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Abstract
The complex steps leading to the central nervous system 
(CNS) inflammation and the progress to neuroinflammatory 
and neurodegenerative disorders have opened up new re-
search and intervention avenues. This review focuses on the 
therapeutic targeting of the VLA-4 integrin to discuss the 
clear-cut effect on immune cell trafficking into brain tissues. 
Besides, we explore the possibility that blocking VLA-4 may 
have a relevant impact on nonmigratory activities of im-
mune cells, such as antigen presentation and T-cell differen-
tiation, during the neuroinflammatory process. Lastly, the 
recent refinement of computational techniques is high-
lighted as a way to increase specificity and to reduce the 
detrimental side effects of VLA-4 immunotherapies aiming 
at developing better clinical interventions.

© 2021 S. Karger AG, Basel

Introduction

A growing number of individuals diagnosed with neu-
rodegenerative disorders have been observed in recent 
years, as the world population gets progressively older [1, 
2]. In particular, aging is recognized as a risk factor for 
many brain-related diseases, such as Alzheimer’s disease 
and other dementia, or yet neuromotor-related patholo-
gies, like Parkinson’s disease and amyotrophic lateral 
sclerosis (ALS) [3, 4]. This correlation likely arises from 
the progressive decline in the activities of overlapping 
mechanisms encompassing metabolic dysregulation, 
stress pathways, macromolecular damage, and defective 
proteostasis, as well as epigenetic changes and impaired 
regeneration of adult stem cells. Noteworthy, all these 
processes are underlined by an age-correlated gradual in-
crease in the basal inflammatory status of the individuals, 
namely, inflammaging [5, 6]. This scenario grows in com-
plexity, as the existence of different types of aging pat-
terns (or “ageotypes”) have been proposed upon the iden-
tification of enriched pathways for immunity, metabo-
lism, and inflammation, as well as liver and kidney 
dysfunctions [7]. Whether one specific pathway or a com-
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bination of 2 or more pathways is involved in the emer-
gence of neurodegeneration remains to be further eluci-
dated. Nevertheless, an examination of these findings re-
vealed that many cell adhesion molecules associated with 
leukocyte trafficking are positively or inversely correlated 
with age.

The migrating inflammatory cells, in their pathway to-
ward a given peripheral tissue, face particular interactions 
with both the endothelium and the subjacent tissue mi-
croenvironment. The pathway to access the target tissue 
finds the crossing of blood vessel as ordered steps of teth-
ering, rolling, firm adhesion, and transmigration gov-
erned by critical adhesion molecules and chemokines [8]. 
This raises a tantalizing possibility that targeting cell ad-
hesion molecules can produce new opportunities to halt 
prematurely the low-grade inflammation and delay neu-
rodegenerative progression. Remarkably, the integrin 
Very Late Antigen-4 (VLA-4; α4β1; CD49d/CD29) is re-
garded as a pivotal molecule regulating the adhesive 
phase of the transmigratory process and it has been a 
therapeutic target in inflammatory diseases [9]. In this 
review, we explored the VLA-4 molecule as a target of in-
tervention for neuroinflammatory disorders.

VLA-4-Driven Immune Cell Trafficking toward the 
Inflamed Brain

The immune cells and their mediators are part of a 
complex homeostatic system responsible to monitor the 
entire body. The particular anatomy and organization of 
the central nervous system (CNS) have fueled a view of 
immune privilege, as discussed elsewhere [10–12]. Not-
withstanding, some immune cell types play nondefensive 
roles in the brain and their mechanisms of action have 
only begun to be unraveled. While microglia have classi-
cally stood out as the watchman of the brain parenchyma 
[13], recent findings have revealed that they also partici-
pate in memory consolidation in the healthy brain by 
tweaking synapse connectivity and remodeling the extra-
cellular matrix of the hippocampus upon experience-trig-
gered secretion of interleukin-33 (IL-33) by neurons [14]. 
Further examples include IL-4–producing CD4+ αβ T 
cells and IL-17–producing γδ T cells in the meninges that 
respectively contribute to spatial learning and short-term 
memory, just to name a few [15, 16].

However, upon inflammation, immune cells play their 
classic protective activities to eliminate a given stressor 
(e.g., antigenic overload or oxidative imbalance) and to 
restore tissue physiology. In a second vein, an inflamma-

tion may become chronic when the stressor is not com-
pletely cleared. The persistence of pro-inflammatory 
molecules and the influx of immune cells may lead to tis-
sue dysfunction and the emergence of disease, including 
autoimmune and neurodegenerative disorders. In this 
context, brain infiltration by blood-trafficking immune 
cells is regarded as a well-regulated process, with adhesive 
molecules expressed on the endothelium playing a major 
role, as compared to the proper barrier structure [17]. 
The integrity of the blood-brain barrier (BBB) also in-
volves specialized tight junctions between endothelial 
cells and the close contact of their basement membranes 
with pericytes and the foot processes of astrocytes, thus 
limiting solute transport and cell entry to the brain. The 
trafficking of immune cells has been approached in sev-
eral studies, including autoimmune and infectious dis-
eases, as well as in noninfectious nonautoimmune condi-
tions affecting the CNS. Particularly, this process has 
been reported comprehensively in several experimental 
and clinical studies searching for understanding the im-
munopathogenesis of multiple sclerosis (MS). This dis-
ease has a complex pathological pattern but is character-
ized by myelin sheath damage directed by inflammation, 
with specific immune cell infiltration contributing pri-
marily for the disease onset, which may progress to neu-
rodegeneration [18, 19]. Notably, the studies with MS pa-
tients, along with the reports from the distinct experi-
mental autoimmune encephalomyelitis (EAE) models, 
point to a concerted role for the main effector Th1 and 
Th17 CD4+ T cells [18]. The pathological basis for the 
neuroinflammation and active demyelination also in-
volves cytolytic CD8+ T cell [20] and B cell [21] subsets in 
addition to the relevant infiltrating macrophages and ac-
tivated resident microglia [18, 22], among other immune 
components.

In order to bind the brain endothelium and transmi-
grate into the CNS during MS evolution, the pathogenic 
immune cells engage in a multifaceted interactive pro-
cess, which involves the exit from the bloodstream and 
the transient E- and P-selectin-mediated cell tethering 
and rolling over the activated endothelium [23]. This pro-
cess is triggered by inflamed tissue-derived cytokines, in-
cluding tumor necrosis factor and chemokines, with the 
latter driving integrin activation. This is an essential step 
preceding migration toward the injured site, as integrins 
show a bidirectional plasma membrane communication 
that regulates their structural activation via conforma-
tional alteration [24, 25]. The outside-in signaling follows 
the direct integrin ligation and the inside-out signaling 
occurs via engagement of nonintegrin receptors, includ-
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ing chemokine-receptors, which signal intracellularly to 
a subsequent integrin conformational activation [23]. 
Importantly, a central role for the VLA-4 integrin has 
been demonstrated for such an active leukocyte migra-
tory pathway [26]. Upon VLA-4 ligation, which follows 
the previous chemokine-driven integrin activation, the 
vascular cell adhesion molecule-1 (VCAM-1) operates 
the firm leukocyte adhesion on the activated endotheli-
um. Following, the previously diffuse VCAM-1 distribu-
tion on the endothelial surface turns concentrated under-
neath the adherent/migrating VLA-4+ immune cell. The 
VLA-4/VCAM-1 interaction efficiently relays a Rac-
1-mediated signaling that destabilizes the endothelial 
junctional structures and promotes the consequent im-
mune cell transmigration [27]. The BBB structure is also 
a critical controller for T-cell trafficking, as brain peri-
cytes and astrocytes were reported to express VCAM-1, 
mediating their interaction with VLA-4+ T cells [28]. In 
addition, astrocytes seem to regionally regulate the T-cell 
trafficking as brain stem astrocyte express VCAM-1 in 
response to Th17 cytokines, whereas spinal cord astro-
cytes present the CXCL12/CXCR7 pathway as a driving 
cue in response to IFN-γ [29]. Interestingly, VLA-4/
VCAM-1 pathway in T cell-astrocyte interaction might 
be related to the higher susceptibility of females to MS, 
since male sex hormones were able to suppress the ex-
pression of β1 in female T cells primed with the myelin 
basic protein, whereas female sex hormone produced no 
effect [30].

In the CNS, the cognate autoantigen recognition by 
the pathogenic effector CD4+ T cells occurs via direct re-
activation by antigen-presenting cells (APCs), with re-
cruitment of additional effector T cells and macrophages, 
leading to the inflammatory lesions. Additionally, the 
VLA-4 integrin seems also to direct T cell/APC interac-
tions within the CNS, representing an essential step for 
the neuroinflammation progress seen in MS [18]. In this 
regard, immature dendritic cells migrate into the CNS 
and further promote EAE by acting as professional APCs, 
an activity responsive to therapeutic blocking with anti-α4 
integrin antibody [31]. Furthermore, a putative participa-
tion of B-cell-mediated CD4+ T-cell activation in MS 
neuroinflammation was recently investigated by employ-
ing an EAE model and genetically approaching the anti-
gen presentation function of the pathogenic B cells [32]. 
Through a conditional α4 gene (Itga4) inactivation on B 
cells, it was suggested that VLA-4 is able to regulate the 
transmigration of B cells through VCAM-1+ activated en-
dothelium and their subsequent meningeal clustering ad-
jacently to cognate CD4 T cells [32].

These findings depict the fundamental role of VLA-4 
in the complex steps leading to neuroinflammation and 
define this integrin as a molecular target for therapeutic 
blocking of the pathogenic migratory immune cells ac-
tively operating in the disease progression seen in MS pa-
tients. A broad structural basis for the VLA-4 targeting is 
discussed below, underscoring successful interventions 
on VLA-4-mediated immune cell migration to the CNS, 
both in the promising trials and in the currently success-
ful therapy with the humanized monoclonal antibody na-
talizumab.

Targeting the VLA-4 Molecule to Block Its Interactive 
Functions and the Basis for the Therapeutic Use in 
Neuroinflammatory Disorders

Mostly, the specific recognition of VLA-4 by antibod-
ies relies on the selective α4 subunit binding, since the β1 
subunit is shared with other integrins. In particular, the 
α4 subunit shows at least 3 major epitopes known as A, B, 
and C [33]. The epitopes A and B are located at the 
β-propeller domain. Whereas the epitope A comprises 
the first 100 residues at the N-terminus [33], the precise 
definition of epitope B is a little uncertain. By performing 
molecular mapping, it has been shown that epitope B can 
be further divided into epitope B1, encompassing resi-
dues 195–208, and epitope B2, comprising residues 108–
182 [34]. Other report defined the residues 152–203 as 
epitope B without distinguishing between B1 and B2 re-
gions [33]. The division of epitope B into 2 portions is 
supported by the finding that antibodies H2/4 or L25 
binding to the B2 region induced homotypic cell aggrega-
tion, whereas anti-B1 antibodies HP1/2 or HP2/1 did not 
[35]. Clumping of cells was also stimulated by antibodies 
HP1/1, HP1/3, HP1/7, HP2/6, HP2/7, or MC3/2 anti-epi-
tope A, which inhibited VLA-4 interaction with fibronec-
tin but not with VCAM-1 [35]. Indeed, subsequent mu-
tagenesis studies have shown that asparagine residues 89 
and 90 in the α4 subunit were required for fibronectin 
interaction [36], thus suggesting another fibronectin-
binding site besides MIDAS. Epitope C is also ill-defined, 
with some authors identifying it at residues 422–606, 
while others pointing to residues 269–548 of the α4 sub-
unit thigh domain [33, 34]. Due to its location away from 
the ligand-binding sites, antibodies B-5G10, B-5E2, or 
8F2 against epitope C did not impair VLA-4 interaction 
with VCAM-1 or fibronectin, nor promoted homotypic 
cell aggregation [35]. Currently, the anti-VLA-4 antibody 
mostly used in the clinic is natalizumab, which targets 
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epitope B in a noncompetitive way [37]. The develop-
ment of this antibody was marked by the experimental 
evidence of a successful blocking activity for an anti-
VLA-4 antibody, which was able to inhibit the develop-
ment of EAE [38]. This finding was followed by random-
ized, double-blind, and placebo-controlled clinical trials, 
which demonstrated the natalizumab efficacy in control-
ling inflammatory brain lesions and relapsing MS [39–
41].

Inhibition of VLA-4 can be achieved not only by anti-
bodies but also by other approaches, such as small mole-
cules and cyclic peptides, among others. In general, they 
are designed to exhibit higher affinity and stability in or-
der to compete with and block endogenous integrin bind-
ing [42]. Of particular interest are the QIDSPL motif of 
VCAM-1 in the endothelial cells and the fibronectin LDV 
sequence [43, 44]. Several small molecules have shown 
promising effects on preclinical assays and advanced to 
human clinical trials [45, 46]. For instance, the α4β1-
selective TBC3486 is a nonpeptide compound able to in-
hibit the binding to CS-1 fibronectin segment and VCAM-
1, placing it as a critical target for modulation of T-cell 
migration through the BBB. This antagonist showed 
prominent results in the treatment of EAE mice, revealing 
a less severe acute phase, demyelination, and disease pro-
gression [47]. Also, the inhibitor BIO5192, designed from 
the LDV sequence, induced leukocytosis in the EAE mod-
el, which is an important marker of efficacy [48]. A struc-
tural optimization of VLA-4 antagonists leads to the 
small molecule 14e, which showed efficacy in experimen-
tal asthma and followed for phase I in clinical trials [49]. 
Nevertheless, the modification of molecules needs cau-
tion during lead compound derivation, since a simple 
change can modify its function. For instance, the THI0019 
was the first VLA-4 small molecule agonist. It was gener-
ated by 2 structural modifications of TBC3486 and was 
shown to improve rolling and spreading of the HPB-ALL 
cell line on VCAM-1 [50]. Other VLA-4 inhibitors were 
tested for different clinical approaches. BIO5192 was able 
to improve the mobilization of murine hematopoietic 
stem and progenitors, a critical step for the restoration of 
hematopoiesis after bone marrow transplantation [51]. 
Another inhibitor, BIO1211, exerted similar effect of cor-
ticosteroids in airway allergy response using a sheep 
model [52]. In addition, the antisense oligonucleotide in-
hibitor ATL1102 targets selectively the α4 chain RNA, re-
ducing VLA-4 expression and impairing cell adhesion. In 
a phase II trial, this drug decreased brain lesions in relaps-
ing-remitting MS [53].

Beyond the Therapeutic Blocking of VLA-4 Integrin

The proper organization of cellular interactions cor-
relates with the finely tuned cell signaling and the result-
ing functional activity, even during the transitory con-
tacts in the immune response. As an example, integrins 
have been reported to coordinate phagocytosis through 
their regulatory role on generating actin rearrangements, 
which act as barrier to inhibitory phosphatases at the cell-
cell interface [54]. Particularly, the VLA-4 integrin-medi-
ated interactions also relay critical signaling for proper 
immune cell function, including both the endothelial-
mediated T-cell migration and the APC-driven T-cell ac-
tivation, as described above. Accordingly, any particular 
interference on these interactions might perturb relevant 
immune cell functions. In this sense, aberrant expression 
of integrins, as well as of other molecules directly involved 
in integrin-mediated interactions, has been associated 
with complex pathological conditions, including cancer 
and immunological diseases [55]. On the other hand, 
therapeutic targeting of integrins has been mechanisti-
cally explored and has successfully modified disease pro-
gression, including the neuroinflammation in MS [9].

In this perspective, one can envisage that targeting ac-
tive integrin signaling on immune cells during their mul-
tistep migratory process, from the blood into the CNS, 
might also functionally modulate these neuroinflamma-
tory cells. Yet, a comprehensive picture of a possible mod-
ulation of immune cell functions following VLA-4 target-
ing is still scarce.

Functional Immune Modulation following VLA-4 
Targeting

Besides its role in the sequential adhesive and transmi-
gratory activities in leukocytes, the integrin VLA-4 is able 
to mediate costimulatory function for T-cell activation 
[56]. This latter activity seems to be directly related to the 
presence of the integrin at the immunological synapse, 
colocalizing with the β2-integrin LFA-1 at the periphery 
of the T-cell contact area, the supra-molecular activation 
complex. Interestingly, this study showed the modulation 
of critical molecular and cellular functions when anti-α4 
integrin antibodies were applied. Thus, the presence of 
anti-α4 alters VLA-4 positioning at the T cell-APC inter-
face, resulting in its co-localization with the CD3-ζ chain 
at the central region of supra-molecular activation com-
plexes. Additionally, a polarized Th1 profile is achieved 
after the in vitro differentiation of naive T cells via the 
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engagement of CD3/CD28/α4 integrin or via direct con-
tact with mature dendritic cells in the presence of anti-α4 
antibody. Similar Th1 polarization was observed follow-
ing the in vivo anti-α4 treatment of a Th2-skewed auto-
immune disease [56].

Interestingly, mice treated with β1 integrin-activating 
antibody exhibited higher frequency of CD25high Treg 
cells, which showed increased suppressive activity [57]. 
Recent data also revealed that T-cell devoid of α4 integrin 
(from conditional Itga4-deficient mice) had increased 
Foxp3 expression following in vitro alloreactive activa-
tion and showed lower expression of the T-bet, Gata3, 
and RORγt master transcription factors, as compared to 
control nonmutant T cells [58]. The possibly altered reg-
ulatory and effector functions might be added to the im-
paired migration ability of the α4-deficient T cells as the 
main mechanisms to explain the correlation of the VLA-
4 loss with the significant improvement in a mouse mod-
el of graft versus host disease [58].

Remarkably, mice with selective inactivation of the α4 
integrin chain in T cells developed delayed EAE, with a 
higher frequency of CNS-infiltrating Th17 effector cells 
compared to Th1 lymphocytes. These and other findings 
suggest that VLA-4 has different effects on trafficking dy-
namics of distinct T-cell subtypes or that Th17 cells may 
employ other integrins to reach the inflammatory site 
[59–61]. Moreover, EAE mice bearing a selective VLA-4 
deficiency in B cells were shown to have lower disease 
susceptibility, possibly related to lower migratory activity 
of these B cells into the CNS [62]. Besides the scarcity of 
B cells, these animals showed lower numbers of macro-
phages and T cells infiltrating the CNS. Interestingly, 
analysis of the infiltrating effector T cells revealed a sig-
nificant reduction in the frequency of IL-17A-producing 
cells but not of IFN-γ-producing cells [62].

Considering that Treg cells are regarded as a highly 
VLA-4-expressing subset, it is predicted a possible regu-
latory role for this integrin on Treg cell interactive activi-
ties. Accordingly, adoptive transfer of Treg cells in EAE 
mice correlated with their enhanced migration to the pe-
ripheral lymph nodes and their high levels of adhesion 
molecules [63]. These events possibly facilitated func-
tional interactions with the pathogenic T cells, resulting 
in the modulation of the Th1/Th2 balance along with di-
minished neuroinflammation and clinical improvement 
[63]. Therefore, therapy with anti-α4 antibodies might 
modulate specific T-cell effector functions by indirectly 
targeting Treg cells. The possibility of a more complex 
immune dysregulation effect deserves further investiga-
tion.

Another discrete modulatory impact by antibody tar-
geting of VLA-4 might be attributed to its effect on mo-
bilization of the human CD34+ hematopoietic progenitor 
cells, as observed in natalizumab-treated MS patients 
[64]. Since CD34+ cells are regarded as possessing immu-
noregulatory activity [65], the enhanced mobilizing activ-
ity of a synergistic combination of anti-α4 antibodies with 
granulocyte colony-stimulating factor is likely to provide 
further therapeutic value [66]. Interestingly, granulocyte 
colony-stimulating factor therapy has been shown to re-
sult in clinical improvement of patients with neuromus-
cular disorders, such as muscular dystrophies [67, 68]. On 
the other hand, an attempt to restore the BBB in a pre-
clinical model of stroke using transgenic mesenchymal 
stem cells overexpressing Itga4 to produce pericytes in 
the injured perivascular space showed no significant ben-
efits in the repair of the BBB due to cell clearance [69].

These pivotal studies point that both gene targeting 
and antibody inhibition of VLA-4 on lymphocytes and 
mesenchymal stem cells modulate the neuroinflamma-
tion process. As VCAM-1-expressing brain pericytes and 
astrocytes seem to be additional cells able to interact with 
migrating inflammatory T cells [28, 29], therapeutic 
VLA-4 modulation might revert the leakage and restore 
the integrity of the BBB [70]. Importantly, this can be 
achieved not only by direct effect on adhesion blocking, 
but also by potentially regulating T-cell differentiation 
and effector functions (Fig. 1).

Anti-VLA-4 Therapy: Potential Application to Other 
Diseases and Its Undesirable Side Effects

Given that VLA-4 holds a central role in the intricate 
immune cell adhesive and migratory events, which are 
key steps for the neuroinflammatory process, one might 
postulate the use of VLA-4 immunotherapy to slow down 
the progression of other neuromuscular and neurodegen-
erative disorders. In fact, considering that severity and 
rapid disease progression in Duchenne Muscular Dystro-
phy correlates with significantly increased levels of high-
ly expressing VLA-4 T cells in the blood [71], the Duch-
enne Muscular Dystrophy patients could potentially ben-
efit from the anti-VLA-4 treatment. Additionally, 
administration of a blocking anti-VLA-4 antibody to a 
transgenic mouse model of Alzheimer’s disease resulted 
in mitigation of cognitive and neuropathological disor-
ders associated to a reduced leukocyte migration and in-
teraction with the brain vasculature [72].
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However, despite the patent efficacy of the anti-
VLA-4 therapy in blocking the arrival of effector im-
mune cells within inflammation sites and in reducing 
MS relapses, the natalizumab treatment is associated 
with the appearance of the opportunistic infection with 
the John Cunningham virus in the SNC [40]. A detri-
mental pathological process follows with the develop-
ment of progressive multifocal leukoencephalitis ill-
ness. Interestingly, MS worsening has been also report-
ed following other immunomodulatory treatments 
[18]. A more complex view on the distinct effects of 
VLA-4 immunotherapy for neuroinflammation con-
siders the role of astrocytes as VCAM-1-expressing 
cells, providing the molecular cue for interacting with 
inflammatory VLA-4+ leukocytes. In this sense, despite 
the several studies showing that activated astrocytes 
contribute to the neuroinflammation, a protective role 

for these cells in regulating inflammation and support-
ing BBB has been debated [73, 74].

On the other hand, it is important to point out that 
natalizumab treatment withdrawal has been associated to 
severe rebound of MS relapses and enhanced presence of 
EBV-reactivated B cells in MS lesions [75, 76]. Together, 
these observations conceptually point that more complex 
immune mechanisms might be operating to develop the 
undesirable immune effects elicited after anti-VLA-4 
therapy.

Concluding Remarks

As reviewed herein, there seems to be a concomitant 
role for VLA-4 in the adhesion and migration interac-
tions as well as in modulating some immune cell activi-

Fig. 1. Targeting of VLA-4 integrin might functionally modulate 
T cells in addition to blocking immune cell infiltration. a The my-
elin sheath breakdown, following the disruption of the BBB found 
in MS, involves a neuroinflammation course with infiltrating lym-
phocytes and macrophages, as well as activated resident microglia. 
b Central in this process is the VLA-4/VCAM-1-mediated interac-
tions between leukocytes and endothelial cells, which promote the 
extravasation of immune cells into the CNS and are blocked by 

anti-VLA-4 antibodies. c, d The insets depict the postulate that 
VLA-4 targeting might also modulate immune cell function. This 
can be denoted from studies that apply specific antibodies during 
T-cell activation/differentiation [56] and employ selective ITGA4 
inactivation in both B cells [62] and CD4+ T cells [59]. CNS, central 
nervous system; BBB, blood-brain barrier; MS, multiple sclerosis; 
VCAM, vascular cell adhesion molecule.
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ties, including T-cell activation and effector functions. 
Such a level of complexity may arise after the integrated 
signals from cross-talking membrane receptors that con-
tribute to properly regulated T-cell functions. This can be 
exemplified by the combined activity of integrins and 
chemotactic receptors [77] and by the co-regulation of 
distinct integrins, as demonstrated that LFA-1 binding 
modulates the VLA-4 phosphorylation status [78]. Inter-
estingly, anti-LFA-1 antibodies were shown to inhibit 
VLA-4 binding to VCAM-1 [79]. These mechanistic find-
ings point that advanced anti-VLA-4 therapies might 
combine other immunomodulatory treatments.

Another aspect is related to new technological ap-
proaches regarding the antibody format and specificity. 
For example, we have recently produced an anti-VLA-4 
single-chain variable fragment antibody with the ability 
to inhibit the adhesion of Jurkat cells on VCAM-1-coated 
surface (pending patent; Brazilian National Institute of 
Intellectual Property – INPI – number BR 10 2020 016890 
8). This antibody fragment was developed from an in sili-
co comparative modeling for selective binding to α4β1 
but not to α4β7 integrin. Additional assays are still need-
ed to evaluate whether this antibody has distinct effects 
on immune cell functions compared to natalizumab. A 
similar strategy on computational design can be envis-
aged for differential targeting of distinct T-cell subsets on 
the trafficking pathway for neuroinflammation. The 
modeling of a bi-specific antibody for concomitant bind-
ing to VLA-4 and a specific cell marker (e.g., Th1 vs. 
Th17) could be a challenging strategy.

Lastly, despite the long-time use of the VLA-4 anti-
body therapy, which emerged from the first observations 
on inhibition of in vivo leukocyte extravasation [80], the 
topics reviewed herein point that VLA-4 relevance on 

neuroinflammation still poses interesting challenges. In 
this context, the development of further effective immu-
nomodulatory VLA-4-based therapies is warranted.
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