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Genetic variability was linked with individual responses to treatment and susceptibility to
malaria by Plasmodium vivax. Polymorphisms in the CYP2D6 gene may modulate enzyme
level and activity, thereby affecting individual responses to pharmacological treatment. The
aim of the study was to investigate whether or not CYP2D6 single nucleotide
polymorphisms rs1065852, rs38920-97, rs16947 and rs28371725 are unequally
distributed in malaria by Plasmodium vivax individuals from the Brazilian Amazon
region. The blood samples were collected from 220 unrelated Plasmodium vivax
patients from five different endemic areas. Genotyping was performed using
SNaPshot

®
and real-time polymerase chain reaction methods. In all five areas, the

rs1065852 (CYP2D6*10, C.100C > T), rs3892097 (CYP2D6*4, 1846C > T) and
rs16947 (CYP2D6*2, C.2850G > A), as a homozygous genotype, showed the lowest
frequencies. The rs28371725 (CYP2D6*41, 2988G > A) homozygous genotype was not
detected, while the allele A was found in a single patient fromMacapá region. No deviations
from Hardy-Weinberg equilibriumwere found, although a borderline p-value was observed
(p � 0.048) for the SNP rs3892097 in Goianésia do Pará, Pará state. No significant
associations were detected in these frequencies among the five studied areas. For the
SNP rs3892097, a higher frequency was observed for the C/T heterozygous genotype in
the Plácido de Castro and Macapá, Acre and Amapá states, respectively. The distribution
of the CYP2D6 alleles investigated in the different areas of the Brazilian Amazon is not
homogeneous. Further investigations are necessary in order to determine which alleles
might be informative to assure optimal drug dosing recommendations based on
experimental pharmacogenetics.
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INTRODUCTION

Malaria transmission in Brazil is described to hypo-mesoendemic,
unstable and with annual seasonal variations (Oliveira-Ferreira et al.,
2010).Malaria does not occur homogeneously within theAmazon rain
forest, as localities with different levels of transmission have been
detected.Plasmodium vivaxwas responsible formore than 14.3million
malaria cases in the world and 50% of all malaria cases outside the
African continent (Battle et al., 2019). P. vivaxmalaria is an important
public health issue in Brazil, and it accounts for approximately 89% of
clinical cases reported annually (Brasil et al., 2017).

The Brazilian National Malaria Control Program provides
guidelines for treatment and also provides free antimalarials.
Nowadays, the treatment of choice for P. vivax consists of
chloroquine diphosphate (at doses of 10 mg base/kg on the first
day followed by 7.5 mg/kg on the 2nd and 3rd days) combined with
primaquine diphosphate (at a dose of 0.50 kg base/kg for 7 days),
and the second choice is primaquine for 14 days, combined with
blood schizontocidal and hypnozoitocidal therapy (Gomes et al.,
2015). Parasites that appear in thick blood films and are not detected
on the 28 day are considered sensitive. However, the variability of
Plasmodium response to antimalarials limits therapeutic success.
(Wernsdorfer and Noedl, 2003). Treatment failure may result from
resistance of P. vivax strains circulating in a given endemic area. In
addition, other factors including those intrinsic to the host, the
parasite and the antimalarials as well as their interactions contribute
to treatment failure (Baird, 2009).

Variability in drug responses among individuals due to genetic
factors is associated with polymorphisms of genes encoding drug-
metabolizing enzymes

(Chowbay et al., 2005). Cytochrome P450 (CYP) is a superfamily
of proteins responsible for metabolizing different substrates. CYP2D6
phase I enzyme is encoded by CYP2D6, a highly polymorphic gene
(Moreno et al., 2016) which spans 4.3 Kb at the 22q13.1 chromosomal
region.CYP2D6 alleles are classified according to protein functionality
(Llerena et al., 2014; Brasil et al., 2017), and metabolism phenotype
prediction has been used to evaluate the risk for treatment failures and
to avoid recurrence in different therapeutic protocols (Zhou, 2009;
Bennett et al., 2013). The failures of primaquine as an anti-relapse
therapy may be attributed to the patient’s impaired CYP2D6
metabolizer phenotype (Baird et al., 2018; He et al., 2019). Among
the non-functional alleles, CYP2D6*4 polymorphic variant is
prevalent in Caucasians and Africans but is rare in Asians, and
encodes for a “none” predicted enzyme activity. CYP2D6*2 was
referred to encode an enzyme with “normal” activity and its
frequencies were previously shown to be homogeneously
distributed among distinct Brazilian regions (Friedrich et al., 2014).
On the other hand,CYP2D6*10 andCYP2D6*41 are responsible for a
reduction in enzyme activity, prevailing in Asian populations (Silvino
et al., 2020). Brazil has one of the most diverse populations in the
world resulting from five centuries of interethnic breeding between
Europeans, Africans and Amerindians (Pena et al., 2011) and all of
these CYPs are polymorphic in the Brazilian population (Friedrich
et al., 2014). Besides, the Brazilian Amazon presents significant
inequality concerning malaria endemicity. The aim of this study
was to investigate whether or not CYP2D6 allelic and genotypic
frequencies, resulting in three predicted phenotypes, are unequally

distributed in P. vivax malaria patients from five different Brazilian
Amazon areas.

METHODS

Study Setting
The study took place from March 2018 to February 2020 and the
following design is part of a Dissertation/master’s thesis developed at
Federal Fluminense University (Salles, 2020). A subset of patients was
analyzed of unrelated individuals, previously evaluated by Cavasini
et al. (2007) and Cassiano et al. (2015). The endemicity levels of each
study area were obtained by the annual parasite index (API),
accordingly to Lana et al. (2021) in terms of 1 per 1,000
inhabitants. Likewise, 220–70°C frozen peripheral blood samples
were analyzed belonging to P. vivax infection carriers from five
Brazilian malaria endemic areas: Novo Repartimento (n � 57; API
50–200) and Goianésia do Pará, Pará State (n � 80; API >200);
Macapá, Amapá State (n � 44; API 50–200); Porto Velho, Rondônia
State (n � 21; API 10–50); and Plácido de Castro, Acre State (n � 18;
API<10) (Figure 1). The patients enrolled in this study compliedwith
the following criteria: they presented clinical malaria symptoms and
sought medical assistance, were over 18 years old and had positive
results by microscopy (thick film), and infection with P. vivax was
subsequently confirmed by nested polymerase chain reaction (PCR),
followed by signed written informed consent forms. Exclusion criteria
included children and adults under 18 years old, pregnancy, related
individuals and anti-malarial treatment within the previous 7 days.
The study was approved by the Research Ethics Committee (CAAE
06214118.2.0000.5243) from Hospital Universitário Antônio Pedro,
Universidade Federal Fluminense.

Single Nucleotide Polymorphisms
Genotyping
Genomic DNA was isolated from peripheral leukocytes by standard
procedures, using the phenol-chloroformmethod. Genomic regions
including the CYP2D6 SNPs (rs1065852, rs38920-97 and rs16947)
were amplified in a multiplex PCR using QIAGEN Multiplex PCR
Kit according to manufacturer’s instructions. Briefly, reactions were
performed in a final volume of 10 μL, including 5 µL of the
MasterMix 2X (final concentration 1X), 1 µL of DNA at 20 ng/
μL, 2 µL of each primer, sense (5′- 3 ′) and antisense (3′- 5 ′)
(Supplementary Table S1) for the different fragments, 2 µL of Q
solution and 5 µL of sterile nanopure water - QIAGEN,
United States). PCR products were purified using Exonuclease I
and Shrimp Alkaline Phosphatase (10 μL of the PCR product was
added to a 96-well PCR plate on ice. Then, 4.5 μL of the enzymemix
was added to each well (SAP −3.3 µL; EXO 1–0.13 µL and SAP
buffer −1.06 µL). Specific primers were used for single-base
extension using SNaPshot® kit, according to manufacturer’s
instructions. Reactions were carried out in a final volume of
5.5 µL, containing 2.5 µL of the SNaPshot® kit, 0.5 µL of the
primer mix (SNP100, SNP1846 and SNP2850), 1.5 µL of purified
product and 0.5 µL of water (ThermoFisher Scientific,
United States). Purified products underwent capillary
electrophoresis on an ABI3130 Genetic Analyzer (ThermoFisher
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Scientific, United States) using the standard fragment analysis
protocol. GeneMapper software (version 4.0 Thermo Scientific,
Massachusetts, United States) was used for genotyping. Primers
used for PCR amplification and SNaPshot® reactions are detailed in
Supplementary Table S1.

SNP rs28371725 was genotyped by real-time PCR using a
custom rhAmp® genotyping assay, according to manufacturer’s
instructions (Integrated DNA Technologies, United States).
Reactions were run on a 7,500 Real-time PCR system
(ThermoFisher Scientific, United States) using the standard
genotyping protocol.

Statistical Analysis
Statistical analyses were performed in R environment, using the
“gap” packages, χ2 tests were performed to assess possible
deviations from the Hardy-Weinberg equilibrium. Chi-square
test was also performed to compare the CYP2D6 allele and
genotype among regions. Frequencies of each SNP were
compared among the malaria endemic areas using Fisher’s
exact tests and logistic regression models. A p-value ≤0.05 was
considered statistically significant.

RESULTS

Genotypic and allele frequencies of CYP2D6 SNPs were
successfully genotyped in 93% of the samples (Table 1). In all
five areas, SNPs rs1065852 (CYP2D6*10, C.100C > T), rs3892097

(CYP2D6*4, C.1846C > T), rs16947 (CYP2D6*2, C.2850G > A) were
found in low frequencies,mainly in heterozygosity. Notably, allele A at
rs28371725 (CYP2D6*41) was found in a single patient fromMacapá
region, also as a heterozygous genotype. The wild-type alleles C andG,
respectively, were highly frequent in all areas. No significant
associations were detected in these frequencies among the five
studied areas. For the SNP rs3892097 (CYP2D6*4, C.1846C > T),
a higher frequencywas observed for the C/T heterozygous genotype in
Plácido de Castro, Acre state and Macapá, Amapá state. The
polymorphic allele T was detected in a higher frequency in these
areas. All SNPs were at Hardy-Weinberg equilibrium in all areas (all p
values >0.05) except for the SNP rs3892097 (CYP2D6*4, C.1846C >
T) in Goianésia do Pará, Pará state (p � 0.048).

Table 2 summarizes the findings from five previous studies in
which CYP2D6 variants *2, *4, *10 and *41 frequencies were
described for populations from distinct Brazilian regions and
those from the present study. Overall, CYP2D6*2 allele
frequencies in all five areas from the Amazon region are less
frequent than those obtained in other regions from the country.
Other studies have shown higher frequencies for the CYP2D6*41
allele in comparison to the observed for the P. vivax patients
populations, since only one individual in one of the regions
carried this variant. A wide variation was observed for the
CYP2D6*10 allele frequencies within the 5 distinct Brazilian
Amazon regions, a phenomena also verified among the other
Brazilian regions. In the present study, the CYP2D6*4 allele
frequencies were higher than those detected for the majority
of other populations.

FIGURE 1 | Study area of the CYP2D6 genotyping in the Amazon region of Brazil. Plácido de Castro/Acre State–AC (10°16′33″S; 67°09′00″O) is located at the
border of Rondônia and Amazonas states, it has a population of 18,235 inhabitants; Porto Velho/Rondônia State - RO (08°45′43″S; 63°54′14″O) is the capital of the
State of Rondônia in the upper Amazon River basin, with 383,425 inhabitants; Novo Repartimento/Pará State–PA (04°19′50″S; 49°47′47″O) is a gold mining area in
southeastern Pará State. Its population oscillates and is estimated at around 55,759 habitants; Macapá/Amapá State - AP (00°02′20″S; 51°03′59″O) is the capital
of the state of Amapá and is located by the margins of the Amazon River. Its estimated population is 366,486 inhabitants. (Cavasini et al., 2007). and Goianésia do Pará/
Pará State–PA (03°50′33″S; 49°05′49″ O), located in the southeastern region of the State of Pará in the north of Brazil. Its population is estimated as 28,583 habitants
(Cassiano et al., 2015). The climate in these areas is characterized as tropical with no dry season; the mean monthly precipitation level is at least 60 mm. The samples
were recruited at the respective Malaria Diagnosis Centers.
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TABLE 1 | Distribution of genotype and allele frequencies along with confidence intervals among the study areas.

SNP Genotype/
allele

Study areas p-valuea

PLC (n = 18) PVL (n = 21) NRP (n = 57) MCP (n = 44) GNP (n = 80)

CYP2D6*10 rs1065852
(100 C > T)

C/C 16 (88.9%) 16 (76.2%) 40 (70.2%) 36 (81.8%) 64 (80%) 0.7681

95%CI: 65.2–98.6% 95%CI: 52.8–91.8% 95%CI: 56.6–81.6and 95%CI: 67.3–91.8% 95%CI: 69.6–88.1%

C/T 2 (11.1%) 4 (19.0%) 15 (26.3%) 7 (15.9%) 15 (18.7%) —

95%CI: 1.4–34.7% 95%CI: 5.4–41.9% 95%CI: 15.5–39.7% 95%CI: 6.6–30% 95%CI: 10.9–29%

T/T 0 (0%) 1 (4.8%) 2 (3.5%) 1 (2.3%) 1 (1.3%) —

95%CI: 0.0–18.5% 95%CI: 0.1–23.8% 95%CI: 0.4–12.1% 95%CI: 0.06–12% 95%CI: 0.03–6.8%

Allele C 34 (94.4%) 36 (85.7%) 95 (83.3%) 79 (89.8%) 143 (89.4%) 0.3417

95%CI: 81.3–99.3% 95%CI: 71.5–94.6% 95%CI: 75.2–89.7% 95%CI: 81.5–95.2% 95%CI: 83.5–93.7%

Allele T 34 (94.4%) 6 (14.3%) 19 (16.7%) 9 (10.2%) 17 (10.6%) —

95%CI: 0.7–18.7% 95%CI: 5.4–28.5% 95%CI: 10.3–24.8% 95%CI: 4.8–18.5% 95%CI: 6.3–16.5%
HWE 1 0.338 0.6383 0.3647 1 —

CYP2D6*4 rs3892097
(1846 C > T)

C/C 8 (44.4%) 11 (52.4%) 28 (49.1%) 19 (43.2%) 38 (47.5%) 0.5193

95%CI: 21.5–69.2% 95%CI: 29.8–74.2% 95%CI: 35.6–62.7% 95%CI: 28.3–59% 95%CI: 36.2–59%

C/T 9 (50.0%) 9 (42.9%) 21 (36.8%) 22 (50%) 28 (35%) —

95%CI: 26–74% 95%CI: 21.8–65.9% 95%CI: 24.4–50.6% 95%CI: 34.6–65.4% 95%CI: 24.7–46.5%

T/T 1 (5.6%) 1 (4.8%) 8 (14%) 3 (6.8%) 14 (17.5%) —

95%CI: 0.1–27.3% 95%CI: 0.1–23.8% 95%CI: 6.3–25.8 95%CI: 1.4–18.7% 95%CI: 9.9–27.6%

Allele C 25 (69%) 31 (74%) 77 (68%) 60 (68%) 104 (65%) 0.8616

95%CI: 51.9–83.6% 95%CI: 58–86.1% 95%CI: 58.1–76% 95%CI: 57.4–77.7% 95%CI: 57.1–72.4%

Allele T 11 (31%) 11 (26%) 37 (32%) 28 (32%) 56 (35%) —

95%CI: 16.3–48.1% 95%CI: 13.9–42% 95%CI: 24–41.9% 95%CI: 22.3–42.6% 95%CI: 27.6–42.9%

HWE 1 1 0.233 0.488 0.048 —

CYP2D6*2 rs16947
(2850 G > A)

G/G 16 (88.9%) 15 (71.4%) 42 (73.7%) 37 (84.1%) 65 (81.2%) 0.8048

95%CI: 65.3–98.6% 95%CI: 47.8–88.7% 95%CI: 60.3–84.5% 95%CI: 69.9–93.5% 95%CI: 71–89.1%

G/A 2 (11.1%) 5 (23.8%) 13 (22.8%) 6 (13.6%) 14 (17.5%) —

95%CI: 1.4–34.7% 95%CI: 8.2–47.2% 95%CI: 12.7–35.8% 95%CI: 5.2–24.3% 95%CI: 9.9–27.6%

A/A 0 1 (4.8%) 2 (3.5%) 1 (2.3%) 1 (1.2%) —

95%CI: 0–18.5% 95%CI: 0.1–23.8% 95%CI: 0.4–12.1% 95%CI: 0.06–12% 95%CI: 0.03–6.8%

Allele G 34 (94.4%) 35 (83.3%) 97 (85.1%) 80 (90.9%) 144 (90%) 0.3366

95%CI: 81.3–99.3% 95%CI: 68.6–93% 95%CI: 77.2–91.1% 95%CI: 82.9–95.6% 95%CI: 84.3–94.2%

Allele A 2 (5.6%) 7 (16.7%) 17 (14.9%) 8 (9.1%) 16 (10%) —

95%CI: 0.7–18.7% 95%CI: 7–31.4% 95%CI: 8.9–22.8% 95%CI: 4–17.1% 95%CI: 5.8–15.7%

HWE 0.448 0.59 0.294 0.564 0.448 —

CYP2D6*41 rs28371725 (2988 G > A) G/G 16 (100%) 15 (100%) 42 (100%) 43 (97.73%) 65 (100%) n.d

95%CI: 79.4–100% 95%CI: 78.2–100% 95%CI: 91.6–100% 95%CI: 88–100% 95%CI: 94.5–100%

G/A 0 (0%) 0 (0%) 0 (%) 1 (2.27%) 0 (%) —

95%CI: 0.06–12%

A/A 0 (0%) 0 (0%) 0 (%) 0 (0%) 0 (0%) —

Alleles — — — — — —

G 32 (100%) 30 (100%) 84 (100%) 87 (98.86%) 130 (100%) n.d

95%CI: 89.1–100% 95%CI: 88.4–100% 95%CI: 95.7–100% 95%CI: 93.8–100% 95%CI: 97.2–100%

A 0 (0%) 0 (0%) 0 (%) 1 (1.14%) 0 (0%) —

95%CI: 0.03–6.2%

HWE n.d n.d n.d 1 n.d —

Frequencies were determined by direct counting considering the total number of subjects genotyped from each region. Confidence intervals were estimated using the Clopper-Pearson
exact method.
ap values were determined for comparisons between genotype distributions of the different areas using a Chi-square test.
PLC � Plácido de Castro; PVL � Porto Velho; NRP Novo Repartimento; MCP � Macapá; GNP � Goianésia do Pará.
HWE � Hardy-Weinberg equilibrium (p-value).
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DISCUSSION

One of the main treatment challenges in P. vivax malaria is to
achieve an effective and safe radical cure for the patient, since the
frequent relapse episodes, caused by activation of hypnozoites, are
extremely difficult to control due to the absence of biomarkers for
diagnosis and detection of latent forms (Brasil et al., 2018). In addition,
refractory to most antimalarial drugs, hypnozoites are difficult to
eradicate, as they can only be removed by treatment with
primaquine, which may have its effectiveness reduced due to altered
metabolism ofCYP2D6 (Bennett et al., 2013; Pybus et al., 2013). At this
point, the pharmacokinetic understanding of primaquine is very
important to optimize the therapeutic dosage regimen and reduce
infectivity to mosquitoes, by reactivating hypnozoites. It is now known
that for CYP2D6 there are more than 150 major allelic variants (Baird
et al., 2018) and large populations of individuals in endemic areas of
malaria are believed to be affected by null or intermediate phenotypes
of this enzyme (Bains, 2013).

In the present study we chose to report CYP2D6
polymorphisms based not solely on previous published
frequencies but also to provide a scenario of its allele’s
encoding for three predicted phenotypes: “none,” poor
metabolizer and “normal” enzyme activities in P. vivax
malaria patients from five different Brazilian Amazon areas.
The CYP2D6*4 allele is more common in populations with a
marked European contribution (Crews et al., 2014). In our study,
higher frequencies of the heterozygous genotype were found in
two municipalities from bothWestern and Eastern borders of the
Brazilian Amazon (Figure 1). This high frequency of CYP2D6*4,
in populations in Macapá, state of Amapá and in Plácido de
Castro, stare of Acre, can be explained by genetic drift and
bottlenecks (Griman et al., 2012). Additionally, the frequency
of the CYP2D6*4 allele is relatively high in Hispanic populations
(Naranjo, et al., 2016), resulting from the Spanish component in
the population of Plácido de Castro, since the state of Acre
belonged to Bolivia and was incorporated into Brazil about
100 years ago (Machado et al., 2004). The same may have
occurred in the state of Amapá, which has a continuous
immigration of people from French Guiana, whose population
has a predominantly European background (Gomes et al., 2015).
Interestingly, the C > T rs3892097 polymorphism, that
characterizes the allele, is not in Hardy-Weinberg equilibrium
in the population of Goianésia do Pará, suggesting its
introduction by intense

Migratory flow resulting, from the extensive regional gold
mining economic activity. Another possibility is that CYP2D6
participates in the metabolism of countless xenobiotics and,
therefore, has diverse metabolic outcomes with distinct selection
pressures over this allele (Silveira et al., 2009b). We cannot rule
out the possibility that both mechanisms occur in parallel,
characterizing an ongoing process of CYP2D6 metabolic peculiarity
in the population of this area. It is important to point out to
professionals involved in Public Health, especially in malaria
control, that the high frequency of CYP2D6*4 in Goianésia do
Pará, PA, (about 1/3 of the population) results in a chance of
relapse during treatment with the current therapeutic protocol
since carrying this polymorphism results in a poor metabolizer
phenotype. Consequently, individuals treated with the currently
established doses of primaquine could present diminished serum
levels of active metabolites and, consequently, therapeutic failure.

Furthermore, in a previous study in the Rio Pardo agricultural
settlement (Amazon region), P. vivaxmalaria patients were enrolled to
investigate recurrence and the most common CYP2D6 diplotypes
predicting reduced metabolism were *2/*4 (normal-slow
metabolizers; Silvino et al., 2020). In spite of the fact that this
analysis was not performed in the present study, a limitation we
acknowledge, it would be of great interest to investigate the
prevalence of the *2/*4 diplotypes in the malaria exposed
populations, mainly in Macapá and Goianésia do Pará.

CYP2D6*10 is a variation originating in Asian populations
(Crews et al., 2014; Dorji et al., 2019) varying from 3.8 to 5.6%,
in East Asian countries (Hoskins et al., 2005). Previously, a low
frequency of this allele was reported in non-malarial Amerindian
populations in Venezuela (Moreno et al., 2016) and among healthy
individuals inNorthern Brazil (Friedrich et al., 2014), as documented
in the present study. In addition, two studies with malarial
populations in the municipality of Cuiabá, in the state of Mato
Grosso, (Silvino et al., 2016), and in Manaus, state of Amazonas
(Brasil et al., 2018) demonstrated the same profile. In fact, the
frequencies verified in the present study (0–4.8%) is are expected
since, previously, our group reported the estimate of the Amerindian
ethnic contribution to the populations of Porto Velho (Tarazona-
Santos et al., 2011) and Goianésia do Pará (Cassiano et al., 2015),
estimating percentages of 28 and 24.5%, respectively.

The substitution G2988A occur in an intronic region and are
associated with a splicing defect, leading to a lower expression of the
enzyme by quantitatively modulating the splicing events around
exon/intron 6 (Toscano et al., 2006). Few investigations have

TABLE 2 | Frequency distribution of CYP2D6 alleles in distinct populations according to Brazilian regions.

Author Brazilian region Population CYP2D6 allele frequencies

— — — *2 *4 *10 *41

Silveira et al (2009a) Southeast Children LLA — 0.1316 — —

Silveira et al (2009b) Southeast Hospital — 0.0955–0.909 — —

Antunes et al. (2012) Southern Breast cancer 0.1753 0.1443 0.0103 0.0412
Friedrich et al (2014) Four regions Healthy 0.215 0.094 0.0205 0.055
Kohlrausch et al (2009) Southern Healthy 0.125–0.1265 0.0632–0.1033 0.272–0.402 0.0707–0.1092

Southern Schizophrenic 0.182 0.1318 0.215 0.833
Current study Northern (5 areas) P. vivax patients 0.056–0.149 0.310–0.350 0.056–0.167 0–0.011

LLA–Acute Lymphoblastic Leukemia.
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addressed the frequency of CYP2D6*41 in malaria populations in
Brazil (Silvino et al., 2018; Brasil et al., 2018). In the present study a
very low frequency of this SNPwas found, as previously detected in a
Brazilian population (Antunes et al., 2012). Initially, this allele was
reported as common in populations from West and South Asia
(Crews et al., 2014). However, recently, Rodrigues-Soares et al.
(2020) showed that this rare allele, whose frequency varies
between 0 and 16.2% among Ibero-American populations, has a
stronger association with continental ancestry, as predicted by its
European ancestry.

Taken together, the CYP2D6*10, CYP2D6*2, and CYP2D6*41
frequencies in the five areas of the Brazilian Amazon suggest that
they may not affect primaquine metabolism and, if so, ultimately,
would not influence episodes of malaria relapses. Previous
studies among Brazilian populations revealed that
polymorphisms in CYP2D6 are implicated in primaquine
treatment failure and may, in part, explain P. vivax relapses
(Silvino et al., 2016, 2020; Brasil et al., 2018; Daher et al., 2019).
Recently, Silvino and co-authors (2020) showed that time of
exposure to malaria modulates the risk of P. vivax recurrence,
adding new evidence on the immune status as an additional
variable to be considered. These data reinforce the fact that P.
vivax malaria should not be considered as a unique entity in the
largest endemic region of the Americas.

Equally important is the elimination of mature P. falciparum
gametocytes (less than 10% of the malaria cases in Brazil) by
primaquine, since CYP2D6 activity may also impact the treatment
of this species, ultimately influencing malaria transmission profiles in
endemic areas. Indeed, substantial variation in the frequencies of the
CYP2D6 alleles may have a major effect on the current malaria
treatment protocol outcomes. Finally, ifCYP2D6*4 alters the risk of P.
vivax malaria relapses, it can also set a barrier to the success of this
disease control program in Brazil.

In addition, the distribution of the CYP2D6 alleles
investigated in the different areas of the Brazilian Amazon is
not homogeneous. This is a major concern once 90% of all
malaria cases in Brazil are caused by P. vivax. Since the alleles
investigated in the present study do not comprise the full range
of the CYP2D6 genetic variability, future prospective studies
must be conducted. Among them, the clinical impact of
CYP2D6-dependent metabolism of primaquine should be
included to respond whether the Brazilian national malaria
control program can establish genetic-based strategies to
monitor subpopulations at greater risk for malaria relapse.
Indeed, the association of more complex approaches such as
haplotype/diplotype descriptions, CYP copy number and gene
expression, and serum drug level dosages in distinct Brazilian
Amazon populations are needed in order to assure optimal
dosing recommendations based on experimental
pharmacogenetics. Further investigations will be able to
determine which alleles might be informative. If so, these
must also address the potential association CYP2D6
polymorphisms to other factors such as adherence, drug
quality, and parasite tolerance plus incidence and recurrence
of infections. Altogether these data will assure optimal drug
dosing recommendations based on experimental
pharmacogenetics.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the dbSNP,
dbVar, European Variation Archive, DGVa. Requests to access
the datasets should include a letter indicating the intended use
and appropriate approval by your institution. This should be
directed to the corresponding author.

ETHICS STATEMENT

The study was approved by the Research Ethics Committee
(CAAE 06214118.2.0000.5243) from Hospital Universitário
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