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Abstract: Bacillus Calmette–Guérin (BCG), an attenuated vaccine from Mycobacterium bovis, was
initially developed as an agent for vaccination against tuberculosis. BCG proved to be the first
successful immunotherapy against established human bladder cancer and other neoplasms. The
use of BCG has been shown to induce a long-lasting antitumor response over all other forms of
treatment against intermediate, non-invasive muscle bladder cancer Several types of tumors may
now be treated by releasing the immune response through the blockade of checkpoint inhibitory
molecules, such as CTLA-4 and PD-1. In addition, Toll-Like Receptor (TLR) agonists and BCG are
used to potentiate the immune response against tumors. Studies concerning TLR-ligands combined
with BCG to treat melanoma have demonstrated efficacy in treating mice and patients This review
addresses several interventions using BCG on neoplasms, such as Leukemia, Bladder Cancer, Lung
Cancer, and Melanoma, describing treatments and antitumor responses promoted by this attenuated
bacillus. Of essential importance, BCG is described recently to participate in an adequate microbiome,
establishing an effective response during cell-target therapy when combined with anti-PD-1 antibody,
which stimulates T cell responses against the melanoma. Finally, trained immunity is discussed, and
reprogramming events to shape innate immune responses are addressed.

Keywords: BCG; cancer; trained immunity

1. Introduction

Cancer is a leading cause of death, with about 9.6 million deaths and 18 million new
cases worldwide [1]. The study of Bacillus Calmette–Guérin (BCG) anti-tumor activity
began in 1929 when Pearl (1929) [2] observed a lower frequency of cancer in necroscopy in
patients with tuberculosis at Johns Hopkins Hospital. Thus, from 1959 onwards, the use of
BCG in oncology was proposed based on experimental studies in mice that showed more
(or higher) resistance to tumor implantation in animals treated with BCG [3] and several
studies on the anti-tumor effect of BCG have been developed [4–8].

BCG is used as a vaccine obtained from an attenuated strain of Mycobacterium bovis,
developed from an initially more virulent strain, and described by Calmette and Guérin
(1908, Pasteur Institute) [9]. All BCG preparations worldwide are derived from this original
strain [10]. Developed initially as an attenuated agent for vaccination against tuberculosis,
BCG has been described as responsible for the non-specific increase in the immune system’s
activity responding to a variety of neoplasms, causing them to regress at experimental
levels [11]. BCG was initially described as an agent that produces a potent intra-tumoral
cellular inflammatory response that somehow would induce tumor-shrinking.
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2. Bladder Cancer

Bladder cancer (BC) is the second most common type of urinary tract cancer, ranking
fourth (10% of cases) in men and eighth place (4% of cases) in women [12]. Although there
are familial case reports, it is known that BC’s occurrence is more related to exogenous
factors than to genetic factors. Among the risk factors, smoking is the most significant, with
about 50% males and 35% females [12]. In addition, environmental exposure to tobacco
smoke increases urothelial developing BC’s risk [13]. Tobacco contains aromatic amines
and polycyclic aromatic hydrocarbons, excreted by the kidneys [14].

With about 10% of all cases, the second most significant risk factor is occupational
exposure to polycyclic aromatic hydrocarbons, chlorinated hydrocarbons, and aromatic
amines. Exposure is mainly due to industrial causes for processing paints, dyes, metals,
and petroleum derivatives. Thus, to minimize the risks, occupational safety guidelines
have been implemented in developed industrial environments [14].

The BCG vaccine’s anti-tumor effect hypothesis emerged in the early twentieth century
when researcher Pearl (1929) [2] observed a lower frequency of cancer in necroscopy of
tuberculosis patients at Johns Hopkins Hospital. BCG cancer therapy began to be used
and studied in 1930, and from this, its antitumor effect was demonstrated in clinical and
laboratory trials in malignant cell lines [4–7]. Morales and colleagues (1976) [8] were the
first to report BCG’s effectiveness as an adjunct therapy in superficial bladder cancer. They
conducted the first clinical trial administering intravesical BCG to patients with urothelial
bladder cancer once a week for six weeks. The treatment was not only the first successful
immunotherapy confirmed against an established solid human cancer, but it proved to
be lasting over all other forms of medical treatments for intermediate and high-risk non-
invasive muscle bladder cancer [15]. The results were impressive, showing a decrease in the
recurrence rates of the disease. Then, with more advanced studies from the Southwestern
Oncology Group (SWOG) and the Memorial Sloan–Kettering, Morales’s proposed scheme
of intravesical BCG therapy for muscle-invasive urothelial BC came to be accepted and
applied [16,17]. Studies to evaluate other BCG strains, including the Moreau-Rio de Janeiro,
in patients with superficial bladder cancer stratified by risk groups gave similar results
to different strains worldwide [18,19]. The fact that BCG is a living organism and its
antineoplastic activity mechanisms are immunologically mediated addresses challenges to
understand how BCG works in these systems [20–24].

Furthermore, specific T cell activity against tumor cells has been studied [22,23].
After BCG intravesical treatment on an experimental study of bladder cancer, the authors
detected a higher number of CD4 T-cells infiltrating the tumor (TIL) and correlated it with
increased IFN-γ by these specific CD4 T cells. They suggested that the BCG-treated mice
increased longevity was related to tumor-intrinsic IFN-γ signaling, since class II-MHC was
not necessary to be present in the infiltrated tumor [23].

Non-invasive muscular bladder cancer (NMIBC) comprises cancer affecting the mu-
cosa classified as Tumor categories (T) and in very early stages are known as Ta (non-
invasive papillary carcinoma) and Tis (carcinoma in situ) [25,26]. In these early stages,
transurethral resection (TUR) can easily remove the tumor. An invasive submucosa form is
classified as the T1 stage, where cancer spreads to the connective tissue without involving
bladder wall muscle [26,27]. Despite the increased incidence of bladder tumors in recent
decades, survival has improved with advances in therapy. The treatment of superficial
bladder cancer considers that the gold standard is TUR. However, there is a risk of recur-
rence (60–90%) and disease progression (30%) [28]. Thus, intravesical chemotherapy and
BCG immunotherapy are indicated. BCG instillations are currently considered standard
therapy for non-invasive high and medium-risk muscle bladder cancer (NMIBC) [26].

Recently, a recombinant diadenylate synthase gene (disA)-overexpressing BCG strain
called BCG-disA-OE was developed [29]. The disA gene is expressed at low levels in
wild-type BCG strains. The overexpression of the diadenylate synthase gene allows the
microbe to release large amounts of the STING (stimulator of interferon genes) agonist
c-di-AMP1. STING is part of the cytosolic surveillance pathway (CSP) and responds to
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DNA and cyclic dinucleotides aberrantly present in the cytosol [29–34]. STING stimulation
activates the production of type I interferon and NF-kB-dependent immune responses,
increasing dendritic T cell-priming and the recruitment of effector T cells [35]. Preclinical
studies show an augmented antitumor activity of the recombinant BCG compared with the
wild-type BCG in experimental bladder cancer models [35].

Although BCG is considered the standard therapy for individuals with NMIBC, it
has a counterpoint to the high recurrence rates and, in some cases, the bladder removal
due to the lack of response. A recent study showed that patients with NMIBC revealed
an impressive improvement in BCG response when immunized percutaneously before
intravesical γδ T and NK cell’s weak cytotoxic responses were reported and associated with
poor local BCG responses, a situation reversed by previous systemic immunization [36].
Therefore, the search continues for advances in BCG immunotherapy and mechanisms of
action [37].

3. Leukemia

Leukemia refers to malignant disorders characterized by the increased number of
leukocytes either in the blood or bone marrow. The types of leukemia are called basically
according to the affected cells. Chronic lymphocytic leukemia (CLL), for example, may
account for mature cells, acute leukemia, a precursor of various cell-lineages, whereas
chronic myeloid leukemia (CML) cells may be mature [37]. Leukemia cancer incidence
reached ninth in the ranking of deaths in 2015 and ranked eighth in cancer incidence
globally in the same year. In 2015 there were 606,000 new cases of leukemia worldwide
and 353,000 deaths. One in 87 men than 1 in 137 women developed leukemia between ages
0 and 79 globally [38]. According to the Brazilian National Cancer Institute (INCA, Rio de
Janeiro, Brazil) (2018) [39], there were 10,800 new cases of leukemia in 2018, 2.8% in men
and 2.4% in women, in Brazil. In children and adolescents, leukemia is the most common
cancer [39].

There are several risk factors for developing leukemia in genetically predisposed
individuals, such as paternal smoking, ionizing radiation during prenatal and postnatal
life, exposure to domestic pesticides and benzene, all potentially carcinogenic [40]. Various
infections are related to cancer development during childhood, and vaccination is indicated
to avoid an increase in cancer cases [41]. Some hematological diseases are related to a viral
origin, and the retrovirus human T-cell lymphotropic virus 1 (HTLV1) was a causative
factor for adult T-cell leukemias and lymphoma. Thus, childhood leukemia might have
an infectious, possibly a retroviral cause. Greaves describes that between the hypotheses
studied, the most common is that one or more infections are acquired during childhood
socio-demographic circumstances, causing leukemia [41].

Thus, recently, Morra et al. (2017) [42], in a meta-analysis study, sought to evaluate
the association between vaccination and childhood leukemia. The vaccines studied were
BCG vaccine, hepatitis B vaccine (HBV), Haemophilus influenza type B (HiB) and measles,
rubella, mumps (MMR) trivalent vaccine. Among the vaccines analyzed, they observed
a protective association of BCG vaccine in the first year of life and childhood leukemia
risk. These results attract a motivating factor for the development of further studies of the
anti-tumor effect of BCG.

4. Lung Cancer

Lung cancer (both small cell-SCLC and non-small cell-NSCLC) is the second most
common cancer [43] and is among the most frequently diagnosed cancers. However, it
has low overall survival and is responsible for the highest number of deaths due to poor
prognosis and difficult early detection [44]. Smoking is the major risk factor for lung can-
cer development resulting in approximately 80% of deaths [43]. The association between
chronic inflammation and the increased risk of cancer development is well described [45,46].
Although about 20% of cancers are related to chronic inflammation, innate immune cells
and mediators are found in most human neoplasms [45,47]. This inflammatory microenvi-
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ronment comprises tumor-infiltrating inflammatory cells, tumor-associated fibroblasts, as
well as endothelial progenitor cells [46,48]. Tumor and host cells produce cytokines and
chemokines in this microenvironment, allowing the coordination of a self-limiting immune
response [49]. It was then hypothesized that the immunomodulatory effect of BCG is a
stimulating alternative microenvironment. Azuma et al., (1971) [50] in the 1970s identified
and isolated a bioactive component of the BCG cell wall called the BCG cell wall skele-
ton (BCG-CWS). However, these results aroused more significant interest in the scientific
community to understand the BCG-CWS components responsible for its adjuvant cancer
action. In the late 1970s, Yasumoto et al. (1979) [51] and others [52] observed increased
survival of BCG-CWS-treated subjects compared to the control group in a clinical study on
lung cancer or of BCG on melanoma patients [24]. Years later, the clinical application of
BCG-CWS began in immunotherapy for lung and gastric cancer [52,53].

It was also described that BCG has critical components to stimulate the immune
response, such as mycolic acid, arabinogalactan, peptidoglycan, and these substances
are natural ligands for TLR2 and TLR4 receptors (TLRs) [54]. Recognition of these BCG
wall components by pattern recognition receptors (RRPs), TLRs, and C-type lectin re-
ceptors (CLRs) stimulate differentiation of dendritic cells (DCs) into antigen-presenting
cells (APCs) [55]. Cytokine and protein production occurs by these cells and may induce
inflammation and an adaptive cellular immune response [55]. Therefore, preclinical can-
cer vaccine studies using BCG-CWS have shown their practical immune adjuvant effect
by inducing tumor-specific T cells to a degree sufficient to eradicate established mouse
tumors [56,57]. Among these vaccines is the peptide vaccine using a tumor-associated
antigen peptide (TAA). Many TAAs have been identified and used as therapeutic cancer
vaccines [57,58]. The most promising TAA is the Wilms tumor gene product (WT1), which
is highly expressed during acute leukemia and found in various hematopoietic types of neo-
plasms. Therefore, it is a useful marker for targeted immunotherapy [59]. Recently, Nishida
et al., (2019) [60] performed a phase I dose-escalation study of BCG-CWS in association with
WT1 peptide in patients with advanced cancer. They observed good tolerance to the admin-
istered dose of BCG-CWS and clinical effects in several patients bearing advanced cancer,
including non-small cell lung cancer (NSCLC) and melanoma. Differentiation of naive
CD4+ T cell-subset to the memory phenotype was observed in some patients, resulting in
an antitumor response. The immunomodulatory activity of BCG-CWS and consistent anti-
tumor response may suggest a blockade of tumor immunosuppressive microenvironment.

5. Melanoma

Since the 1970s, melanoma is considered the leading cause of death from skin cancer
and has increased [1]. It is the most aggressive among dermatological cancers, representing
4% [61]. The invasive behavior of breast cancer and melanoma cells seems to be reminiscent
of their origin in the neural crest [62]. Its development is related to several genetic and
environmental factors, such as excessive exposure to ultraviolet radiation associated with
its high metastatic potential [63].

The diagnosis of melanoma is made by dermoscopic examination and advanced com-
puter digital imaging techniques, followed by confirmation by biopsy and histopathological
examination to classify the staging. Approximately 50% of melanoma cases have a muta-
tion in the BRAF V600E gene, contributing to tumor growth, angiogenesis, and metastatic
progression [63,64]. The mutation resulting from the V600 K is the most observed [65],
leading to activation of the MAPK pathway, which regulates average growth and survival
cells [66–68]. Thus, these mutations and epigenetic changes promote and stimulate the
secretion of growth factors that contribute to cell proliferation, angiogenesis, changes in
the extracellular matrix, and metastasis [69].

Since melanoma has a high probability of inducing metastases and spreading to other
organs, several therapeutic trials are being followed [70,71]. Treatment for metastatic
melanoma (MM) is based on systemic therapy, radiation therapy, and surgery. However,
no increase in patient’s survival with these treatments was observed, causing adverse
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effects [72]. Thus, the search for new therapies to reduce the metastatic potential has
created space in the scientific community. Since 2011, the FDA (USA) has approved ten new
candidates, including targeted therapies, immunotherapies, and cancer vaccines [71,73].
Although advances have been made, these therapies still have certain limitations, such as
low response rates, side effects, and resistance [74].

Other immune effectors, such as macrophages, and T cells, have been suggested
to participate in BCG immune response [20]. In studies published in 2017 by Lardone
and collaborators [20], BCG has been shown to alter the melanoma microenvironment by
favoring a T cell response against the tumor. For this reason, it is essential to study the
characteristics of the immune response mediated using BCG in melanoma.

As previous results in the use of BCG in melanoma, in studies by Morton (1974) [24],
about 90% of the malignant nodules regressed in immunologically competent patients.
Occasionally, the malignant nodules found in distant places where BCG was inoculated
also regressed in some patients [29]. In this study, a patient (meaning 40%) remained
completely tumor-free for two years. It was concluded that patients who received the BCG
vaccine might have a lower recurrence rate and a higher survival rate than those treated
elsewhere, without the vaccine. However, some of the potential dangers of this type of
therapy can be emphasized [24]. BCG injections can result in fevers, chills, and abscesses at
the injection sites [75]. These side effects have been reported after repeated administration
of large doses of the vaccine [76]. Lowering this vaccine’s amount can bring beneficial
results to the patient and should still be tested [28].

The study of cellular populations involved in antimelanoma response and functional
activities is fundamental to elucidate the mechanisms involved in new satisfactory im-
munotherapy. Adjuvant therapies together, such as the imiquimod (IMIQ) reagent, a
TLR-7/8 agonist associated with BCG, are being tested, evaluating the efficacy and ability
of combined treatments to modulate the immune system response better [75]. Preclinical
studies employing the combination of IMIQ with a Listeria monocytogenes-based vaccine
have shown a drastic increase in local and systemic antimelanoma immunity [77]. In these
preclinical studies, both the Listeria vaccine and the IMIQ individually offered partial
control of local tumors and pulmonary metastases. Still, the combination led to a profound
rejection of the tumor in a highly reproducible manner [75,77].

In humans, the common side effects of the combination of BCG and IMIQ were mild
pain, in the site reaction (moderate erythema, induration, and ulceration), and moderate
fevers [75]. Inflammatory responses to IMIQ induced similar local toxicity. There were no
adverse events related to treatment, and there were no cases of systemic BCG infection.
Because the results for this small series of stage III patients are surprisingly favorable,
additional clinical and laboratory evaluations are needed to determine whether this combi-
nation induces systemic immunity. Regional control of the tumor with this combination
was excellent, and with selective surgical resection, 78% of the patients achieved complete
and durable control of the disease. In addition, no patient in this series of studies died
of melanoma.

Kidner et al. in 2013 [75] reported the combined use of IMIQ with intralesional
inoculated BCG (IL-BCG) in nine patients with stage III melanoma. Three of the patients
underwent resection of resistant solitary lesions. These resections were performed during
the regression of other disease sites, and the three patients had complete resolution of
melanoma. Until the last follow-up, six patients remained without evidence of disease.
Following studies, one patient developed additional lesions in transit after seven months
and then had to receive different local immunotherapy with a combination of IL-BCG
and IMIQ. Another patient recalled the disease in transit after 34 months, and another
developed pulmonary metastasis after 12 months. Two patients died of non-melanoma-
related causes after 17- and 55-months post-treatment.

Since all treatments commonly used in advanced melanoma cases, such as chemother-
apy, radiotherapy, and vaccines, have resulted in a few cure cases, early diagnosis remains
the main objective in managing patients with melanoma, aiming to cure [78]. Although
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recent efforts try to bring more effective therapies in metastatic melanomas (or not), promis-
ing treatments are in the final clinical trials phase [77]. This area’s results have been
attributed to two main approaches: immunotherapy and target therapy as fundamental to
understanding the cellular mechanisms involved in these approaches through experiments
that indicate a better prognosis for melanoma patients.

The specific blocking of checkpoints during immunological therapies has been used
for the treatment of advanced melanoma. Target tools that inhibit target molecules have
been developed, such as the 04-Antigen associated with cytotoxic T lymphocytes (CTLA-4)
and the programmed death axis PD-1/PD-L1 [79]. As CTLA-4 inhibitors, the anti-CTLA-4
antibody inhibits CTLA-4-binding of T cells to the CD80 (B7.1) and CD86 (B7.2) APC
ligands. This intervention can restore T cell proliferation and develop an effective immune
response to Tumor-Associated Antigens (TAAs) [80]. The treatment with Anti-CTLA-4
antibodies (Ipilimumab) was the first among treatments with immunological blockers to
inhibit the action of CTLA-4 in the immune tolerance to tumor cells. This treatment was
approved in 2011 by the FDA in four doses of 03 mg/kg every three weeks in patients with
stage III metastatic melanoma tumors [79,80].

It has also been previously reviewed that several inhibitors of responses against the
tumor promote inactivation or cell death during the immune response [81]. Regarding
PD-1 inhibitors, the Anti-PD-1 antibody has the function of binding to the PD-1 recep-
tor in activated T cells and inhibiting the PD-1/PD-L1 interaction, stimulating T cell’s
response against the tumor. In 2014, the FDA approved two treatments with Anti-PD-1
(pembrolizumab and nivolumab) to treat patients with advanced melanoma [71]. PD-L1
inhibitors are antibodies that also block the PD-1/PD-L1 axis. PD-L1 is expressed in tumor
cells, inhibiting T cell activation by recognizing and interacting with PD-1 of them [71].

Tumors, such as melanoma, express high levels of PD-L1 correlated with lympho-
cytes infiltrated into the tumor. There are three treatments related to PD-L1 inhibitors
(atezolizumab, avelumab, and durvalumab), which are currently approved for treatments
of several malignant neoplasms. Clinical research has suggested that response rates of pa-
tients with melanoma treated with Ipilimumab alone are 15%. However, with Ipilimumab
combined with an anti-PD-1 therapy was improved to 35–40% [71,80,82]. Checkpoint
inhibitors may not induce effective antitumor immune responses in the majority of pa-
tients [83]. A better antitumor activity may be related to cancer neoantigen’s appearance
generated by tumor gene mutations during the treatment [84,85]. However, factors beyond
genomics, such as the microbiome, are involved in the immune response to developing
melanoma [86,87]. For instance, studies demonstrate that the gut microbiota modulates
the response to anti-PD-L1 in patients, and an appropriate microbiome can assist these
blocking therapies [86,87] Furthermore, germ-free mice were reconstituted with fecal mate-
rial from patients that responded positively to a checkpoint blockade therapy [86]. This
treatment improved tumor control, causing increasing T cell responses and greater efficacy
of anti-PD-L1 therapy [86]. Therefore, the presence of specific microbes in the microbiome
would favor the activation of cross-reactive T cell effectors that could help control tu-
mor growth. Moreover, diet components could act as immune modulators by providing
cross-reactive peptides between food proteins and self-antigens, influencing the T cell reper-
toire composition and activation upon checkpoint inhibitor treatment [88,89]. Of course,
peptide cross-reactivity would be dependent on the Human leukocyte antigens/Major
Histocompatibilty (HLA/MHC) haplotype association [90,91]. The recent demonstration
of microorganisms from the microbiome, infecting tumor cells and microorganism-derived
peptides being presented to T cells by tumor cells themselves, opens up another interesting
hypothesis to explain the differential effects of checkpoint inhibitors among patients with
different microbiomes [92].

New strategies that enhance therapies against metastatic melanoma (MM) have been
studied using BCG.As mentioned earlier, BCG’s clinical application in immunotherapy for
melanoma started in the 1970s with BCG-CWS, a bioactive component of the cell wall that
is a robust immunological adjuvant for immunotherapy [60].
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BCG is currently used as an immunotherapeutic by intralesional injection to treat MM
at various stages and can be administered alone or associated with a vaccine or autologous
tumor cell medication [61]. Exciting results have been observed and included other cancers,
such as melanoma and stomach cancer, for local and regional tumor regression with
improved patient survival [57]. A study of the association of BCG with Canvaxin™, an
allogeneic vaccine, after complete resection in patients with stage IV melanoma, resulted
in antitumor immune responses and an overall survival rate of 39% over five years [93].
In 2017, Faries et al. [94] performed this same study model in 246 patients with stage IV
melanoma. A 5-year survival rate of 39.1 was observed with BCG/placebo, while with
BCG/Canvaxin™ of 34.9 months, showing that BCG shows the primary responsibility for
the increased survival rate.

Recently, Nishida et al., (2019) [60] conducted a study administering BCG-CWS as
an immune adjuvant, along with tumor-associated antigen-specific peptides (TAA) in
18 patients with advanced solid cancer, 7 of whom had MM. In this work, the effects
of BCG-CWS on the immune system of patients with advanced cancer, mainly adaptive
cellular immunity and the immunological phenotypes of T-cell subsets, were evaluated.
An increase in neutrophils and monocytes was observed as a function of the time suspected
to be related to BCG-CWS doses (50 mg, 100 mg, and 200 mg). Furthermore, there was an
induction and differentiation of CD4+ T cells through direct activation of innate immunity.
It is important to note that BCG products have immunomodulatory effects because they
contain several unique bioactive components capable of influencing the immune system
through various types of pattern recognition receptors (PAMPs) [95,96]. In this way,
the maturation and differentiation of DCs occur in professional APCs, which indirectly
activates the functional differentiation of antigen-specific CD4+ T cells and stimulates the
antigen’s cross-presentation to CD8+ T cells [97]. Therefore, based on these results, we can
observe a promising role of BCG in cancer.

BCG induces type I IFN and results in signaling and APC activation. This inflam-
matory axis could also restrain tumor growth. It was shown, in melanoma patients, that
type I IFN is a transcriptional signature associated with tumor-infiltrating T cells, playing
a crucial role in tumor-initiated T cell priming–infiltrating T cells [98,99]. The binding
of cyclic dinucleotides (CDNs) also results in an inflammatory cascade involving TBK1
activation, IRF-3 phosphorylation, and type I IFN and other cytokines [30,32].

Therefore, BCG’s mycobacteria could act as a non-specific adjuvant, improving T-cell
response against melanoma in association with other microorganisms that may impact
antitumor immunity in human cancer patients, as discussed above [86,88,100–102]. In
another study using melanoma patient’s materials, T cell clones recognizing naturally
processed cancer antigens that are cross-reactive with microbial peptides were found. This
cross-reactivity was shared between tumor MHC class I-restricted antigens and an entero-
coccal bacteriophage [90]. Mycobacteria also share antigens with human tissue, accounting,
in part, for the production of autoantibodies in mycobacterial infections. Mouse mono-
clonal anti-M. bovis antibodies were found to recognize autoantigens, such as thyroglobulin,
myosin, actin, and collagen [101]. It is important to note that BCG therapy can induce
systemic autoimmune phenomena, particularly arthritis [103]. The mechanism of action
of BCG-induced arthritis is not entirely known. The most likely explanation is based on
experimental studies of adjuvant arthritis through a molecular mimicry [104]. In BCG-
treated bladder cancer patients, urothelial cells had strong MHC class-2 antigens (HLA-DR)
expression, which persisted several months after therapy, suggesting continuous CD4 T cell
activation by antigens shared between mycobacterium and cartilage proteoglycan could be
responsible for autoimmune arthritis [102]. Therefore, a cautionary note should be made,
considering the potential risk of long-term autoimmune disease development, especially
when genetically modified BCG strains are used.
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6. BCG’s Trained Immunity in Cancer

Trained immunity is related to innate immune cells that develop durable, func-
tional modifications similar to immunological memory. Epigenetic changes and cellular
metabolism cause these modifications. For trathis to occur, it is necessary to mobilize
gene sequences with regulatory elements [105]. Training immunity is needed to mobilize
myeloid cells after BCG [89], beta-glucans [106], and bacterial lipopolysaccharide (LPS)
stimulation [107,108]. How innate cells develop long-lived innate immune responses with
memory is not entirely understood. It is known that long-lived memory in hematopoi-
etic cells that produce trained immunity involves genetic reprogramming and autonomic
plasticity [108,109]. The innate immune response’s memory can be induced by epigenetic
factors, regulation of transcription factors, and genetic reprogramming to be long-lived in
the circulatory system [110]. Kaufmann et al., (2018) demonstrated that BCG also induced
long-term changes in myeloid cell-progenitors through trained immunity [105].

Like TLRs, BCG could modify progenitor cell populations with new open chromatin
regions that persist [110]. It has been described that the cells of the innate response develop
genetic reprogramming dependent on an enhancer-binding protein β (C/EBPβ) induced
by LPS and Gram-negative bacteria [108]. Thus, short-term cell signaling would cause
gene-specific chromatin modifications dependent on C/EBPβ, leading to the induction
of hematopoietic cells with trained immunity and immune memory. In hematopoietic
cells from C/EBPβ-deficient mice, the innate immune memory response and epigenetic
changes are not evident. However, the cell phenotype and gene expression profile are
indistinguishable from untreated wild-type control animals [108].

Innate immune cells, such as macrophages, monocytes, and NK cells, can develop long-
term reprogramming by activating danger recognition receptors (DAMPs), PAMPs, and
TLRs involving epigenetic mechanisms [111]. Similar to a classical immunological memory,
NK cells undergo a secondary expansion after restimulation, degranulate faster, and
produce cytokines inducing a protective immune response [112]. It is also proposed that NK
prime monocytes in the bone marrow, inducing long-term immune responses contributing
to innate immunity [113]. According to Netea et al. (2016) [110], the innate immune cells
with enhanced epigenetic status present persistence of histone marks determining latent
enhancers-like, resulting in more robust activation in response to restimulation.

The fact that the epigenetic modifications of innate immunity cells persist is indica-
tive that this functional state can be somewhat trained to the immediate increase in pro-
inflammatory response, probably soon after a second contact with similar molecules during
BCG primming. The regulation of central cell metabolism acts on epigenetic enzymes
produced from transcription factors in the nucleus. After the initial challenge with live
pathogens or vaccines, the intracellular signaling pathways increase the pro-inflammatory
response by increasing certain transcription factors. These factors return to the baseline
after priming but can lead to a transient increase in myelopoiesis to respond to other
stimuli [114]. Therefore, induction of trained immunity can provide non-specific effects
that can promote the innate immune response [115].

Another essential factor during trained myeloid cell immunity is PU.1 (a transcription
factor enconded by the SF1 gene). Hematopoietic transcription factor PU.1 can act as
an antagonist of GATA-1 (erythroid transcription factor) [116–118], thus composing an
irreversible mechanism for the erythro-myeloid lineage commitment [116,119,120]. Dur-
ing their development in the thymic microenvironment, cells become single positive for
CD4 or CD8 T lymphocytes, regulatory T (Tregs), or invariant NKT cells (iNKT). This
mechanism appears to characterize various T cell ontogeny stages [121], and PU.1 gene
transcription is off before intrinsic cell commitment to the T-cell lineage when lympho-
cytes arrive at the thymus microenvironment [120]. Again, this could be evidence that
the trained immune response may regulate the adaptive immune response beneficially
in the antitumor response [121,122]. It has also been described that in humans, BCG
vaccination readily promoted the production of IL-1β, TNF-α, and IL-6 by monocytes
upon ex vivo stimulation with unrelated pathogens and upon ex vivo stimulation with



Vaccines 2021, 9, 439 9 of 15

unrelated pathogens [123,124]. BCG also induced human monocyte epigenetic reprogram-
ming NOD2-dependent modifications [123]. In this case, cross-protection was supposedly
shared by various pathogens [125] since BCG, a bacterial vaccine, also protected against
an attenuated viral strain of Yellow Fever [126] or viral respiratory diseases [127]. Studies
have also shown that long-term cross pathogen effects (both in vaccination and infection or
in transplantation and in vitro differentiation experiments) suggest that immune memory’s
epigenetic mechanisms also occurred in long-lived cells [105,110].

Immune response in the elderly is deficient mainly on adaptive responses, but the
innate immune response function is supposedly intact [127,128]. In this case, BCG could be
a tool to increase the pro-inflammatory response by inducing an anti-neoplastic response
in elderly individuals. Therefore, it is noteworthy that in the specific case of using BCG
in the case of immunotherapy for cancer, further studies should depend on the particular
case of neoplasia and where it develops. Furthermore, having innate immunity and in a
trained manner responding promptly with the BCG stimulus can lead to the modulation of
the adaptive immune response so that tumors can be eliminated. Further studies must be
conducted to certify the use of BCG in different situations [129]. BCG’s beneficial effects
need to be evaluated in terms of the dose and frequency of the vaccine’s challenge, tumor
environment and capacity of the memory, and innate immune cells to shape the adaptative
immune responses. These studies can be an enriching approach to future translational and
clinical studies.

7. Conclusions

Finally, the use of BCG has shown promise for the treatment of malignancies, such
as bladder cancer [130], melanoma [131], leukemia [132], and lymphoma [133]. In all
these studies, BCG heterologous effects are dependent on innate immunity, probably
involving trained immunity. Although the direct impact of the pro-inflammatory response
may be linked to the reaction against the tumor, the memory of innate memory cells
could also be involved in the long-term responses in this type of treatment. Especially
in bladder cancer, BCG’s effects against tumor cells seem to be essentially dependent on
trained immunity since patients treated with BCG who were unable to mount a balanced
innate immune response presented lower survival [134]. Trained immunity mechanisms
induced by BCG could also protect against viral infections such as Yellow Fever or even
against Covid-19 [115,126]. Therefore, BCG vaccination appears to be highly relevant with
non-specific benefits and effects, especially if combined with other available therapies as
discussed above.
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