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Abstract 

Background:  The tribe Rhodniini is a monophyletic group composed of 24 species grouped into two genera: Rhod-
nius and Psammolestes. The genus Psammolestes includes only three species, namely P. coreodes, P. tertius and P. arthuri. 
Natural hybridization events have been reported for the Rhodniini tribe (for genus Rhodnius specifically). Information 
obtained from hybridization studies can improve our understanding of the taxonomy and systematics of species. Here 
we report the results from experimental crosses performed between P. tertius and P. coreodes and from subsequent 
analyses of the reproductive and morphological aspects of the hybrids.

Methods:  Crossing experiments were conducted between P. tertius and P. coreodes to evaluate the pre- and post-
zygotic barriers between species of the Rhodniini tribe. We also performed cytogenetic analyses of the F1 hybrids, 
with a focus on the degree of pairing between the homeologous chromosomes, and morphology studies of the 
male gonads to evaluate the presence of gonadal dysgenesis. Lastly, we analyzed the segregation of phenotypic 
characteristics.

Results:  Interspecific experimental crosses demonstrated intrageneric genomic compatibility since hybrids were 
produced in both directions. However, these hybrids showed a high mortality rate, suggesting a post-zygotic barrier 
resulting in hybrid unviability. The F1 hybrids that reached adulthood presented the dominant phenotypic segrega‑
tion pattern for P. tertius in both directions. These insects were then intercrossed; the hybrids were used in the cross 
between P. tertius ♀ × P. coreodes ♂ died before oviposition, and the F1 hybrids of P. coreodes ♀ x P. tertius ♂ oviposited 
and their F2 hybrids hatched (however, all specimens died after hatching, still in first-generation nymph stage, point‑
ing to a hybrid collapse event). Morphological analyses of male gonads from F1 hybrids showed that they did not 
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Background
Chagas disease is a neglected disease which affects 
about 8 million people worldwide, with approximately 
25 million people at risk of infection. Treatment with 
the anti-trypanosomatids benznidazole and nifurtimox 
is more effective in the acute phase of the disease than 
in the chronic phase [1, 2]. Chagas disease is caused by 
the protozoan Trypanosoma cruzi (Chagas, 1909) (Kine-
toplastida, Trypanosomatidae) and the main form of 
transmission is through hematophagous insects known 
as triatomines [2]. Currently, 156 species of triatomines, 
divided into 18 genera and five tribes [3–5], have been 
identified, and all are considered to be potential Chagas 
disease vectors.

The tribe Rhodniini Pinto, 1926 is a monophyletic 
group composed of 24 species [3, 5–7] grouped into two 
genera that are morphologically and ecologically distinct: 
the members genus genus Rhodnius Stål, 1859 have long 
thin legs and a long head, and live mainly in palm trees, 
while members of genus Psammolestes Bergroth, 1911 
have a short head, strong legs, wide femora, a very wide 
rostrum (the widest in the subfamily) and live in nests of 
birds of the family Furnariidae [8]. The inclusion of these 
two genera within the Rhodniini tribe is based on their 
mainly arboreal behavior and the presence of post-ocular 
tuberosities [7].

Rhodnius is a paraphyletic genus formed by 21 species 
divided into the trans-Andean Rhodnius clade (pallescens 
group) and the cis-Andean Rhodnius clade (pictipes + 
prolixus groups) [5–7, 9]. The event of paraphilia is sup-
ported by the greater evolutionary proximity of the spe-
cies of the prolixus group with the genus Psammolestes 
which groups these species into a single clade [6, 10]. 
Based on this phenomenon, Hypsa et  al. [11] proposed 
changing the name of the genus including Psammolestes 
spp. to Rhodnius: P. arthuri (Pinto, 1926) for R. arthuri 
(Pinto, 1926), P. coreodes Bergroth, 1911 for R. coreodes 
(Bergroth, 1911) and P. tertius Lent & Jurberg, 1965 for R. 
tertius (Lent & Jurberg, 1965).

The distribution of species included in genus Psam-
molestes is restricted to Latin America, with P. coreodes 
being reported in Argentina, Bolivia, Brazil and Paraguay, 
P. tertius in Brazil and Peru and P. arthuri in Colombia 

and Venezuela [12, 13]. Phylogenetic and cytogenetic 
analyses suggest that this genus is monophyletic [14, 15]. 
Monteiro et al. [14] suggested that perhaps Psammolestes 
should be regarded as a specialized lineage of Rhodnius 
from the prolixus group because the genus Psammo-
lestes and species of the prolixus group share a com-
mon ancestral form, which highlights the paraphyly of 
the genus Rhodnius. Soares et al. [9] also suggested that 
Psammolestes is derived from an ancestral form similar 
to R. robustus Larrousse, 1927, and de Paula et  al. [16] 
suggested that the species P. coreodes and P. tertius origi-
nated by vicariance.

de Paula et  al. [16] also suggested that hydrological 
connections between the Araguaia–Amazon basins in 
the Early and Middle Miocene [20.4–9.0 million years 
ago (Mya)] would be a possible event that split the cis-
Andean + trans-Andean clades of the R. domesticus 
Neiva & Pinto, 1923 + Psammolestes + prolixus group 
(15.2 Mya). These authors indicated that this connec-
tion would incorporate the Pantanal system in the Upper 
Miocene–Lower Miocene (10.0–4.5 Mya), resulting in 
the separation of the Pantanal system from the Atlan-
tic Forest system, an event that may have contributed to 
the formation of Psammolestes species at a time when 
P. coreodes and P. tertius originated (4.98 Mya). On the 
other hand, Soares et  al. [9] suggested that Psammo-
lestes spp. spread from the Amazon region northward 
into the llanos of Venezuela (where P. arthuri is abundant 
in Furnariidae nests) and southeastward into the Caat-
inga–Cerrado path of Central Brazil (with subsequent 
differentiation of P. tertius along a north–south cline and 
P. coreodes in the Chaco region of Argentina and Para-
guay) [14, 17].

Events of natural hybridization have been reported 
for the Rhodniini tribe (for the genus Rhodnius spe-
cifically) [18]. Information gained from hybridization 
studies can further our understanding of the taxonomy 
and systematics of species, and be used to analyze the 
isolating mechanisms that limit gene flow between 
species, and experimental crosses can be employed to 
establish the role of natural hybridization in generating 
new genetic variants (that may lead to adaptive evolu-
tion and/or in founding new evolutionary lineages) [19, 

have gonadal dysgenesis. Cytogenetic analyses of these triatomines showed that there were metaphases with 100% 
pairing between homeologous chromosomes and metaphases with pairing errors.

Conclusion:  The results of this study demonstrate that Psammolestes spp. have intrageneric genomic compat‑
ibility and that post-zygotic barriers, namely unviability of hybrid and hybrid collapse, resulted in the breakdown of 
the hybrids of P. tertius and P. coreodes, confirming the specific status of species based on the biological concept of 
species.
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20]. In this context, we performed, for the first time, 
experimental crosses between P. tertius and P. core-
odes and analyzed the reproductive and morphological 
aspects of the hybrids in order to characterize the pos-
sible barriers reproductive and the segregation of phe-
notypic characters, respectively.

Methods
Experimental crosses
To evaluate the pre- and post-zygotic barriers between 
the species of the Rhodniini tribe, we performed cross-
ing experiments between P. tertius and P. coreodes 
(Table 1).

The crossing experiments were conducted in the Tri-
atominae insectary of the School of Pharmaceutical 
Sciences, São Paulo State University (UNESP), Arara-
quara, São Paulo, Brazil, according to the experiments 
described by Mendonça et al. [21] and Neves et al. [22]. 
The insects were sexed at the fifth-instar nymph stage 
(N5) [23], and males and females were kept separately 
until they reached the adult stage in order that only 
adult virgins were used in the crosses. For the crossing 
experiments, three couples from each direction were 
kept in plastic jars [5 (diameter) ×10 cm (height)] and 
kept at room temperature. Intraspecific crosses were 
also performed as controls (Table  1). The eggs were 
collected weekly throughout the females’ oviposition 
periods, and the egg fertility rate and mortality rate of 
the hybrids were calculated (Table 1). After the hybrids 
from the first generation (F1) reached N5, a hybrid 
pair F1 was formed for each direction (Table  1) and 
the same parameters described above were used in the 
evaluation of these crosses.

Cytogenetic analysis
After the experimental crosses, the F1 males were 
dissected and the testes removed and stored in a 
methanol:acetic acid solution (3:1). Slides were prepared 
by the cell-crushing technique (as described by Alevi 
et  al. [24]), and cytogenetic analyses were performed 
to characterize spermatogenesis, with emphasis on the 
degree of pairing between the homeologous chromo-
somes [21], using the lacto-acetic orcein technique [24, 
25]. The slides were examined under a light microscope 
(Jenamed; Carl Zeiss, Jena, Germany) that was coupled 
to a digital camera, with a 1000-fold increase; AxioVision 
LE version 4.8 imaging software (Carl Zeiss) was used for 
analysis.

Morphology of the gonads
The morphology of the male gonads of the F1 hybrids 
was analyzed under a stereomicroscope microscope 
(model MZ APO; Leica Microsystems GmbH, Wet-
zlar, Germany) fitted with the Motic Advanced 3.2 Plus 
Image Analysis System (Motic, Hong Kong) to evaluate 
the presence of gonadal dysgenesis (which may be uni- or 
bilateral) [26].

Segregation of phenotypic characteristics
The head of F1 male hybrids were measured (MZ APO 
stereomicroscope and Motic Advanced 3.2 Plus Image 
Analysis System) to analyze the segregation of pheno-
typic characteristics, based on the main parameter used 
in the taxonomic key of Lent and Wygodzinsky [8]. 
Psammolestes tertius is characterized by an anteocular 
region that is 2- to 2.5-fold longer than the post-ocular 
region, and P. coreodes is characterized by an anteocular 
region that is no longer than twofold the length of the 
post-ocular region.

Table 1  Experimental crosses performed between P. coreodes and P. tertius 

a  C1, C2 and C3 refer to replicates of experimental crosses
b Hybrids of the cross between P. tertius ♀ x P. coreodes ♂
c  Hybrids of the cross between P. coreodes ♀ x P. tertius ♂

Crossing experiments Number of eggs Egg fertility Mortality F1 Mortality F2

C1a C2a C3a Total

P. coreodes ♀ × P. tertius ♂ 3 24 27 54 43% 91.3% –

P. tertius ♀ × P. coreodes ♂ 40 23 54 117 26% 93.3% –

Hybrid ♀ × Hybrid ♂b 0 – – – – – –

Hybrid ♀ × Hybrid ♂c 14 – – – 57% – 100%

Control experiments C1 C2 C3 Total

P. coreodes ♀ × P. coreodes ♂ 61 10 90 161 68% – –

P. tertius ♀ × P. tertius ♂ 52 48 54 154 77% – –
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Results and discussion
It is estimated that the ancestors of the Rhodniini and 
Triatomini Jeannel, 1919 tribes diverged around 48.9–
64.4 Mya, at about the time when South America was 
beginning to separate from Antarctic and Australia dur-
ing the Lower Tertiary period [27]. It is believed that 
radiation of the genus Rhodnius occurred from the Ama-
zon region and resulted in three main evolutionary line-
ages: those in the south (Brazilian Cerrado), in the north 
(Venezuela) and in the northwest (passing through the 
Andean Cordillera into the Magdalena valley in Colom-
bia) [28]. The colonization of bromeliads, palms trees and 
bird nests represent important events for the speciation 
of these taxa [16]. In addition, Psammolestes spp. adapted 
to exploit bird nest microhabitats and currently occur 
over the open ecoregions north and south of the moist 
Amazon forests: P. arthuri in the Orinoco and Venezue-
lan coastal basins, P. tertius primarily in the Cerrado-
Caatinga and P. coreodes primarily in the Chaco [14, 29].

Interspecific experimental crosses between P. ter-
tius and P. coreodes (Fig.  1a) demonstrated intrageneric 
genomic compatibility since hybrids were produced in 
both directions (Table  1; Fig.  1b, c). Likewise, interspe-
cific crosses between members of genus Rhodnius (R. 
prolixus Stål, 1859 × R. neglectus Lent, 1954, R. prolixus 
× R. robustus, R. prolixus × R. pictipes Stål, 1872 and R. 
pallescens Barber, 1932 × R. colombiensis Mejia, Gal-
vão & Jurberg, 1999) also resulted in the production of 
hybrids in at least one of the directions [30–32]. Accord-
ing to the biological concept of species proposed by Mayr 
[33], i.e. “groups of natural populations that actually or 
potentially intersect and are reproductively isolated from 
other groups”, this feature is extremely important from an 
evolutionary point of view because it demonstrates that 
evolutionary events resulting in total pre-zygotic isola-
tion between species have not yet been established in the 
Rhodniini tribe.

The main mechanisms of pre-zygotic reproductive iso-
lation observed in the subfamily Triatominae are ecologi-
cal isolation and mechanical isolation. The first prevents 
the formation of hybrids between Triatoma infestans 
(Klug, 1834) and T. platensis Neiva, 1913, two species 
that are phylogenetically related [6] but present in dif-
ferent habits (T. infestans is associated with domiciliary 
regions and feeds on mammalian blood [34]; T. platensis 
is associated with bird nests and feeds preferentially on 
the blood of birds [35]). The second mechanism is asso-
ciated with structural incompatibility between male and 
female genitalia and happens with a certain frequency in 
only one direction of the crosses, such as, for example, 
at the crossing of T. platensis females with T. delpontei 
Romaña & Abalos, 1947 males [36].

Interspecific genomic compatibility between P. tertius 
and P. coreodes was confirmed by the hatching of the F1 
(Table 1). However, these hybrids showed a high mortal-
ity rate (Table  1), which suggests a post-zygotic barrier 
resulting in hybrid unviability (confirming the species 
status of P. tertius and P. coreodes). Recently, this repro-
ductive barrier was observed for crossings between T. 
sordida (Stål, 1859) and T. rosai Alevi et  al., 2020 [4], 
contributing to the description of T. rosai by integrative 
taxonomy.

The few F1 hybrids that reached adulthood presented 
the dominant phenotypic segregation pattern for P. ter-
tius in both directions (anteocular region measuring at 
least twofold greater than the post-ocular region) (Fig. 2). 
This is the first study on the segregation of phenotypic 
characters in the Rhodniini tribe. However, similar analy-
ses have already been carried out in the Triatomini tribe: 
hybrids of the T. brasiliensis complex, for example, pre-
sented intermediate characteristics or a specific segre-
gation pattern depending on the crossed species [21, 
37, 38]. In addition, Mexican triatomine F1 hybrids also 
resulted in F1 offspring that were morphologically indis-
tinguishable from one of the parental lines [39] and in 

Fig. 1  Interspecific experimental crosses between P.coreodes and 
P. tertius, and resulting hybrids. a Crosses between P. tertius ♀ and P. 
coreodes ♂, b adult hybrids from the experimental cross between P. 
coreodes ♀ and P.tertius ♂, c adult hybrids from the experimental cross 
between P. tertius ♀ and P. coreodes ♂. Bar: 1 cm



Page 5 of 8Ravazi et al. Parasites Vectors          (2021) 14:350 	

second-generation hybrids (F2) with phenotypic char-
acteristics either specific to those of one of the parents 
or with intermediate characteristics [40, 41]. Consider-
ing that some factors can result in an increased risk of T. 
cruzi transmission to humans and animals (such as vigor 
[42] and hybrid fitness [43]) and that recently it has been 
reported that hybrids of the T. phyllosoma subcomplex 
show greater potential to acquire and transmit T. cruzi 
than parental species [44, 45], the study of segregation 
of external morphology can also be of epidemiological 
importance [37, 38].

The F1 hybrids used in the cross between P. tertius ♀ x 
P. coreodes ♂ died before oviposition (confirming the phe-
nomenon of hybrid unviability). This phenomenon has 
already been characterized for the Triatomini tribe: Mar-
tínez-Ibarra et al. [46] observed total mortality of nymphs 
resulting from crossing species of the T. phyllosoma sub-
complex with T. mexicana (Herrich-Schaeffer, 1848). In 
addition, Martínez-Ibarra et  al. [47–49] observed a lack 
of hybrid fitness resulting from the crossing between spe-
cies of the T. phyllosoma subcomplex, which resulted in 
the mortality of nymphs due to not feeding (in the case 
of the initial stages) and problems during molting (in the 
older nymphs).

The crossing between the F1 hybrids of P. coreodes 
♀ × P. tertius ♂ oviposited and the F2 hybrids hatched 
(Table  1). However, all specimens died after hatching, 

still in first-generation nymph (N1) stage (Table  1). The 
low adaptive value of hybrids from F2 (which resulted in 
insect mortality) characterizes the collapse of the hybrid. 
This phenomenon has already been observed in Tria-
toma Laporte, 1832 hybrids [21, 50] and has been used to 
confirm the species status of species of the T. brasiliensis 
complex [21, 50].

Fig. 2  Morphometric analysis of the heads of adult male hybrids of the experimental cross between P. coreodes and P. tertius. a P. coreodes ♀ × P. 
tertius ♂ (anteocular region = 1.005 mm; post-ocular region = 0.385 mm; anteocular region is 2.6-fold greater than the post-ocular region), b P. 
tertius ♀ × P. coreodes ♂ (anteocular region = 0.996 mm; post-ocular region = 0.431; anteocular region is 2.3-fold greater than the post-ocular 
region)

Fig. 3  Not atrophied testicle of adult crossbreeding between P. 
coreodes ♀ × P. tertius ♂, demonstrating the absence of gonadal 
dysgenesis at this junction, in both directions. Bar: 10 mm
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Morphological analyses of male gonads from F1 
hybrids showed that these hybrids did not have gonadal 
dysgenesis (Fig.  3). Cytogenetic analyses of these tri-
atomines showed that there were metaphases with 100% 
pairing between homeologous chromosomes (Fig.  4a) 
(which justifies hatching of F2 hybrids) and metaphases 
with pairing errors (Fig.  4b). These results are impor-
tant from a taxonomic point of view, since according to 
Riley [51], two species possess distinct genomes when 
their chromosomes are different in structure and genetic 
content, so that there is no pairing between one or more 
pairs of homeologous chromosomes during hybrid meio-
sis. This behavior leads to sterility and, consequently, to 
genetic isolation between species.

Conclusion
The results of our study demonstrated that Psammo-
lestes spp. have intrageneric genomic compatibility and 
that there are post-zygotic barriers (hybrid unviability 
and hybrid collapse)  resulting in the breakdown of the 
hybrids of P. tertius and P. coreodes. These results confirm 
the species status of species based on the biological con-
cept of species.
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