Seminário-Oficina UNASUL/CPLP sobre a Febre Amarela e outras Arboviroses Rio de Janeiro, Brasil, 2-6 outubro 2017

Research in Aedes mosquito vectors at GHTM/IHMT

João Pinto

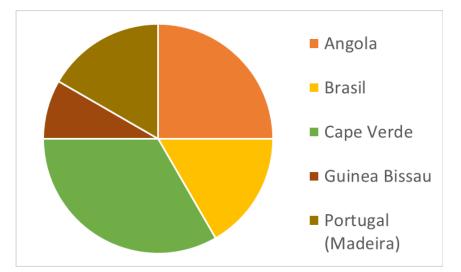
Unidade de Parasitologia Médica Global Health & Tropical Medicine

ALL COMPANY

- Academic institution of Universidade NOVA de Lisboa
- Postgraduate training, research and cooperation for health development in Tropical Medicine and Global Health

INSTITUTO DE HIGIENE E

ROPICAL

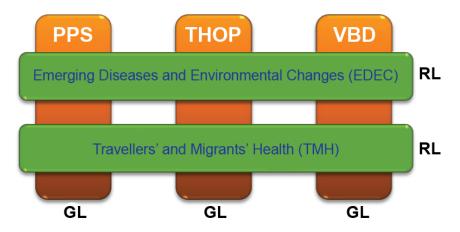

• Staff: 96 people

Regular Courses

- 5 PhD
 - Biomedical Sciences
 - Tropical Diseases & Global Health
 - Human Genetics ans Infectious Diseases
 - Tropical Medicine
 - International Health
- 6 MSc
 - Biomedical Sciences
 - Medical Parasitology
 - Medical Microbiology
 - Health Statistics
 - Public Health & Development
 - Tropical Health

Teaching in Medical Entomology

12 short courses*, since 2007



* In vector biology, malaria and arboviruses

Research at IHMT

- Global Health and Tropical Medicine
 - New R&D centre since 2014, rated "excellent" by FCT evaluation

PPS: Population Policy and Services

THOP: TB, HIV and Oportunistic Diseases & Pathogens

VBD: Vector-Borne Diseases & Pathogens

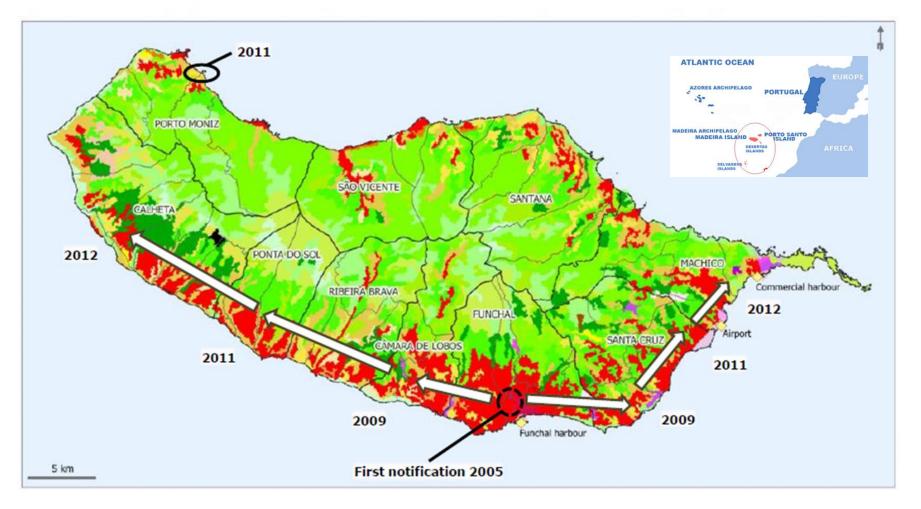
- Vector-Borne Diseases & Pathogens
 - Vector bioecology and population biology, molecular epidemiology, drug & insecticide resistance, host-pathogen interactions
 - Malaria, leishmaniasis, arboviruses, HAT and TTDs
 - 37 PhD members.

Aedes research at GHTM/IHMT

- Bioecology and vector monitoring
- Population genetics and evolutionary biology
- Mechanisms of insecticide resistance
- New tools for vector control
- Social studies (community awareneness & practice)

all a comp

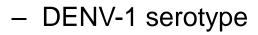
The 2012 Madeira Dengue outbreak

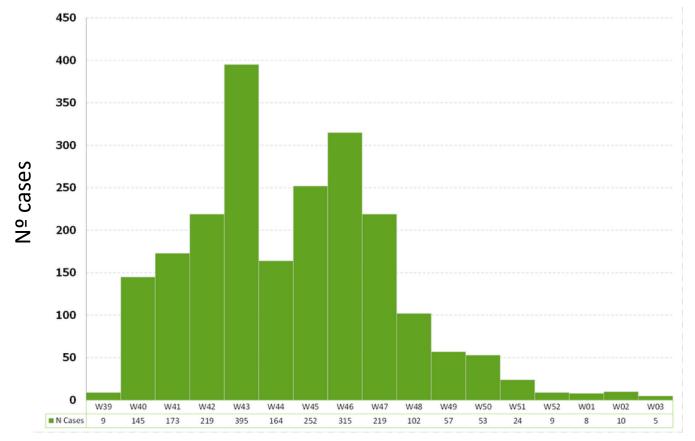


NOVA 11580

Aedes aegypti in Madeira Island

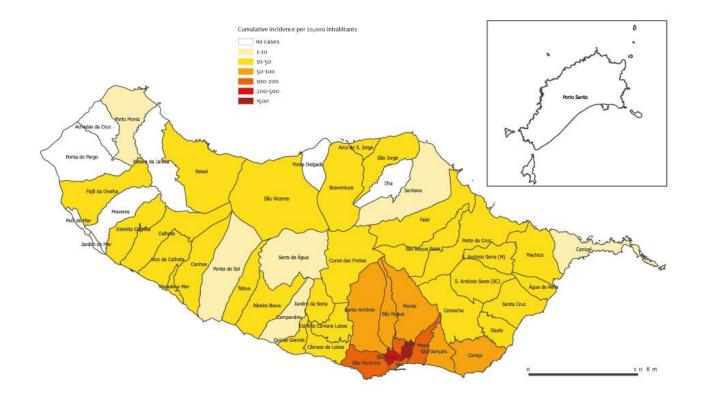
Ae. aegypti evolution in Madeira between 2005 and 2012





Dengue outbreak in Madeira, 2012-2013

• 2168 notified cases, 128 hospitalizations, no fatalities

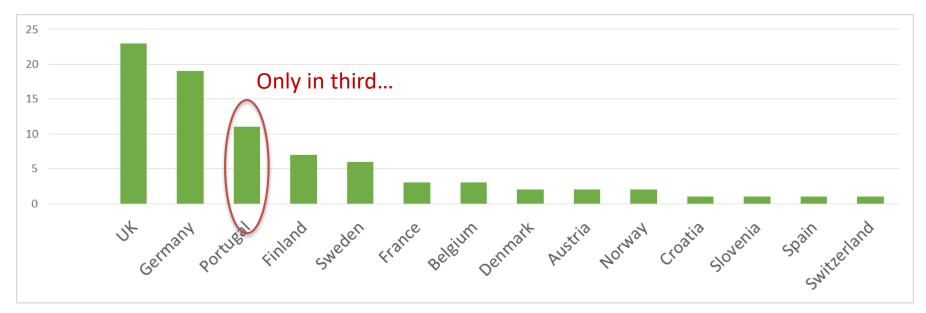


Dengue outbreak in Madeira

 Nearly all municipalities affected but most cases concentrated in the capital Funchal

FIGURE 2

Cumulative incidence of dengue cases by parish, outbreak on Madeira, Portugal, 3 October-25 November 2012



Exported cases

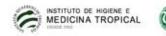
82 dengue cases in 14 countries imported from Madeira

RAPID COMMUNICATIONS

More reasons to dread rain on vacation? Dengue fever in 42 German and United Kingdom Madeira tourists during autumn 2012

C Frank (FrankC@rki.de)¹, M Höhle¹, K Stark¹, J Lawrence²

AND DESCRIPTION



Vector Monitoring

Vector monitoring

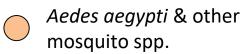
Infestation indexes (2012 outbreak)

	Funchal	Câmara de Lobos	St Cruz	All municipalities
N. houses surveyed	273	125	22	420
N. of containers inspected	1681	1298	431	3410
House Index (<i>HI'</i> >4)	32.9	12.0	45.5	27.4
Container Index (<i>Cl'></i> 3)	12.8	3.8	3.5	8.2

 The problem of Abandoned/closed houses

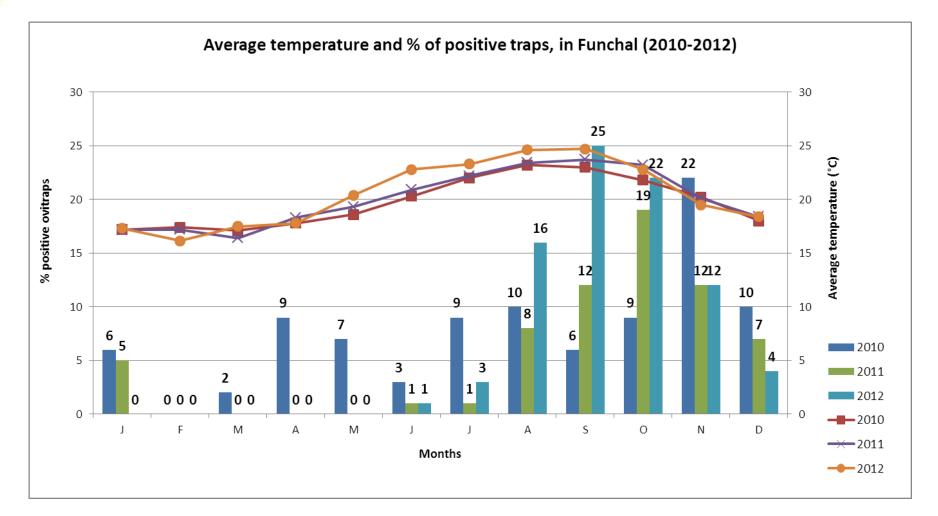
Vector monitoring

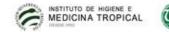
Storm drains as major breeding sites for Ae. Aegypti


 Absolute breeding index: 28.1

Negative

Dry


Other mosquito spp.


IASAUDE, IP-RAMUES (20-10-2012

Vector monitoring

Seasonality pattern of Aedes aegypti 2010-2012 (ovitraps)

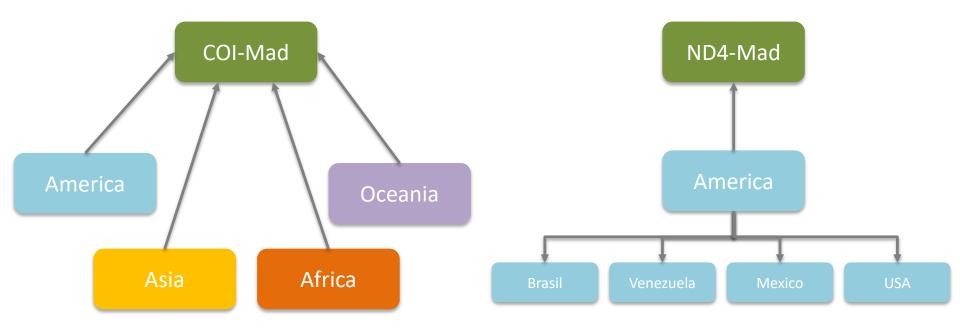
Vector competence

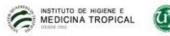
- Oral infections with CHIKV, DENV-2 and ZIKV (N=20 per exp.)
 - Infection rate (IR)
 - Disseminated infection rate (DIR)
- 100 80 60 40 20 0 CHIKV DENV-2 ZIKV 0 CHIKV DENV-2 ZIKV 0
- Transmission efficiency (TE)

- Higher susceptibility and transmission efficiency to CHIKV and DENV-2
- Lower susceptibility and transmission efficiency to ZIKV

ALL STREET, STREET, ST.

TTP


mtDNA sequencing


Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 108(Suppl. I): 3-10, 2013

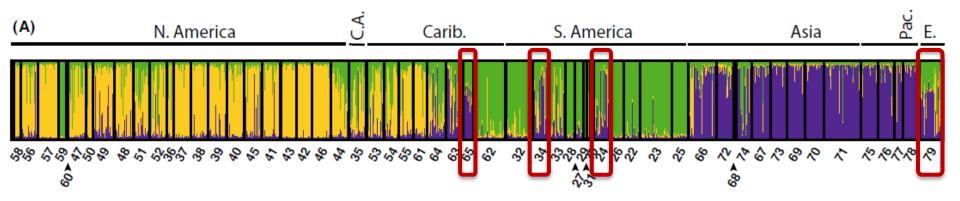
Aedes aegypti on Madeira Island (Portugal): genetic variation of a recently introduced dengue vector

Gonçalo Seixas¹, Patrícia Salgueiro^{1,2}, Ana Clara Silva⁴, Melina Campos⁵, Carine Spenassatto⁵, Matías Reyes-Lugo⁶, Maria Teresa Novo^{1,3}, Paulo Eduardo Martins Ribolla⁵, João Pedro Soares da Silva Pinto^{1,2/+}, Carla Alexandra Sousa^{1,3}

Single haplotype for both COI and ND4 mtDNA genes

Microsatellites

MOLECULAR ECOLOGY


Molecular Ecology (2016)

doi: 10.1111/mec.13866

Global genetic diversity of Aedes aegypti

ANDREA GLORIA-SORIA,* DIEGO AYALA,†‡ AMBICADUTT BHEECARRY,§

- 12 loci analised for 79 samples collected worldwide
 - Bayesian clustering analysis (STRUCTURE)

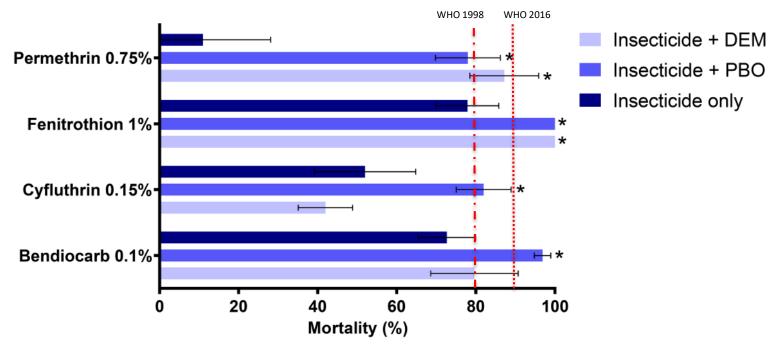
- Genetic ancestry closest to Brasil, Venezuela and Guadeloupe
 - Strong human mobility with Brasil and Venezuela.
 - Further analyses are ongoing

NOVAR A SAÚDI

and in the second



Insecticide resistance



RESEARCH ARTICLE

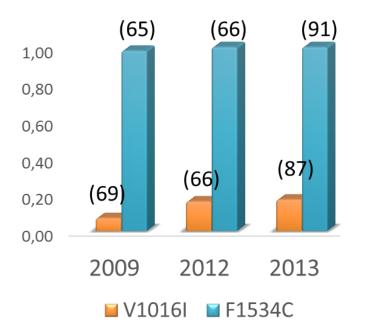
Insecticide resistance is mediated by multiple mechanisms in recently introduced *Aedes aegypti* from Madeira Island (Portugal)

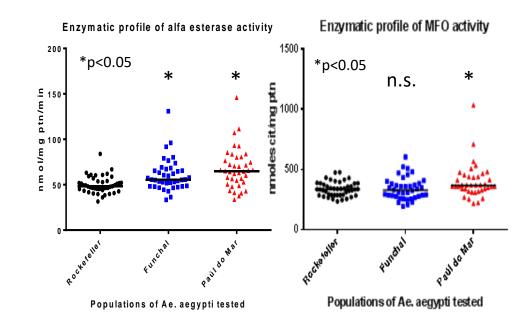
Gonçalo Seixas¹, Linda Grigoraki², David Weetman³, José Luís Vicente¹, Ana Clara Silva⁴, João Pinto¹, John Vontas^{2,5}, Carla Alexandra Sousa¹*

• WHO tests carried out in 2014

 Aedes aegypti is resistant to the three insecticide classes tested

Multiple resistance mechanisms


Knockdown resistance mutations


Metabolic resistance (biochemical assays)

INSTITUTO DE HIGIENE E

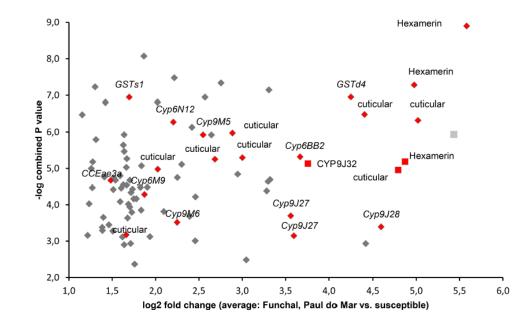
MEDICINA TROPICAL

NOVA

- F1534C mutation is fixed (0.98-1.00)
- V1016l mutation increasing (0.07-0.17)
- Overexpression of detoxification enzymes (esterases)

Multiple resistance mechanisms

Detox Chip


- 9 cytochrome P450 oxidases
 - Cyp9J32
 - Cyp9J28 metabolizers
 - Cyp6BB2
 - Cyp9M6
- 1 esterase •
 - CCEae3a temephos metabolizer

Pyrethoid

2 glutathion S-Transferases

3 hexamerines: involved in cellular trafficking, linked to insecticide • resistance.

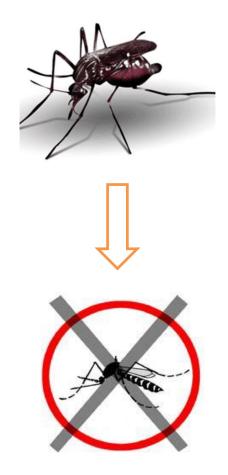
and in the second

New tools for vector control

Alternative methods for larval control

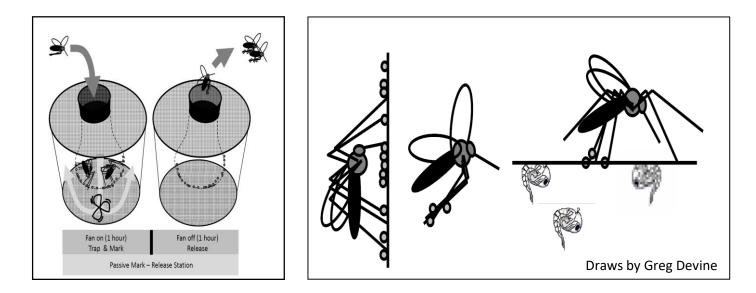
4 pilot-studies

Assessment of storm drains treatment efficacy with marine salt


Evaluation of Vectobac G for larval control in flower pots dishes

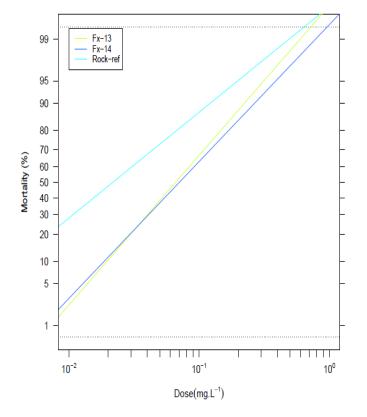
Evaluation of Vectobac G for cemeteries treatment

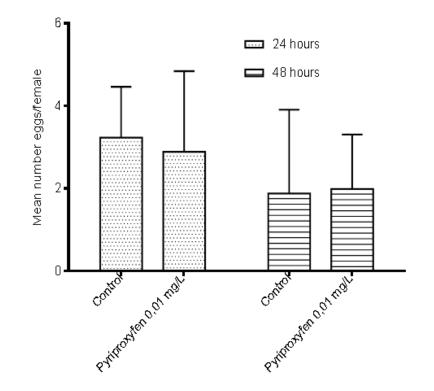
Use of pyriproxyfen as an effective larvicide against *Ae. aegypti*



- Paúl do Mar: isolated area 40 km off Funchal, accessible by a 2 km tunnel
- Aedes aegypti was detected in 2012 and high densities were recorded in 2013

• Pilot-study supported by the FP7/EC **DENFREE Consortium (Inst. Pasteur, Paris)**




• Auto-dissemination process - Mosquitoes resting on PPF-treated surfaces pick up particles on their legs and transport them to their larval habitats where the chemical prevents pupae from emerging as adults.

Susceptibility of local Aedes aegypti to PPF

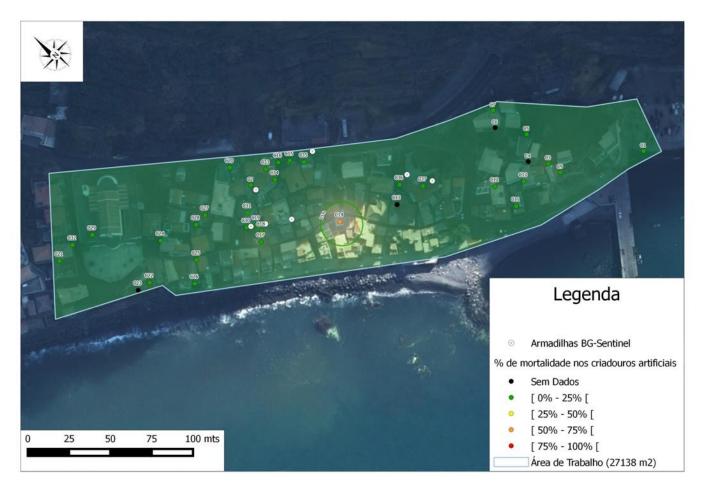
- Susceptibility of local population to PPF
- No repellent effect in oviposition of *Ae. aegypti*

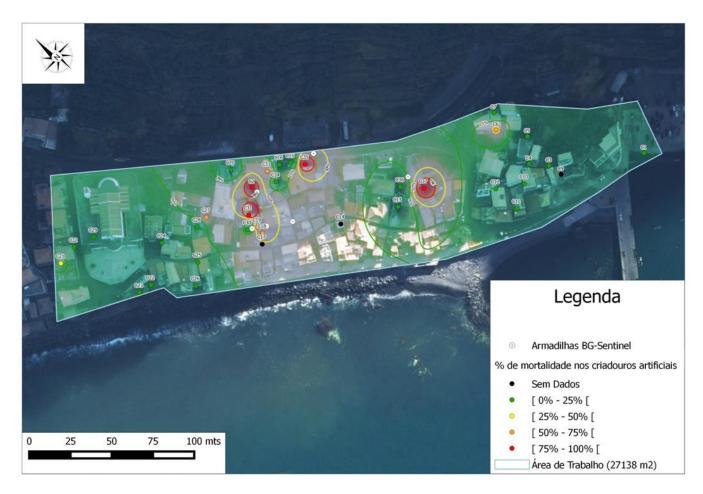
- Seven BG-Sentinel traps as PPF dissemination stations
 - Collection bags powedered with PPF (Sumilarv[®] 0,5G, 20-30 μm particles)
 - One hour On/Off cycles
- 37 artificial breeding sites (ABS)
 - 20 3rd instar larvae (strain Funchal)
 - Surveyed in 48h intervals. Pupae collected and reared in lab

Modified

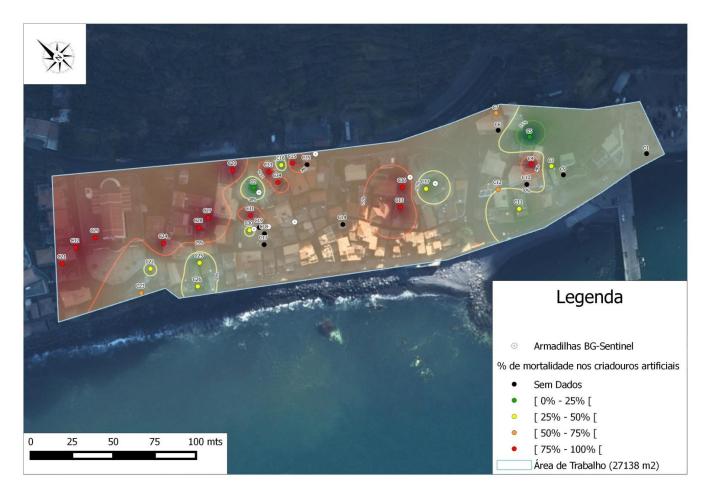
BG-GAT

Riogents


- **Pre-treament:** 10 Sept 2014 4 Oct 2014
- **Treatment 1**: 4 Oct 2014 17 Oct 2014
- Treatment 2: 20 Oct 2014 17 Nov 2014



Pre-treatment



Treatment 1

Treatment 2

MEDICIN

TRÓPICOS

ANT DE LE COLOR

More recently

Ae. albopictus

Ae. aegypti

 Identify regions where resistance may chalenge vector control

secticide resistance

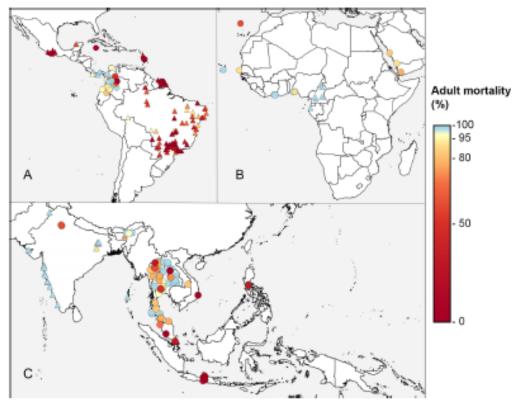
Vetwork

 Improve resistance monitoring and implementing new vector control tools

Corbel et al. Parasties & Vectors (2017) 10:278 DOI 10.1186/s13071-017-2224-3	Parasites & Vectors
MEETING REPORT	Open Access
International workshop on inser resistance in vectors of arboviru December 2016, Rio de Janeiro,	uses,
Vincent Corbel [®] , Dina M. Fonseca ² , David Weetman ³ , João Pinto ⁴ , Nicol Mamadou B. Coulibaly ⁶ , Isabelle Dusfour ⁷ , John Grieco ⁶ , Waraporn Junta Ademir J. Martins ¹⁰ , Catherine Moyes ¹¹ , Lee Ching Ng ¹² , Kamaraju Ragh John Yontas ^{15,16} , Pie Mulle ¹² , Shinji Kasal ¹⁸ , Florence Fouque ¹⁹ , Raman 1 and Jean-Philippe David ^{21*}	arajumnong ^a , Audrey Lenhart ⁹ , avendra ¹³ , Hassan Vatandoost ¹⁴ ,

160 participants from 30 nationalities76k online visualizations

- 5 commissioned reviews:
 - Aedes integrated management
 - New tools for vector control
 - Current status and mechanisms of insecticide resistance
 - Insecticde resistance management
- Working group to implement WIN/Africa
 - Leader: M. Coulibaly (Malaria Research & Training Center, Mali)


PLOS | NEGLECTED TROPICAL DISEASES

REVIEW

Contemporary status of insecticide resistance in the major *Aedes* vectors of arboviruses infecting humans

Catherine L. Moyes¹*, John Vontas^{2,3}, Ademir J. Martins⁴, Lee Ching Ng⁵, Sin Ying Koou⁵, Isabelle Dusfour⁶, Kamaraju Raghavendra⁷, João Pinto⁸, Vincent Corbel⁹, Jean-Philippe David¹⁰, David Weetman¹¹

Hg 2. The frequency of resistance to detained in Ac. Aegypti, 2006-2015. Adult bioassays using 0.05% insecticide for 1 hour are denoted as circles and results from nonstandards adult bioassays (including different diagnostic doess and exp cause periods) are denoted as triangles. The map is zoome dio the 3 regions with data. (A) Americas. (B) Africa Ambian Perints ada. (C) Asia.

- A Global Alliance for Zika Virus Control and Prevention
- 56 partners from 21 countries/regions

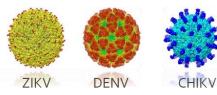
- Objectives
 - Clarify the impact of Zika infection in pregnancy
 - Understand ZIKV natural history in humans and the environment
 - Establish a collaborative network in Latin America for to boost epidemics preparedness

Work package	Workpackage Title
WP 1	Clinical Science
WP 2	Clinical biology & immunology
WP 3	Virology and antivirals
WP 4	Pathophysiology & animal models
WP 5	Zika virus animal reservoirs
WP 6	Vectors & vector control
WP7	Social sciences
WP8	Communication, Dissemination, and Evaluation (CoDE)
WP9	Management of consortium and exploitation

- Work Package nº 6: Vectors and Vector Control
 - Identify Zika vectors in Latin America and Caribe
 - Studies on vector competence to ZIKV
 - Importance of coinfections in the mosquito

Ae. japonicus

Ae. albopictus



SIT

Wolbachia

Resistência

Haemagogous

Team and acknowledgments

Carla A. Sousa Leading researcher (casousa@ihmt.unl.pt)

Madeira team

Gonçalo Seixas (PhD student)
Ecology & Genetics

Insecticide resistance

Gonçalo Alves (MSc student)

• Vector control tools

Bianca Pires (MSc student)

Vector control tools

Richard Paul Greg Devine • PPF experiments

Ana Clara Silva (team leader) Bela Viveiros (mosquito monitoring) Margarida Clairouin (mosquito monitoring) Luis Antunes (geography)

Manuel Biscoito (team leader) Ysabel Margarita Gonçalves (mosquito monitoring) Juan Silva (mosquito monitoring)

Funding

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

ZIKAIliance A Gobal Alliance for Zika Vicus Colitrol and Prevention

- Anna-Bella Failloux
- Vector competence

- Linda Grigoraki John Vontas
- Metabolic resistance

David WeetmanMetabolic resistance (Detox chip)

Jeff PowellPopulation genetics

A CHARLES COMPANY

Thank you!

