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Botryosphaeran, [(1 → 3)(1 → 6)-β-D-glucan], induces apoptosis-like death 
in promastigotes of Leishmania amazonensis, and exerts a leishmanicidal 
effect on infected macrophages by activating NF-kB and producing 
pro-inflammatory molecules 
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e Biotransformation and Phytochemistry Laboratory, Chemistry Department, Exact Sciences Center, State University of Londrina, 86057-970, Londrina, Paraná, Brazil 
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A B S T R A C T   

Leishmaniasis is an infectious-parasitic disease caused by the protozoan Leishmania spp. The available treatments 
are based upon expensive drugs bearing adverse side-effects. The search for new therapeutic alternatives that 
present a more effective action without causing adverse effects to the patient is therefore important. The 
objective of this study was to evaluate the in vitro effect of botryosphaeran, a (1 → 3)(1 → 6)-β-D-glucan, on the 
promastigote and intracellular amastigote forms of Leishmania amazonensis. The direct activity of botryosphaeran 
on promastigote forms was evaluated in vitro and inhibited proliferation, the IC50 7 μg/mL in 48 h was calculated. 
After 48 h treatment, botryosphaeran induced nitric oxide production (NO), caused mitochondrial membrane 
hyperpolarization, increased reactive oxygen species (ROS), and accumulation of lipid vesicles in promastigotes, 
resulting in apoptosis, necrosis and autophagy, and was accompanied by morphological and ultrastructural 
changes. The range of concentrations used did not alter the viability of peritoneal macrophages from BALB/c 
mice and erythrocytes of sheep. Botryosphaeran was able to reduce the number of infected macrophages and the 
number of amastigotes per macrophage at 12.5 μg/mL (50.75% ± 6.48), 25 μg/mL (55.66% ± 3.93) and 50 μg/ 
mL (72.9% ± 6.98), and IC50 9.3 μg/mL (±0.66) for intracellular amastigotes forms. The leishmanicidal effect 
was due to activation of NF-κB and promoted an increase in pro-inflammatory cytokines (TNF-α and IL-6), iNOS 
and microbial-derived ROS and NO, in addition to decreasing the levels of SOD. Based upon the data obtained, 
we infer that botryosphaeran exerted an active leishmanicidal and immunomodulatory effect, acting on pro-
mastigotes through autophagic, apoptotic and necrosis processes, and in the intracellular amastigote form, 
through the action of ROS and NO.  
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1. Introduction 

Leishmaniasis is a neglected tropical disease caused by species of the 
protozoan of the genus Leishmania transmitted to mammals through the 
sand fly vector [1]. This disease has several clinical manifestations; the 

cutaneous form being the most common. According to the World Health 
Organization, an estimated 600,000 to 1 million new cases of cutaneous 
leishmaniasis occur annually with the majority of cases occurring in 
Afghanistan, Algeria, Brazil, Colombia and Syria [2]. 

The first choice of treatment for leishmaniasis is based on the use of 
the pentavalent antimonials, such as sodium stibogluconate (Pentos-
tam®) and meglumine antimoniate (Glucantime®). Despite their proven 
efficacy, these drugs have adverse side effects due to the long period of 
treatment required, as well as their toxicity in the heart, kidneys, and 
liver [3,4]. In cases of contra-indications to antimonials, alternative 
treatments such as amphotericin B®, paromomycin, pentamidine, and 
miltefosine can be used. These second-choice drugs, however, also exert 
high toxicity and cause several side effects on the patient that includes 
gastrointestinal disorders, nephrotoxicity and pancreatitis, as well as 
leading to the development of resistant strains of Leishmania spp [5]. The 
search for alternative drugs therefore becomes an important and urgent 
issue, and studies have shown the beneficial effects of natural products 
derived from bacteria, fungi and plants. 

Carbohydrate biopolymers (polysaccharides) that include the β-glu-
cans are a class of natural products considered alternative and comple-
mentary medicinal compounds. They can be produced as 
exopolysaccharides in submerged fermentation by several microorgan-
isms (basidiomycetes and filamentous fungi, among which are yeasts), 
or are found in the fungal cell wall, from which they can be extracted 
chemically [6–8]. The β-glucans have attracted wide attention for their 
ability to induce innate and adaptive immune responses in the host [9, 
10]. Among the fungal β-glucans, is the exopolysaccharide botryos-
phaeran from the ascomyceteous fungus Botryosphaeria rhodina 
MAMB-05. Botryosphaeran is a mixed-linked, branched (1 → 3)(1 → 
6)-β-D-glucan consisting of a β-(1 → 3)-linked D-glucan backbone chain 
with glucose and gentiobiose appendages via β-(1 → 6)-glucosidic 
linkages [11]. Previous studies from our group [12] have demonstrated 

several in vitro and in vivo biological activities for botryosphaeran that 
include: antiproliferative, pro-apoptotic, antimutagenic and chemo-
preventive properties on tumor cells (V79, HTC, Jurkat and MCF-7 cell 
lines) [13–16]; antioxidant [17]; antiviral (Herpes simplex and dengue 
fever) [18]; anticoagulant [19], and in studies on mice and rats has 
presented anticlastogenic activities [20,21], hypoglycemia and hypo-
cholesterolemia [21,22], anti-obesogenicity [23] and anti-tumor activ-
ity in rats bearing Walker-256 cancer cells [24]. 

A β-glucan from Lentinus edodes was reported to exhibit an immu-
nomodulatory effect on Leishmania-infected J774A.1 macrophages, 
increasing the levels of pro-inflammatory cytokines (IL-12 and TNF-α) 
and decreasing anti-inflammatory interleukins (IL-10 and TGF-β) [25]. 
Other β-glucans from Saccharomyces cerevisiae and Aureobasidium pul-
lulans have been reported to prevent the in vivo progression of cutaneous 
leishmaniasis infection by L. major and L. amazonensis in BALB/c [26] 
and C57BL/6 mice [27], respectively. 

Although some studies have demonstrated the activities of β-glucans 
against Leishmania infections [25–27], nothing is known about the 
microbiocidal and immunomodulatory mechanisms involved in the 
death of the promastigote and amastigotes forms of L. amazonensis on 
treatment with the (1 → 3)(1 → 6)-β-D-glucan, botryosphaeran. The 
objective of this study was to evaluate the in vitro effect of botryos-
phaeran on the free forms of promastigotes and intracellular amastigotes 
of L. amazonensis, as well as to elucidate a mechanism of action on the 
death of these parasitic forms. 

2. Materials and methods 

2.1. Culture of leishmania (leishmania) amazonensis promastigotes 

The promastigote form of Leishmania (L.) amazonensis (MHOM/BR/ 
1989/166MJO) was maintained in culture medium 199 (GIBCO Invi-
trogen, New York, USA) supplemented with 10% fetal bovine serum 
(FBS) (GIBCO Invitrogen), 1.0 M HEPES medium, 1% human urine, 1% 
L-glutamine, streptomycin (10 U/mL) with penicillin (10 μg/mL) 
(GIBCO Invitrogen) and 10% sodium bicarbonate, and cultured as 
described by Tomiotto-Pellissier et al. (2018) [28]. Cell cultures were 
maintained in a B.O.D incubator at 25 ◦C, in 25-cm2 culture flasks. 
Promastigotes at the stationary phase of growth (5-day culture) were 
used in all experiments. 

2.2. Animals and Ethics Committee 

Male BALB/c mice weighing 25–30 g aged 6–12 weeks were kindly 
donated by Dr. Giovanny Mazzarotto of Instituto Carlos Chagas/Fiocruz, 
Curitiba, Brazil. The mice were maintained and used according to the 
protocol approved by the Animal Use Ethics Committee of Universidade 
Estadual de Londrina (n◦. 88/2018). 

2.3. Production of botryosphaeran 

Botryosphaeran was produced by Botryosphaeria rhodina isolate 
MAMB-05 grown by submerged fermentation on nutrient media con-
taining 6% sucrose, and isolated from the cell-free fermentation broth by 
precipitation with absolute ethanol (3 vol) according to the procedure 
described by Barbosa et al. (2003) [11]. The precipitate was dissolved in 
water (heating at 60 ◦C for 2 h), and then exhaustively dialyzed against 
several changes of distilled water over a 48-h period. The dialyzate 
containing botryosphaeran was autoclaved (120 ◦C for 20 min) and 
stored at 4 ◦C until required. The concentration of botryosphaeran was 
determined by the phenol-sulfuric acid method [29]. 

2.4. Botryosphaeran activity on promastigote forms of Leishmania 
amazonensis 

The promastigote forms of L. amazonensis (106 cells/mL) were 

Abbreviations 
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AmB amphotericin B 
NO nitric oxide 
TMRE tetramethylrhodamine methyl ester 
CCCP carbonyl cyanide m-chlorophenyl hydrazone 
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DCF 2′,7′-dichlorofluorescein 
PI propidium iodide 
SEM scanning electron microscopy 
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treated with different concentrations of botryosphaeran (6.25; 12.5; 25; 
50; 100 μg/mL). This concentrations was chosen according to a previ-
ously study of botryosphaeran [16]. The parasites were counted in a 
Neubauer chamber after 24, 48, and 72 h of treatment (25 ◦C). As a 
negative control, promastigote forms maintained in the untreated cul-
ture medium (medium 199) were used. Parasites treated with 1 μM 
amphotericin B (AmB) (União Química, São Paulo/São Paulo, Brazil) 
were used as a positive control. From the generated dose-response curve, 
the IC50 (concentration capable of inhibiting the growth of parasites by 
50%) and 2x IC50 values were calculated by non-linear regression 
analysis using the statistical software GraphPad Prism (GraphPad Soft-
ware, Inc., USA, v. 5). The IC50 and 2x IC50 were chosen for use in the 
following experiments with promastigotes as previously described [30]. 

2.5. Determination of nitrite as an estimate of NO levels in promastigote 
and amastigotes forms 

Nitric oxide (NO) was determined as nitrite by the Griess assay 
procedure as described by Gonçalves et al., 2018 [31]. Briefly, aliquots 
of 60 μL of the promastigote form at concentrations of botryosphaeran of 
IC50 and 2x IC50 (7 and 14 μg/mL, respectively) were taken at 48 h, as 
well as aliquots of the supernatant from the 24-h anti-amastigote assay 
(5 × 105 cells/mL - infected and treated at concentrations of botryos-
phaeran of 12.5, 25 and 50 μg/mL). Griess reagent (60 μL), 1% sulfa-
nilamide (Labsynth, Diadema/São Paulo, Brazil) and 0.1% 
N-(1-naphthyl)ethylenediamine dihydrochloride (Labsynth, Dia-
dema/São Paulo, Brazil) were added in 5% H3PO4 and incubated at 
25 ◦C for 10 min. A standard curve was constructed using serial dilutions 
of NaNO2 (0–250 μM), and the absorbance measured at 550 nm in a 
microplate reader (Thermo Scientific, Multiskan GO, USA). Medium 199 
was used as a negative control. 

2.6. Determination of mitochondrial membrane potential 

Promastigote forms (1 × 106 cells/mL) were treated with botryos-
phaeran at IC50 and 2x IC50 values (7 and 14 μg/mL, resp.) for 48 h to 
assess the membrane potential of the internal mitochondrial membrane. 
For this purpose, the probe tetramethylrhodamine methyl ester (TMRE) 
(Sigma-Aldrich, St. Louis, MO, USA) was used. The parasites to be 
treated were washed and incubated in 2.5 μM TMRE solution for 30 min 
at 25 ◦C and then analyzed by fluorometry using an excitation wave-
length of 480 nm and an emission wavelength of 580 nm in a Perki-
nElmer Victor X3 fluorometer (PerkinElmer, MA, USA). Carbonyl 
cyanide m-chlorophenyl hydrazone (CCCP) was used as the positive 
control, and medium 199 as negative control. 

2.7. Generation of reactive oxygen species (ROS) in promastigotes and 
infected macrophages 

The production of ROS was evaluated by the conversion of non- 
fluorescent H2DCFDA to the highly fluorescent 2′,7′-dichloro-
fluorescein (DCF, Sigma-Aldrich, USA) on the promastigote forms of 
L. amazonensis (1 × 106 cells/mL) treated with IC50 and 2x IC50 (7 and 
14 μg/mL) of botryosphaeran for 48 h, and on macrophages infected 
with L. amazonensis (5 × 105 cells/mL - infected and treated under the 
same conditions as described in the anti-amastigote test) according to 
Bortoleti et al. (2018) [32]. This was followed by washing the cells in 
PBS (pH 7.4), and they were then loaded with the permeant probe DCF 
diluted in DMSO (10 μM for promastigotes and 2 μM for amastigotes, 
resp.), and the cells incubated in the dark for 45 min for the promasti-
gote forms, and 30 min for infected macrophages, at 37 ◦C. Hydrogen 
peroxide (H2O2) was used as the positive control, and medium 199 was 
used as negative control. The ROS generated were assayed fluorimetri-
cally at an excitation wavelength of 488 nm and an emission wavelength 
of 530 nm. 

2.8. Assessment of the presence of lipid droplets by Nile red staining 

Promastigote forms (1 × 106 cells/mL) were treated with botryos-
phaeran (7 and 14 μg/mL) for 48 h. Afterwards, the cells were washed 
twice in PBS (pH 7.4) and then reacted with an aqueous solution of Nile 
red (10 μg/mL; Sigma-Aldrich, USA) for 30 min at 25 ◦C. The dyed 
cytoplasmic lipid droplets of the parasites were quantitated fluoro-
metrically at wavelengths of 530 nm (emission) and 635 nm (excita-
tion). PBS was used as a positive control. 

2.9. Assessment of the presence of autophagic vacuoles 

To assess the presence of autophagic vacuoles, promastigote forms 
were treated with IC50 and 2x IC50 (7 and 14 μg/mL) of botryosphaeran 
for 48 h. The parasites were washed twice in PBS (pH 7.4), and then 
incubated with 5 μL of monodansylcadaverine (Sigma-Aldrich, USA; a 
specific marker of autophagy vacuoles) solution (4.97 nM) at 25 ◦C for 1 
h, followed by fluorometric analysis at an excitation and emission 
wavelengths of 380 nm and 525 nm, respectively. PBS was used as the 
positive control. 

2.10. Co-determination of annexin-V and propidium iodide 

Cellular apoptosis, necrosis or late apoptotic cells were evaluated 
using a combination of two stains - annexin V-FITC and propidium io-
dide (PI) (Santa Cruz Biotechnology, USA). Promastigote forms of 
L. amazonensis (1 × 106 cells/mL) were treated with IC50 and 2x IC50 (7 
and 14 μg/mL) of botryosphaeran for 48 h at 25 ◦C. The parasites were 
then washed and resuspended in 100 μL of binding buffer (Santa Cruz 
Biotechnology, Dallas, TX, USA), followed by adding a mixture of 0.5 μL 
of annexin V-FITC and 0.5 μL of PI. Data acquisition and analysis were 
performed using a BD Accuri™ C6-Plus flow cytometer (BD Biosciences, 
San Jose, CA, USA). The cells were analyzed according to the procedure 
of Miranda-Sapla et al. (2019) [33]. 

2.11. Evaluation of morphological and ultrastructural changes of 
parasitic cells by electron microscopy 

Promastigote forms treated for 48 h with 7 and 14 μg/mL of 
botryosphaeran were collected by centrifugation and washed in 0.01 M 
PBS (pH 7.2). Scanning electron microscopy (SEM) was used to assess 
morphological changes of the parasite cells. The parasites were fixed 
with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer followed 
by washing with 0.1 M sodium cacodylate buffer. The treated parasites 
were then allowed to adhere to glass coverslips and covered with a layer 
of poly-L-lysine solution. The adhered cells were next washed with 0.1 M 
sodium cacodylate buffer, post-fixed in 1% osmium tetroxide, dehy-
drated using increasing concentrations of ethanol (30–100%), then 
subjected to drying at the critical point with carbon dioxide, metalized 
with gold, and analyzed in a high-resolution double-beam electron mi-
croscope (FEI SCIOS, Oregon, USA). 

Transmission electron microscopy (TEM) was used to detect ultra-
structural changes. The parasites were fixed with 2.5% glutaraldehyde 
in 0.1 M sodium cacodylate buffer, post-fixed in 1% osmium tetroxide 
solution and 0.8% potassium ferrocyanide at room temperature and 
protected from light. Afterwards, the cells were dehydrated using 
increasing concentrations of acetone (50–100%), followed by adding 
EPON™ resin, and polymerized in an oven at 60 ◦C for 72 h. Ultrathin 
sections made on an ultramicrotome (PowerTomer BMC – Germany) 
were deposited on a copper grid and contrasted with uranyl acetate (5%) 
and lead citrate (2%) for 20 and 10 min, respectively. TEM analysis was 
performed on a JEOL JEM 1400 instrument (Tokyo, Japan). 

2.12. Peritoneal macrophage viability analysis 

The MTT test using 3-(4,5-dimethylthiazol-2yl)-2,5- 
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diphenyltetrazolium bromide (MTT; Sigma-Aldrich, USA) was per-
formed according to Assolini et al. (2020) [34] to evaluate possible 
cytotoxic effects of botryosphaeran on peritoneal cells in BALB/c mice. 
Briefly, macrophages (5 × 105 cells/mL) were recovered from the 
peritoneal cavity of BALB/c mice with cold PBS supplemented with 3% 
of FBS and then cultured in 24-well plates with 500 μL of RPMI 1640 
medium 10% FBS for 24 h (37 ◦C, 5% CO2). Subsequently, the wells were 
washed with PBS to remove the non-adherent cells, and then treated 
with botryosphaeran (6.25; 12.5; 25; 50 μg/mL) for 24 h under the same 
conditions. MTT reagent (0.33 mg/mL) was added to the cells and 
incubated for 4 h. The MTT product (formazan crystals) was solubilized 
with DMSO, and read on a spectrophotometer (Thermo Scientific, 
Multiskan GO, USA) at 550 nm. As a negative control, untreated mac-
rophages were used. The results were expressed as a percentage of 
viability compared to the control group. 

2.13. Hemolysis assay 

The hemolytic action of botryosphaeran was evaluated according to 
Bortoleti et al. (2018) [32] using sheep erythrocytes (Ethics Committee 
on Animal Experimentation at the Universidade Estadual de Londrina: 
N◦. 8286/2016.60). Blood was collected and treated with heparin, and 
the erythrocytes were washed 3 times with PBS (pH 7.4) (centrifuged at 
1000 rpm for 10 min). A 2% erythrocyte suspension was prepared with 
PBS and mixed in a 96-well plate with botryosphaeran (1:1) added in a 
final volume of 200 μL to obtain final concentrations of (6.25, 12.5, 25 
and 50 μg/mL). The microplates were then incubated for 3 h at 37 ◦C 

under 5% CO2. PBS was used as a negative control, and distilled water as 
a positive control for assessing hemolysis. The 96-well plates were 
centrifuged at 162×g for 10 min, and the supernatants collected to 
determine the absorbance at 550 nm, with hemoglobin measured as an 
indication of erythrocyte lysis. 

2.14. Anti-amastigote cell test 

The anti-amastigote cell test was evaluated according to Assolini 
et al. (2020) [34]. Peritoneal macrophages (5 × 105 cell/mL) from 
BALB/c mice were allowed to adhere to the walls in 24-well plates 
containing 13-mm glass coverslips, followed by the addition of 500 μL of 
RPMI 1640 medium, and the contents incubated for 24 h at 37 ◦C under 
5% CO2. Adherent macrophages were then infected with the promasti-
gote form of L. amazonensis (2.5 × 106 cells/mL) for 3 h. After infection, 
non-internalized promastigote forms were removed by washing with 
PBS (pH 7.4), and the infected cells treated with botryosphaeran (6.25; 
12.5; 25 and 50 μg/mL), RPMI 1640 medium (negative control) or 1 μM 
amphotericin (positive control) for 24 h (37 ◦C, 5% CO2). The cells were 
then stained with Leishman’s stain (Inlab, SP, Brazil) and 20 fields 
analyzed under an optical microscope (Olympus Bx41, Olympus Optical 
Co., Ltd., Tokyo, Japan) (1000x magnification) to determine the per-
centage of infected macrophages, and the number of intracellular 
amastigotes of macrophages after 24 h of treatment. The IC50 against 
amastigote forms was calculated by non-linear regression analysis using 
the statistical software GraphPad Prism (GraphPad Software, Inc., USA, 
v. 5). 

Fig. 1. Profiles showing leishmanicidal activity of botryosphaeran on promastigote forms of L. amazonensis. Promastigote forms were treated with different con-
centrations (6.25, 12.5, 25, 50 and 100 μg/mL) of botryosphaeran, M199 medium (control) and 1 μM amphotericin B (AmB, positive control), and parasite pro-
liferation was analyzed at the time of 24, 48 and 72 h (a). From the proliferation assays, concentrations of botryosphaeran that inhibited 50% of the promastigote 
forms were determined at 24 (b), 48 (c) and 72 h (d). The values represent the mean ± SEM of three independent experiments carried out in triplicate. ** Significant 
difference compared to the control group (p ≤ 0.05), *** (p ≤ 0.0005), **** (p ≤ 0.0001). 
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2.15. Immunofluorescence analysis of phosphorylated nuclear factor- 
kappa B (NF-κB) 

L. amazonensis-infected macrophages, as described in the anti- 
amastigote assay were treated with 12.5, 25 and 50 μg/mL of botryos-
phaeran, and analyzed for the presence of phosphorylated NF-κB. 
Briefly, after cell culture and treatment, cover slips containing the 
attached cells were fixed with 4% paraformaldehyde for 15 min, washed 
three times with PBS (pH 7.4) and permeabilizated for 15 min with PBS 
containing 0.5% of Triton X-100 (TBS) and 1% albumin bovine serum 
for 30 min at room temperature. Then, phospho NF-κB p65 primary 
antibody (Santa Cruz Biotech, USA) diluted (1:200) was added and 
incubated overnight at 4 ◦C. Subsequently, a universal solution of sec-
ondary antibodies with biotinylated anti-rabbit, anti-mouse, and anti- 
goat IgG (LSAB + System-HRP, DAKO) was added and left for 1 h at 
room temperature. After three washes with TBS, the slides containing 
the samples were incubated with the avidin-FITC complex (eBio-
science™, ThermoFischer, GO, USA) for 1 h at room temperature, and 
then washed five times with TBS. Slides were mounted using mounting 
medium of glycerol-PBS, pH 8.5 (9:1) containing 0.5 μg/mL 4’,6-dia-
midino-2-phenylindole dihydrochloride (DAPI) and 1 mM Trolox (both 
Sigma-Aldrich, USA). The slides were evaluated under fluorescence 
microscopy (EVOS FL Auto 2, Thermo Scientific, USA) using the 
appropriate filters. Twenty consecutive fields of the cover slip were 
digitally acquired, and the fluorescence intensity was measured by 
Image J software (NIH, USA), and normalized by cell number. 

2.16. Measurement of cytokines 

The supernatants from the anti-amastigote cell assay were used to 
measure levels of tumor necrosis factor-alpha (TNF-α), interleukins (IL)- 
6 and IL-10 by an ELISA procedure, according to the manufacturer’s 
instructions (Thermo Fischer Scientific, Multiskan, GO, USA). The plates 
were read at 450 nm using an ELISA plate reader (Thermo Fischer Sci-
entific, USA), and the results were expressed in pg of the cytokines/mL 
based on a standard curve. 

2.17. Immunofluorescence analysis of inducible nitric oxide synthase 
(iNOS) 

Peritoneal macrophages (1 × 106 cell/mL) were adhered in 24-well 
plates and infected with the promastigote form of L. amazonensis (1 ×
107 cells/mL). Under the same conditions described in the anti- 
amastigote assay were treated with 12.5, 25 and 50 μg/mL of botryos-
phaeran, and analyzed for the presence of iNOS. Briefly, after cell cul-
ture and treatment, the cells were trypsinized for 15 min at 37 ◦C under 
5% CO2 and were put in Eppendorf. The pellet was fixed with methanol 
for 15 min, three washes with PBS (pH 7.4) and permeabilizated for 1 h 
with PBS containing 3% of albumin bovine serum at room temperature. 
Then, iNOS primary antibody (Santa Cruz Biotech, USA) diluted (1:200) 
was added and incubated overnight at 4 ◦C. Subsequently, a universal 
solution of secondary antibodies with biotinylated anti-rabbit, anti- 
mouse, and anti-goat IgG (LSAB + System-HRP, DAKO) was added and 
left for 1 h at room temperature. After three washes with PBS, the 
samples were incubated with avidin-FITC complex (eBioscience™, 
ThermoFischer, GO, USA) for 1 h at room temperature and then washed 
three times with PBS. Data acquisition and analysis were performed 
using a BD Accuri™ C6-Plus flow cytometer (BD Biosciences, San Jose, 
CA, USA). 

2.18. Determination of superoxide dismutase (SOD) levels 

L. amazonensis-infected macrophages, as described in the anti- 
amastigotes assay were treated with 12.5, 25 and 50 μg/mL of 
botryosphaeran, and measured the SOD levels. Briefly, after cell culture 
and treatment, the cells submitted a cycle of freezing at − 80 ◦C and 
thawing at 37 ◦C for 30 min each. The method used for SOD is based on 
the enzyme’s ability to inhibit the autoxidation of pyrogallol, as 
described by Marklund and Marklund (1974) [35]. 

2.19. Statistical analysis 

Data from three independent experiments performed in triplicate 

Fig. 2. Mechanisms of action of botryosphaeran on 
promastigote forms of L. amazonensis. The super-
natant from the direct assay on the promastigote 
forms of L. amazonensis was collected to measure 
NO levels at concentrations of botryosphaeran of 
IC50 (7 μg/mL) and 2x IC50 (14 μg/mL) within 48 h 
(a). The parasites were treated with IC50 (7 μg/mL) 
and 2x IC50 (14 μg/mL) of botryosphaeran for 48 h 
and analyzed by the TMRE fluorometric method 
(b), reactive oxygen species were measured using 
the H2DCFDA probe (c), and the presence of lipid 
bodies was analyzed by the Nile red method (d). 
The values represent the mean ± SEM of three in-
dependent experiments carried out in triplicate. * 
Significant difference compared to the control (p ≤
0.05), ** (p ≤ 0.001), *** (p ≤ 0.0005), **** (p ≤
0.0001) and significant difference between the 
treatments ### (p ≤ 0,0005).   
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Fig. 3. Morphological and ultrastructural analysis of L. amazonensis 
promastigotes. Promastigote forms were treated with 7 and 14 μg/mL 
of botryosphaeran for 48 h and analyzed by scanning and transmission 
electron microscopy. (A and F) Control. (B, C, G and H) IC50. (D, E, I, J) 
2x IC50. (A–E) Scanning electron microscopy. (F–K) Transmission 
Electron Microscopy. (white arrow) cell leakage; (black arrow), change 
in plasma membrane; ▴, mitochondrial swelling; *, autophagic vacu-
oles; ■, nuclear alteration; c, kinetoplast; f, scourge; m, mitochondria; 
n, nucleus. Bars = 5 μm (A–E), 2 μm (G), 1 μm (F, J) and 0.5 μm (H, I).   
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and expressed as the mean ± standard error of the mean were used. The 
data were analyzed using GraphPad Prism® statistical software 
(GraphPad Software, Inc., USA, v. 500.288). Significant differences be-
tween treatments were determined by ANOVA, followed by the Tukey 
test for multiple comparisons. The differences were considered signifi-
cant when p ≤ 0.05. 

3. Results and discussion 

3.1. Botryosphaeran reduces proliferation of L. amazonensis 

Botryosphaeran at concentrations (6.25, 12.5, 25, 50 and 100 μg/ 
mL) and the times of treatment (24, 48, and 72 h), showed a significant 
reduction in the proliferation of the promastigote form of L. amazonensis 
in a concentration-time dependent relationship compared to the control 
(Fig. 1a) (p ≤ 0.01) since the control presented an increase in the pro-
liferation of the parasites at all tested times. Treatment with 1 μM AmB 
significantly reduced the proliferation of parasites compared to the 
control (p ≤ 0.001) at all of the times tested. From the data presented, 
the IC50 value was calculated, and established the concentrations of 
botryosphaeran of 37.4; 7.0 and 13.0 μg/mL, respectively, for 24, 48 and 
72 h of treatment (Fig. 1b, c, d). Also observed was the direct effect on 
parasites at dose-time dependency. We therefore chose to continue the 
experiments at the time when botryosphaeran exhibited the lowest 
effective concentration, i.e., 7.0 μg/mL (±0.21) at 48 h. No literature 
study too date has elucidated the possible mechanisms of direct action of 
a β-glucan on the promastigote form, nor on the immunomodulatory 
effects in the infection by L. amazonensis. 

3.2. Mitochondrial hyperpolarization and oxidative stress 

Having foreknowledge on the leishmanicidal effect of botryos-
phaeran, we analyzed what possible causes could be involved in the 
death of the promastigote form. We found that botryosphaeran treat-
ment at 2x IC50 value (i.e., 14 μg/mL) was able to increase the levels of 
nitric oxide (NO) in the promastigotes after 48 h of treatment (p ≤
0.001) (Fig. 2a). NO, in addition to being a potent microbicide, is an 
important modulator of mitochondrial metabolism, affecting the crucial 
functions of mitochondria and generating hyperpolarization of mito-
chondrial membranes [36]. 

In this sense, we observed by fluorimetry that botryosphaeran (2x 
IC50) caused mitochondrial hyperpolarization (p ≤ 0.05) (Fig. 2b) which 
was reinforced by TEM images, showing swollen mitochondria (see 
below). Mitochondria are essential for the survival of trypanosomatids, 
such as Leishmania spp., as these parasites have a single mitochondria 
that is responsible for the generation of cellular ATP [37,38]. Mito-
chondrial hyperpolarization, in turn, is directly related to the synthesis 
of superoxide anion radical (O2

− .) and, consequently, raises the levels of 
intracellular ROS [37]. We found that concentrations of botryosphaeran 
at IC50 and 2x IC50 both caused an increase in ROS levels as measured by 
the H2DCFDA probe (p ≤ 0.05), and the presence of lipid bodies (p ≤
0.0005) at 48 h of treatment is shown in Fig. 2b–d. 

It is well-known that the hyperpolarization of mitochondrial can 
result in changes in the permeability of this organelle’s membrane and 
induce the opening of non-selective and high conductance, transcription 
pores in the internal mitochondrial membrane. This phenomenon leads 
to mitochondrial swelling and eventually cell death due to apoptosis or 
necrosis [39]. Besides, Queiroz et al. (2015) [16] showed that 

Fig. 4. Autophagic and apoptotic processes induced by botryosphaeran in promastigote forms of L. amazonensis. The parasites were treated for 48 h with IC50 (7.0 
μg/mL) and 2x IC50 (14 μg/mL) and analyzed using monodansylcadaverine for quantification of autophagic vacuoles by fluorimetry (a), quantitative analysis of 
apoptosis, necrosis and late apoptosis by annexin-V, propidium iodide (PI) and double labeling, respectively (b), and control (untreated parasites) and promastigotes 
treated with botryosphaeran in the IC50 (7 μg/mL) and 2x IC50 (14 μg/mL), stained with annexin V-FITC and PI and analyzed by flow cytometry (c). Apoptosis was 
considered as Annexin V-FITC + /PI-, necrosis as Annexin V-FITC-/PI+, and late-apoptosis as Annexin V-FITC + /PI +. The values represent the mean ± SEM of three 
independent experiments carried out in triplicate. * Significant difference compared to the control (p ≤ 0.05), ** (p ≤ 0.001), *** (p ≤ 0.0005), **** (p ≤ 0.0001) and 
between treatments # (p ≤ 0.05), ## (p ≤ 0.001), #### (p ≤ 0.0001). 
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botryosphaeran was able to increase the production of ROS in the breast 
carcinoma cell line (MCF-7) in 48 h. Oxidative stress causes damage to 
genetic material, proteins, and lipids, which can cause the deposition of 
lipids in the cytosol [40,41]. The presence of lipid vacuoles as we 
observed in promastigotes of L. amazonensis, may in turn, be indicative 
of cell death [42]. 

3.3. Botryosphaeran induces different types of death in L. amazonensis 
promastigotes 

For organisms such as Leishmania spp., autophagy plays a funda-
mental role, participating in several effects, from survival to the deple-
tion of nutrients to the differentiation of its morphology during the 
biological cycle [43]. Studies have suggested that autophagy may pre-
cede, or even trigger, apoptosis [44]. 

We also observed morphological and ultrastructural changes by SEM 
and TEM (see Fig. 3), when compared to the controls (Fig. 3a–f) whereby 
the promastigotes treated with IC50 and 2x IC50 of botryosphaeran 
showed a roughened appearance of the cell surface (Fig. 3b–e). Atypical 
nuclei with chromatin marginalization and changes in the plasma 
membrane were also be observed (Fig. 3g and h). Treatment with 2x IC50 
botryosphaeran showed extravasation of cellular content in the region of 
the flagellum, with necrosis becoming more evident (Fig. 3d and e). 

Our next objective was to identify the type of cell death triggered by 
botryosphaeran in the treated promastigote forms. First, we confirmed 
that treatments with IC50 and 2x IC50 of botryosphaeran for 48 h were 
able to cause an accumulation of autophagic vacuoles in the parasite 
(Fig. 4a) (p ≤ 0.05), as was also observed by TEM (see Fig. 3g and h). Our 
results showed an increase in the annexin-V (apoptosis), propidium io-
dide (necrosis) and double staining parasite population (apoptosis-like), 
demonstrating that the treatment was capable of inducing both 
apoptosis and necrosis (p ≤ 0.0005) (Fig. 4b). 

An apoptosis-like effect is described in trypanosomatids, as they 
share morphological, biochemical and molecular aspects typical of 
metazoan apoptosis, however, they do not produce canonical mediators 
as members of the Bcl-2 family, caspases and TNF-related family of 

receptors [45,46]. In Leishmania spp., cell rounding and shrinkage, 
changes in the plasma membrane but maintaining its integrity, mito-
chondrial modification, chromatin condensation, nuclear and DNA 
fragmentation, may be present [47]. 

In cases where apoptotic cells persist due to an overload of dead cells, 
these early apoptotic cells will progress to late apoptotic cells, where the 
plasma membrane becomes more permeable, and is observed by the 
double annexin-V/PI (Annexin V-FITC + /PI +) labelling [48]. When the 
lesions become extensive, the cells can accidently die from necrosis. This 
is morphologically characterized by a gain in cell volume, swelling of the 
organelle, loss of integrity of the plasma membrane and, consequently, 
loss of intracellular content. This sequence of events has been described 
as a potential inducer of regulated cell death [47,49]. 

Several studies have demonstrated the importance of inducing this 
type of cell death with compounds possessing leishmanicidal action [28, 
32,33,50,51]. Botryosphaeran treatment of breast carcinoma MCF-7 
cells was demonstrated to increase the levels of apoptosis that was 
associated with oxidative stress and activation of AMPK and FOXO3a 
[16]. 

3.4. Botryosphaeran eliminates amastigote forms without causing cell 
toxicity 

Knowing the effect of botryosphaeran on promastigote forms, we 
investigated its potential action on intracellular amastigotes. First, we 
evaluated if botryosphaeran exerted cytotoxic effects on primary cells 
and observed that at all of the concentrations tested botryosphaeran was 
not toxic to both peritoneal macrophages of BALB/c mice and sheep 
erythrocytes (Fig. 5a and b). Corroborating our results, Roudbary et al. 
(2015) demonstrated that a β-glucan from Saccharomyces cerevisiae, did 
not present cytotoxicity on peritoneal macrophages [52]. Furthermore, 
Choromanska et al. (2018) demonstrated that hemolysis of human 
erythrocytes by oat β-glucan (a β-(1 → 3)(1 → 4)-linked glucan) occurred 
at concentrations above 300 μg/mL in hypotonic saline solutions [53]. 

Next, we evaluated the treatment of botryosphaeran on peritoneal 
macrophages infected with L. amazonensis. Macrophages are the main 

Fig. 5. Botryosphaeran does not alter the 
viability of peritoneal macrophages and 
sheep erythrocytes and has leishmanicidal 
effect on macrophages infected with 
L. amazonensis. Peritoneal macrophages (a) 
and sheep erythrocytes (b) were treated with 
botryosphaeran at concentrations of 6.25, 
12.5, 25 and 50 μg/mL for 24 and 3 h, 
respectively. Positive control (PBS) and 
negative control (RPMI medium). Peritoneal 
macrophages were infected with 
L. amazonensis and treated with botryos-
phaeran (12.5, 25 and 50 μg/mL) for 24 h or 
Amphotericin B (1 μM) and analyzed the 
percentage of infected macrophages (c), and 
the number of amastigotes per macrophage 
(d). IC50 9.3 μg/mL (±0.66) was calculated 
for the amastigotes forms at 24 h. The values 
represent the mean ± SEM of three inde-
pendent experiments carried out in tripli-
cate. * Significant difference compared to 
the control (p ≤ 0.05) ** (p ≤ 0.01) **** (p 
≤ 0.0001).   
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host cells for Leishmania spp., which are fundamental in the immune 
response against these parasites [54]. Our results showed that botryos-
phaeran treatment was able to reduce the percentage of infected mac-
rophages at concentrations of 12.5 (50.75% ± 6.48), 25 (55.66% ±
3.93) and 50 μg/mL (72.9% ± 6.98), when compared to the control (p ≤
0.01) (Fig. 5c). A reduction in the number of amastigotes by macro-
phages treated with botryosphaeran at concentrations of 12.5; 25 and 
50 μg/mL (p ≤ 0.05) was also observed (Fig. 5d). Also, an IC50 of 9.3 

μg/mL (±0.66) was calculated for the amastigotes forms at 24 h. A 
similar observation was reported by Shivahare et al. (2016) in evalu-
ating the activity of lentinan, a β-glucan of the β-(1 → 3)(1 → 6)-linked 
type from shiitake (Lentinula edodes), against macrophages infected by 
L. donovani, recording an inhibition of 55.8% ± 3.8 of the parasitic load 
at the highest concentration examined (20 μg/mL) [25]. 

Fig. 6. Botryosphaeran induces activation of phosphorylated NF-κB. Peritoneal macrophages were infected with L. amazonensis and treated with botryosphaeran for 
24 h at concentrations of 12.5, 25 and 50 μg/mL. After culture, the coverslips containing adhered cells were labeled with the primary antibody and subsequently 
added secondary antibodies. Then the slides were mounted using glycerol-PBS pH 8.5 (9:1) mouting medium containing DAPI and Trolox (Sigma, USA) and analyzed 
using an EVOS FL Auto 2 fluorescence microscope (Thermo Scientific, USA). Twenty consecutive fields were acquired digitally, the fluorescence intensity was 
measured using Image J software (NIH, USA) and normalized by the number of cells. The values represent the mean ± SEM of three independent experiments carried 
out in triplicate. * Significant difference compared to infected and treated control (p ≤ 0.05), **** (p ≤ 0,0001) and significant difference between uninfected control 
and treated #### (p ≤ 0,0001). 

Fig. 7. Botryosphaeran increasing the levels of cytokines. Peritoneal macrophages were infected by L. amazonensis and subjected to treatment with botryosphaeran at 
concentrations of 12.5, 25 and 50 μg/mL for 24 h. Cytokines TNF-α (a) and IL-6 (b) levels in the culture supernatant was measured by ELISA. The values represent the 
mean ± SEM of three independent experiments carried out in triplicate. ** Significant difference compared to the control (p ≤ 0.01), *** (p ≤ 0.0005). 
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3.5. Mechanisms of elimination of amastigote forms by botryosphaeran 

Once the effect of botryosphaeran on infected macrophages was 
known, we investigated possible mechanisms by which the elimination 
of amastigote forms occurred. Our results showed that treatment with 
botryosphaeran was able to activate NF-κB (phosphorylated NF-κB) 
(Fig. 6) and the levels of cytokines TNF-α and IL-6 increased at all of the 
concentrations evaluated (Fig. 7). The IL-10 levels did not reach the 
level of detection (data not shown). 

Furthermore, botryosphaeran is able to increase the production of 
iNOS (Fig. 8a and b) and, as a consequence, the production of NO at a 
concentration of 50 μg/mL (Fig. 8c), when compared to the control (p ≤
0.01). 

We also observed an increase in ROS production and a decrease in 
SOD levels at concentrations of 25 and 50 μg/mL, when compared to the 
control (p ≤ 0.01) (Fig. 9). 

Literature studies have reported that β-glucans can act as immuno-
modulators, activating cellular and humoral components and increasing 
the activity of cells such as macrophages binding to cell surface receptor 
sites, such as dectin-1 [55–57]. The binding of β-glucans with dectin-1 
triggers a series of intracellular signaling cascades. Dectin-1 has in its 
tail a motif for the activation of the tyrosine-based immunoreceptor 
(ITAM), which upon binding by β-glucan, the ITAM sequences (tyrosine) 
become phosphorylated by the kinases of the Src family, providing a site 
of connection for Syk anchoring, and initiating subsequent signaling 
events downstream. These events involve the CARD9 adapter, activation 
of protein activation by mitogen kinases (MAP), nuclear factor of 

activated T cells (NFAT), and NF-κB [57]. However, no studies are 
showing the receptor and botryosphaeran interaction, but since it is a 
β-glucan, it can present or trigger similar signaling pathways. Therefore, 
more research is needed. 

L. amazonensis is known to escape the defense of the host by acti-
vating the NF-κB repressor complex, leading to a reduction in NO syn-
thesis [58]. However, in macrophages stimulated with β-glucan, there is 
cooperation between dectin-1 and toll-like receptors (TLRs) acting both 
in a dependent and collaborative manner, triggering inflammatory and 
microbicidal responses [59]. Gantner et al. (2003) demonstrated that 
the binding of β-glucan to dectin-1 results in the phosphorylation of 
ITAM-like, generating intracellular signals that mediate phagocytosis 
and the activation of NADPH oxidase, a mitochondrial enzyme impor-
tant in the synthesis of ROS. In addition, TLR stimulation leads to the 
activation of NF-κB and the production of pro-inflammatory cytokines 
such as TNF-α, IL-12 and iNOS [60,61]. 

For the production of pro-inflammatory cytokines, dectin-1 requires 
cooperative signaling from other TLRs coupled to Myd88, resulting in 
improved translocation of NF-κB to the nucleus, and consequently 
resulting in the induction of multiple cytokines that include TNF-α, IL-6, 
IL-10, IL-12, IL-23, among others [56,57,62–64]. Furthermore, iNOS 
expression can be induced by proinflammatory cytokines, and conse-
quently, there is an increase in NO production in large amounts in 
macrophages activated by external stimuli [65]. 

Lentinan from L. edodes is of the (1 → 3)(1 → 6)-β-D-glucan type, 
which has a similar chemical structure to botryosphaeran, but where the 
side-appendages of both β-glucans differ [11]. In the model of 

Fig. 8. Botryosphaeran increasing the levels of iNOS and NO. Peritoneal macrophages were infected by L. amazonensis and subjected to treatment with botryos-
phaeran at concentrations of 12.5, 25 and 50 μg/mL for 24 h. After culture, the cells were labeled with the primary antibody and subsequently added secondary 
antibodies. The iNOS fluorescence intensity was analyzed by flow cytometer (a, b). NO levels in the culture supernatant were measured by Griess method (c). The 
values represent the mean ± SEM of three independent experiments carried out in triplicate. ** Significant difference compared to the control (p ≤ 0.01), *** (p 
≤ 0.0005). 

Fig. 9. Botryosphaeran decreases the levels of SOD 
and increases ROS levels. Peritoneal macrophages 
were infected by L. amazonensis and subjected to 
treatment with botryosphaeran at concentrations of 
12.5, 25 and 50 μg/mL for 24 h. SOD levels were 
measured by autoxidation of pyragallol (a). The 
H2DCFDA probe was used to measure ROS (b). The 
values represent the mean ± SEM of three inde-
pendent experiments carried out in triplicate. * 
Significant difference compared to the control (p ≤
0.05), ** (p ≤ 0.01), *** (p ≤ 0.0005).   
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L. donovani, Shivahare et al. (2016) observed the immunomodulatory 
effect of lentinan potentiated pro-inflammatory responses, such as IL-12, 
TNF-α and NO [25]. 

In the context of leishmaniasis, a positive regulation of pro- 
inflammatory cytokines, such as TNF-α and IL-6, is associated with the 
induction of a protective response manifested by the production of ROS 
and NO, which together combine to “kill” the pathogen, mainly through 
direct oxidative damage [66,67]. In addition, Leishmania developed 
efficient protection against ROS, inducing the expression of the enzyme 
superoxide dismutase (SOD), whose antioxidant function is capable of 
converting O2

− ∙ into molecular oxygen (O2) [68,69]. 
Thus, the development of a drug with immunomodulatory pro-

prieties that induces the elimination of the parasite would be an ideal 
tool in the fight against infections caused by Leishmania spp, and 
botryosphaeran could become a lead compound for new prototypes of 
antileishmanial drugs. 

4. Conclusion 

Altogether, our results showed that botryosphaeran demonstrated 
leishmanicidal activity in promastigote forms of Leishmania (L.) ama-
zonensis, acting in autophagic, necrotic and apoptotic processes. In 
Leishmania-infected macrophages, an immunomodulatory effect was 
observed, with an increase in NF-κB levels, induced the production of 
TNF-α, IL-6, iNOS, NO and ROS, and decreased levels of SOD, contrib-
uting to the elimination of intracellular amastigote forms. It is important 
to highlight that these data are the first to determine the mechanisms for 
the elimination of L. amazonensis in vitro when treated with a β-glucan, 
more specifically botryosphaeran. As a result, botryosphaeran becomes 
a potential compound for use in vivo assays. 
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