, all located in the North (AC, AP and AM) and Northeast (BA,
CE, PE and PI), followed the II pattern, while seven states, distributed
throughout the Midwest (GO, MT), South (RS, SC), Southeast (ES) and
North (RO, TO) regions conform to the ID pattern (Supplementary
Figure 2 and 3). The remaining 13 states (AL, DF, MA, MG, MS, PA,
PB, PR, RJ, RN, RR, SE and SP), distributed in all regions, followed
the IS pattern. In addition, our results indicated that the reduction of
the SMRI was smaller in states that followed both IS and II patterns
6

(median reduction of −7.55% and −5.88%, respectively), compared to
states that relaxed their measures according to the ID pattern (median
reduction of −9.03%) (Fig. 3d).

Of note, even states that promoted relaxation of policies, such as
those that followed an ID pattern, maintained an average SMRI in
the last week of May corresponding to 40.1 ± 2.0%, a value higher
than that corresponding to the pre-pandemic SMRI in the first week of
February, corresponding to a value of 28.7 ± 1.4%.

Varying transmission rates of SARS-CoV-2 in Brazil

Lastly, we sought to comparatively evaluate the effects of gov-
ernmental measures and population adherence to social distancing
recommendations in the TR of SARS-CoV-2 throughout Brazilian states.

As shown earlier, states reported initial cases of COVID-19 and
announced community transmission at different moments. Then, all
regions reached a peak of measures implemented and corresponding
SMRI on March, 2020. By evaluating these metrics in all of the 81
regions analyzed (state, capitals, inland cities), we defined the search
interval for a possible first change in the transmission rate from March
13, to May 15, to include the date of the first measure enforced and
the last announcement of community transmission (see Fig. 1a). When
more than one change in the TR took place, we defined the search
interval to the last month of the studied period, i.e. from April 22
to May 22, 2020. More than two points of time changes were not
considered in the time interval of study.

In Supplementary Table 4, we detail the number of days elapsed
from the date of first implemented measure to the estimated date of
TR change, and the variation from the first to the second (𝛽 , 𝛽 ) TR
0 1
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Fig. 3. Illustrative examples of a general pattern observed for the behavior of stringency measures over time in Brazil. Upper panels show COVID-19 incidence and bottom panels
exhibit the social mobility reduction and the stringency indexes over time for (a) Santa Catarina (increase-and-decrease, ID), (b) São Paulo (increase-and-steady, IS) and (c) Amapá
(increase-and-increase, II). The social mobility index is considered separately for capitals, inland cities and the whole state. Plots for the remaining Brazilian states are shown in
Supplementary Figure 2 and 3. The average reduction in the SMRI according to the stringency pattern for all states is shown in panel d. For each category, the median is shown
as a solid horizontal bar.
obtained by the SEIR model. Our results show that 26% of the states
(BA, RN, DF, MG, RJ, RS and SC) presented a noticeable change in
the TR up to 15 days after the implementation of the first NPI, 40.7%
between 16 and 30 days, 14.8% (PA, PB, PE, PI) between 31 and 45
days and the remaining 18.5% (AC, RO, RR, AL and MS) of the states
had a TR change only more than 46 days since the first implemented
measure. Estimate TR changes occurred first in capitals, followed by
inland cities (Supplementary Table 4).

The dynamic behavior post intervention can be classified into DDD,
DDI, DID, IDI and III, corresponding to decrease or increase in TR in
the state as a whole, capital and inland, respectively. Around 62% of
the states presented a DDD behavior, that is a decrease on the TR in
the state, capital and inland cities. These states had an average TR
decrease higher in the capitals (−49.67%) compared to the inland cities
(−40.43%). The states of AP, RO, AL and RS (14.8%) displayed a DDI
pattern, with an increase in cases observed for inland cities in May,
2020. On the other hand, the states of PI and SC showed an increase
of the TR in capitals and an observed decrease in both state-level and
inland cities (DID pattern). AC was the only state with an IDI pattern,
while the remaining states (TO, SE and MS) presented with an III
pattern. However, TO and SE later resembled a DDD pattern with a
second change in TR. Furthermore, all states with an increase in TR in
any of its regions (state, capital or inland cities) had either an ID or IS
for the stringency index (as noted in the previous subsection).
7

In Fig. 1B we show values for the basic reproduction number for
each region. The lowest values of 0 were for the regions that presented
an increased TR, as showed before. For instance, TO and SE presented
values of 0 < 1. This indicates the lower transmission in the early
stage of the disease spread in these states. The state of MS, that also had
and III pattern, and the inland cities of SC all had the following lowest
values of 0 (less than 1.5). The inland cities of AC, AL, RO and RS
showed values between 1.5 and 2. The remaining states that presented
with a DDD pattern for the TR had 0 > 2. Additionally, we can see
that states that implemented the measures before the first reported case
usually experienced delayed changes in the TR (after 8 April) compared
to the remaining states and, with exception of AP, these states were the
ones with an average lower value of 0 as well.

To conclude, changes in the TR also impacted on the effective
reproduction number causing an average reduction of −56.44% in
capitals and of −46.43% in inland cities, after the first TR change In
Fig. 4 we show this impact for each state, their capitals and inland
cities. Although a decrease in the average 𝑡 after the first TR reduction
was observed in most of the states, in none of the regions the values
of 𝑡 fell below one. Moreover, after the first TR change, the average
level of 𝑡 was equal to 1.86 in the inland cities compared to 1.53 in
capitals.

More details regarding the fitting of the data to the SEIR model
produced in this work can be found in the supplementary web-page,
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Fig. 4. Impact of measures and popular adherence on the effective reproduction number in each Brazilian state. The plot depicts the decrease of the average of 𝑡 before and
after the first TR change.
for both capitals and inland cities of each state, as well as the entire
state (Supplementary Figure 4). We highlight, in each plot, as vertical
dashed red lines, the dates of transition from 𝛽0 to 𝛽1 (and 𝛽1 to 𝛽2,
when applicable) (Supplementary Figure 4B). The blue dashed and full
lines represent the evolution of the epidemic with a fixed transmission
rate 𝛽0 and with both 𝛽0 and 𝛽1 (where 𝛽2 is included when suitable),
respectively (Supplementary Figure 4B). The effective reproductive
number is also presented for each state, capitals and inland cities
(Supplementary Figure 4C). The black line represents the 𝑡 calculated
with reported number of new cases; the blue dashed line represents
the 𝑡 calculated with the new number of simulated cases obtained
from the model. The variation of the TR highlights the variations
of the trends of the effective reproductive number. Also shown are
the estimates for stringency for each region and state (Supplementary
Figure 4D), the moments of changes in 𝛽 (Supplementary Figure 4D)
and the goodness-of-fit (Supplementary Figure 4F), along with tables
describing all these results (Supplementary Figure 4G). Finally, post
assessment for all fit performances are available to evaluate reliability
of the forecasts for a 15 day-period beyond May 22.

4. Discussion

In this work we evaluated the effects of non-pharmaceutical inter-
ventions and social mobility reduction patterns on the spread dynamics
of SARS-CoV-2 throughout the 27 Brazilian states, by employing an
underlying SEIR model to estimate the transmission rate of SARS-CoV-
2. Our results show that the measures adopted, combined with the
population adherence to restrict circulation (and therefore decrease
contacts), contributed to the lowering of the TR in almost all states, an
effect that was perceived in both capitals and inland cities. However, in
spite of the continued maintenance of governmental restrictions in most
regions, population adherence to isolation recommendations gradually
decreased over time, even with the expansion of cases throughout the
country. This was reflected in the (𝑡) values, which we observed to
have decreased in all states, but still insufficiently to consider SARS-
CoV-2 transmission controlled in the country, as it remained above 1
for all Brazilian states, capital and inland cities in the studied period.
8

Thus, public cooperation constitutes a particularly important challenge
for tackling COVID-19 in low- and middle-income countries.

The analysis performed on the sub-measures implemented reveal
that the Brazilian states lacked to endure measures restricting trans-
portation (or did so in a very lax manner), strict lock-downs (as adopted
by other countries), and even the mandatory use of masks at some
places, the latter a low cost measure that plays an important rule
to reduce the spread of the disease. Such restrictive policies have
shown to significantly decrease the number of cases, deaths, and viral
transmission in other countries (Tobías, 2020; Alfano and Ercolano,
2020). On the other hand, the economical costs imposed by harsher
interventions is even more burdensome to developing countries, where
large economical segments rely on consumption and services, usually
involving physical contact, such as informal workers, tourism, service
and retail businesses.

Once the entry of the virus was confirmed within each state, the cap-
itals were the most affected initially, as shown by others as well (Can-
dido et al., 2020; Candido et al.). Then, viral spread continued at
different rates, with most of inland cities presenting an average ef-
fective reproduction number higher than the capital after the first
TR change. This is a concerning trend considering the large inequal-
ities in the access to health services as well as their distribution in
Brazil (Travassos et al., 2006; Garcia-Subirats et al., 2014), which tend
to concentrate near state capitals. We also observed that downward
changes on TRs occurred first in the capitals, followed by the remaining
cities. This effect can also be due to the flux between cities, which
was not accounted in our modeling approach. Accordingly, the TR
observed in capitals should also affect that of inland cities, as suggested
by a meta-population compartmental model (Costa et al., 2020), but
the possibility of further waves of COVID-19 in these smaller cities,
particularly with the lifting of measures, should not be ruled out.
These results highlight the major role of state capitals as seeding spots,
followed by the entry of cases towards smaller, inland cities. Capitals
also tend to centralize international airports, ports, population density
and industries (Jesus et al., 2020; Xavier et al., 2020; Candido et al.;
Forster et al., 2020).

We identified common trends in the stringency index that allowed
the disclosure of three patterns, with the majority of states conforming
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to an increase-and-steady pattern, in which the set of governmental
policies adopted remained unaltered over time. States that enforced
and maintained mitigation measures were likely to observe a less
pronounced relaxation of stay-at-home advises by their population, as
measured by the SMRI. These results suggest the intimate relationship
between the magnitude of governmental measures and the popula-
tion adherence to such measures, particularly since higher values of
stringency implicate in decreased opportunities of public activities.
However, individuals throughout all states, in both capitals and inland
cities, still reduced their adherence to social isolation in the course of
time. The politicization of COVID-19 in Brazil (Lancet, 2020) could
have had an impact on people’s behavior and compliance with san-
itary recommendations, particularly when individuals downplay the
health risks imposed by SARS-CoV-2, as has been suggested for other
countries (Rothgerber et al., 2020).

We also observed that even in states that conformed to an increase-
and-decrease stringency index pattern, at least a part of the population
still maintained adherence to isolation. More studies are warranted to
evaluate if this trend associates with specific age-groups, such as the
elderly, employment status, such as individuals that have the possibility
to continue working from home, education level or perception of risks
around COVID-19.

The present study confirmed the findings about early implementa-
tion of interventions to mitigate the disease spread (Dehning et al.,
2020; Flaxman et al., 2020). In fact, the states that anticipated the
enforcement of restriction measures were the ones with lower value
of 0, representing a more controlled situation if compared to the
other states. Nevertheless, with few exceptions, most of these states
were classified as having an ID or IS pattern of mobility, and therefore
the efforts were not sufficient to bring the transmission rate to control
levels, as assessed by the 𝑡 series. However, even with late TR change
etection in these states, overall delays must be noticed. In fact, in the
cenario of an unfolding epidemic, the delay in notification systems
mpacts the perception of the usefulness of implemented measures. Our
esults reveal the magnitude of this perception, where only 26% of
he states showed a change on the TR with a maximum delay of 15
ays for the perception of the first peak of enforced policies, with the
emaining states having a significantly larger delay. These results call
ttention to this problem and highlight the importance of improving
he surveillance system to better evaluate the impact of implemented
easures and optimize their strictness specially in countries with very

ow resource levels.
Our work has some limitations. First, in order to estimate TRs

and changes thereof) we relied upon a generalized form of the SEIR
odel which explicitly considers asymptomatic/non-detected infec-

ions. Thus, albeit the estimates of model parameters (or their re-
pective search intervals) were informed by the literature for other
ountries, they could be different from the reality of the ongoing
pidemic in Brazil. However, while the true extent of SARS-CoV-2
ransmission by asymptomatic/non-detected and pre-symptomatic indi-
iduals is still debated, current reports conclude that it is an important
oute of transmission (Li et al., 2020b; He et al., 2020; Nishiura et al.,
020). It is important to note that levels of COVID-19 detection may
ary over time due to the differing testing capacity of each region, a
ata that to our knowledge is currently unavailable for the country.
ur model reflects this phenomenon by the parameter 𝑝. However,

the availability of data about the number of tests performed over time
is a limitation. Also, there are noticeable notification delays that also
present with different magnitudes throughout the regions in Brazil. In
fact, Brazil has a total of 5,570 municipalities, this generates hetero-
geneities on the reporting date of the case notification. A systematic
analysis to infer the reporting delay would require availability of
data to at least measure a mean report delay interval, as others have
done (Dehning et al., 2020). Additionally, this delay may change over
time due to improvement or deterioration in the healthcare system.
9

These are key points that should be included to overcome this type of i
bias and correctly estimate its uncertainties. This limitation may impact
on the perception of the implemented measures as well as compromise
the planning of new ones. However, our work further motivates the
importance of an improved notification system for Brazil and other
countries, which will contribute to better mitigate the current and
future pandemics.

We used mobility data from mobile phones as proxies of social isola-
tion as measured by the SMRI. In particular, the sample space of devices
monitored using this technology cannot be considered a representative
population sample, as state/cities with superior economic status will
probably exhibit increased technology adoption by their populations,
leading to better accuracy of the mobility patterns in these regions.
This is in contrast to rural areas, for instance, where mobile phone
usage is limited (Malaquias and Silva, 2020). However, considering the
general widespread use of mobile phones in the country (with estimates
that 60% of adults report owning a smartphone (Pew Research Cen-
ter, 2019)), the general trends observed in our work should not be
drastically altered by more accurate measurements of social mobility
reduction. Lastly, the evaluation of all measures enforced is not trivial,
and in our work we have only included the use of mask as health
etiquette policies, with other NPIs such as sanitary cleaning of public
and private places, the obligatory availability of 70% alcohol in stores,
as well as economic measures such as emergency payments for the
self-employed, reduction of taxes and others were not evaluated. Still,
proper evaluation of these categories should be assessed.

In sum, our results point to the importance of timely deployment
of interventions in curbing the first-wave of the COVID-19 epidemic
in Brazil. Yet, population adherence represents a crucial factor for the
success of this effort and represents a major challenge in low- and
middle-income countries.
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