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REVIEW

Lipid droplets diversity and functions in inflammation and immune response
Filipe S. Pereira-Dutra and Patrícia T. Bozza

Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil

ABSTRACT
Introduction: Lipid droplets (LDs) are dynamic and evolutionary conserved lipid-enriched organelles 
composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with 
a diverse array of proteins that are cell- and stimulus-regulated. Far beyond being simply a deposit of 
neutral lipids, accumulating evidence demonstrate that LDs act as spatial and temporal local for lipid 
and protein compartmentalization and signaling organization.
Areas covered: This review focuses on the progress in our understanding of LD protein diversity and 
LD functions in the context of cell signaling and immune responses, highlighting the relationship 
between LD composition with the multiple roles of this organelle in immunometabolism, inflammation 
and host-response to infection.
Expert opinion: LDs are essential platforms for various cellular processes, including metabolic regula-
tion, cell signaling, and immune responses. The functions of LD in infection and inflammatory disease 
are associated with the dynamic and complexity of their proteome. Our contemporary view place LDs 
as critical regulators of different inflammatory and infectious diseases and key markers of leukocyte 
activation.
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1. Introduction

Lipids droplets (LDs) are cytoplasmic lipid-enriched organelles 
that can be found virtually in all types of cells, from prokar-
yotes to multicellular eukaryotes [1,2]. Although LD was one of 
the first cellular structures described, these organelles were 
considered passive cytosolic inclusions for more than 
a century [3,4]. This perception has changed dramatically in 
the last three decades, where several studies metamorphosed 
the LDs into multifunction organelles, with crucial functions in 
cell metabolism, lipid biology, and cell signaling [5–7]. 
Furthermore, LD biogenesis and accumulation result from 
the cellular balance between the synthesis and the degrada-
tion of lipids, which play a critical role in energy and redox 
homeostasis [8,9]. LDs’ size, number, spatial organization, and 
functions differ considerably among different cell types and 
even in individual cells in a population [2,7,8]. The plasticity of 
LDs is closely related to the diversity of the lipid and protein 
content of LDs, strongly dependent on the cellular metabolic 
state [10,11].

In the immuno-inflammatory context, LDs formation is part 
of metabolic reprogramming in leukocytes [12–14], and 
a hallmark of the inflammatory process both in the innate 
and adaptive immune response [15–17]. Moreover, the parti-
cipation of LDs in infectious disease pathogenesis has been 
reported for all classes of pathogens, such as viruses, proto-
zoan parasites, bacteria, and fungi [17–19]. Accumulating data 
demonstrate that different roles of LD in infection and inflam-
matory disease have been associated with the dynamic and 
complexity of their proteome in leukocytes, among other cells 

[20–22]. In this context, LDs act as an important scaffold to cell 
signaling [23] and metabolic pathways, mainly lipid metabo-
lism [24] and eicosanoid synthesis [25,26]. In addition, several 
cellular processes associated with LDs are due to these physi-
cal interactions with other organelles, a highly regulated pro-
cess involving several proteins [27,28].

Based on recent advances in LD biology, the focus of this 
article is to review progress in our understanding of LD pro-
tein diversity and functions in the context of inflammation and 
immunity, highlighting the relationship between LD composi-
tion with the multiple roles of this organelle in inflammatory 
mediator production, immunometabolism and host-pathogen 
interactions.

2. LD as central player in lipid homeostasis

Structurally, LD is an endoplasmic reticulum (RE)-derived orga-
nelle [29], delimited by a monolayer of phospholipid asso-
ciated with a diverse composition of proteins, which covers 
a hydrophobic core composed of neutral lipids, mainly triacyl-
glycerol (TAG), diacylglycerol (DAG) and cholesteryl esters 
(CEs) [2,8,30]. Despite the events that lead to the de novo 
formation of LDs are still not fully understood, the current 
biogenesis models suggest that LDs buds from the outer 
leaflet of the ER. Moreover, the biogenesis of LD is triggered 
by neutral lipid synthesis at ER, the primary site where critical 
enzymes involved in neutral lipid synthesis are located, such 
as diacylglycerol O-acyltransferases (DGAT1 and DGAT2) 
[31,32], and acyl-CoA: cholesterol O-acyltransferases/sterol 
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O-acyltransferases (ACAT1/SOAT1 and ACAT2/SOAT2) [33–35], 
responsible for the synthesis of triacylglycerols (TAG) and 
sterol esters (CE), respectively. Of note, in several situations, 

LDs remain in intimate interaction and/or with incorporated 
membranes from ER [36].

LD accumulation is a highly regulated and multiple-step 
process whose mechanisms and mobilized signaling pathways 
are dependent on the cell type involved and stimulatory con-
ditions [15,37]. Beyond increasing the synthesis of neutral 
lipids, the LD biogenesis and accumulation are also reliant 
on other disturbances of lipid metabolism, such as increased 
lipid uptake (e.g. low-density lipoprotein receptor -LDLR and 
CD36), cholesterol efflux, autophagy, and lipid remodeling 
[11,33,38–41]. In addition to the increase of the lipid content 
in the cells, the assembly, biogenesis, and stability of LD are 
also dependent on the participation of LD structural proteins 
[42,43], the perilipin (Plin) family, consisting of five proteins 
previously known as the PAT family of proteins, include Plin1, 
Plin2/ADRP, Plin3/TIP47, Plin4/S3-12, and Plin5/OXPAT/LSDP5 
[42–44]. Recent results have been reported that Plin1a and 
Plin5 were associated with TAG-rich LDs, while Plin1c and 

Figure 1. The role of lipid droplets is dependent on their protein composition. the LD proteome is dynamic and complex, housing numerous proteins, which 
inherently determine functions of LDs observed in different cell types. although the presence of several proteins in LD is not yet understood, several data have 
shown that LDs act as a temporarily protein-storage depot, either to make some proteins inaccessible or to compartmentalize all the proteins involved in the same 
pathway. in immune cells or during the inflammatory response, several proteins are involved in lipid synthesis, lipolysis, eicosanoids synthesis, cell signaling, and 
immune response. it is noteworthy that the same protein may participate in more than one cellular process (image created with BioRender.com).
AA: Arachidonic acid, ADP: adenosine diphosphate, AGPAT3: 1-acylglycerol-3-phosphate O-acyltransferase 3, ATP: adenosine triphosphate, ATGL: Adipose triglyceride lipase, CAMP: 
cathelicidin, CCT: CTP:phosphocholine cytidylyltransferase, cPLA2: Cytosolic phospholipase A2, DAG: diglyceride, COX: cyclooxygenase, EXC4: eoxin C4, FA: fatty acids, FLAP: LO−activating 
protein, G0S2: G0/G1 Switch 2, GPAT4: Glycerol-3-phosphate acyltransferase 4, HSL: Hormone-sensitive lipase, IFI47: Interferon gamma inducible protein 47, IGTP: interferon-inducible 
guanosine triphosphatases, IRAK1: Interleukin 1 Receptor Associated Kinase 1, IRF3: Interferon regulatory factor 3, LO: lipoxygenase, LPLAT: Lysophospholipid acyltransferase, LT: 
Leukotriene, LTC4S: LTC4-synthase, MAG: Monoglycerides, MIF: migration inhibitory factor, PAP: phosphatidic acid phosphatase, PG: prostaglandin, PGES: prostaglandin E synthase, Plin: 
perilipin, PI3K: Phosphoinositide 3-kinases, PKC: Protein kinase C,TAG: triglycerides, TBK1: TANK-binding kinase 1, TGTP1: T-cell-specific guanine nucleotide triphosphate-binding protein 1, 
TNF: Tumor necrosis factor, TRAF6: TNF receptor associated factor 6. 

Article highlights 

● LD accumulation is a highly regulated and multiple-step process 
whose mechanisms and mobilized signaling pathways are dependent 
on the cell type involved and stimulatory conditions.

● The LD proteome is dynamic and complex, housing numerous pro-
teins. The great protein and lipid diversity inherently determine the 
functions of LDs observed in different cell types.

● The physical interactions of LDs with other cell compartments allow 
the exchange of contents and the integration of lipid metabolism.

● The LDs’ interaction with other organelles also has to be highlighted 
as a key process in the host-pathogen interaction, both in pro-host 
response and pathogens survival and replication.

● In leukocytes and other cells of the immune response, LDs are central 
organelles in cell signaling, inflammatory mediator production and 
immunometabolic reprogramming.
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Plin4 with CE-rich LDs, and finally, Plin2 and Plin3 were 
observed in both types of LDs [45].

LDs also have an active role in lipid metabolism, both in 
synthesizing neutral lipids and the release of fatty acid by 
lipolysis [32,46,47]. LD is an important site for neutral lipids 
synthesis during lipid loading, especially triglycerides (TAG) 
[31,32]. The synthesis of TAG on LD is mainly due to transloca-
tion ER-to-LD targeting of at least one isoform of the multi-
enzyme complex that catalyzes the all sequential reactions 
involved in TAG synthesis from glycerol and fatty acids, includ-
ing glycerol-3-phosphate O-acyltransferase 4 (GPAT4), 1-acyl-
glycerol-3-phosphate O-acyltransferase 3 (AGPAT3), 
phosphatidic acid phosphatase/Lipin (PAP/Lipin), and DGAT2 
[31,32,46,48] (Figure 1).

The LD-associated proteome has been reported the pre-
sence of two of the three main lipases involved in the hydro-
lysis of TAG, the adipose triglyceride lipase (ATGL) and 
hormone-sensitive lipase (HSL/LIPE), that cleaves the first 
and second fatty acid in the TAG, respectively [49,50]. In this 
case, the translocation of ATGL and HSL to LD is essential for 
lipolysis [49,51,52]. Moreover, the mechanism of regulation of 
TAG degradation is highly dependent on LD location of both 
Comparative Gene Identification-58 – (CGI-58)/ 1-acylglycerol- 
3-phosphate O-acyltransferase (ABHD5) [53–55], and ATGL 
coactivator protein, as well as the ATGL inhibitory protein (G0/ 
G1 switch gene2 – G0S2) [56]. The regulation of lipolysis also 
involves the participation of structural proteins of LDs [57,58]. In 
this context, Plin1, Plin2, and Plin3 sterically shield LDs from 
lipolysis, and the degradation of these proteins acts as 
a prerequisite to stimulate both ATGL lipolysis and macrolipo-
phagy [24,59,60]. Furthermore, Plin1 also restricts basal lipolysis 
by sequestering CGI-58 reversibly [55], while Plin5 has a central 
role in promoting and regulating lipolysis [49,50]. In this case, 
Plin5 promoting ATGL and HSL recruitment to LDs [49,52] and 
possibly forming high-molecular-weight assemblies Plin5- CGI- 
58 – ATGL is important in the regulation of lipolysis rates [50]. 
However, this mechanism does not happen on all cell types 
since the expression of Plin1 and Plin5 are limited to adipocytes 
and oxidative tissue [43,61,62]. Alternatively, hypoxia-inducible 
protein 2 (HIG2)/hypoxia-inducible lipid droplet-associated 
(HILPDA) have been reported as an inhibitor of ATGL- 
mediated lipolysis in macrophages [63,64]. Although the 
mechanism of inhibition of ATGL by HILPDA has not yet been 
fully elucidated, extensive homology shared between HILPA 
and G0S2 indicates that the mechanism of ATGL-inhibition of 
these proteins may be analogous [65,66].

In contrast to the synthesis of triglycerides in LDs, sterol 
esterification and phospholipid metabolism likely do not loca-
lize to LDs or happen in a more limited way in these orga-
nelles. Despite cholesterol ester being the predominant lipid 
in LDs in several cell types, especially in macrophages [34,67– 
70], ACAT enzymes seem to reside only at luminal ER [71,72]. 
Although ACAT could be located at RE in close proximity to 
LDs [35], the absence of esterification of cholesterol ester in 
LDs leaves several open questions about how the flow of 
cholesterol ester occurs from ER to growing LD. Still, in cho-
lesterol metabolism, several Hydroxysteroid dehydrogenase 

family proteins (HSDs) have been localized on LDs, suggesting 
the ability of LDs to convert cholesterol to hormones [73]. The 
presence of phosphocholine cytidylyltransferase (CCT), cytoso-
lic phospholipase A2 (cPLA2) [23,74], and lysophospholipid 
acyltransferases (LPLAT1 and LPCAT2) [75] suggested partici-
pation of these organelles in de novo biosynthesis and remo-
deling of phosphatidylcholine [75–77]. Moreover, cPLA2 
activity also involves LD biogenesis [41,78–80] and eicosanoids 
synthesis onto LDs [74,80].

3. The functions of LDs in inflammation and 
immunity are dependent on their protein 
composition

The LD proteome has been reported as dynamic and complex, 
housing numerous proteins [20,36,81,82]. The great protein and 
lipid diversity inherently determine the functions of LDs 
observed in different cell types [15–17,24,83]. Moreover, LDs 
composition depends on the metabolic state of cells and stimu-
latory conditions [20,84,85]. Several data have shown that LDs 
act as a temporary protein-storage depot, and two distinct pro-
cesses seem to be taking place, the protein sequestration and 
the spatial compartmentalization of cell pathways [5,20,86–88]

LDs’ role as protein-sequestration sites has been associated 
with the down-regulation of the ability of hijacked proteins to 
interact with binding partners [7,8,15]. In addition, LD’s pro-
tein-sequestration may also avoid ER stress and the cytotoxic 
potential of unfolded and damaged proteins [81,83,87,89]. 
Moreover, hijacked proteins in LD can be targeted to protein 
degradation by the proteasome or autophagy [90–92] and 
protein delivery to the target site [22,58,93]. These strategies 
were especially noted for histones in the LDs of Drosophila 
embryos. Despite being a cationic protein canonically involved 
in the formation and maintenance of nucleosomes [94], his-
tones are cytotoxic when located in excess in the cytoplasm 
[94–96]. Compartmentalization of histones on LDs and 
involved the participation of the LD protein Jabba [97], they 
are released according to the demand generated by DNA 
replication [97] or in response to the presence of bacterial 
cell wall components [93].

It is now widely appreciated that that LDs also act as sites 
compartmentalizing entire signaling and metabolic pathways 
[23,58,98]. In this process, the LD acts as a scaffolding structure 
allowing all proteins of the same pathway to be assembled in the 
same site, facilitating the occurrence of several cellular processes 
[16,17,29]. Moreover, LD’s compartmentalization of signaling and 
metabolic pathways are also involved in inflammatory and infec-
tious diseases [26,30,99]. However, the mechanisms that lead to 
protein sequestration or compartmentalization of a pathway in 
LDs are not fully elucidated. In the immune response, the LD 
proteome has been associated mainly with lipid homeostasis, 
eicosanoids synthesis, innate immune response, and cell signal-
ing (Figure 1), which will be explored further below.

3.1. LDs as a platform for the synthesis of inflammatory 
mediators

Substantial evidence has demonstrated that LDs are specialized 
intracellular sites for eicosanoid synthesis, often associated with 
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the inflammatory, infectious and neoplastic processes [40,100– 
105]. Eicosanoids are bioactive lipids derived from enzymatic 
oxygenation of arachidonic acid via the cyclooxygenase (COX) 
and lipoxygenase (LO) pathways [4,26]. Eicosanoids act in sev-
eral cellular processes, including tissue homeostasis, host 
defense, and inflammation [16,26,106,107]. Several studies 
have demonstrated that the orchestration of each lipid media-
tor by its time, duration, and magnitude is essential for the 
biological function of eicosanoids [4,108].

LDs are one of the main storage sites of arachidonic acid 
(AA), esterified in phospholipids on the LD monolayer and 
triglycerides at the LD core. In leukocytes, electron micro-
scopic autoradiographic studies with radiolabeled arachido-
nate demonstrated that exogenous AA was incorporated 
prominently in LDs of eosinophils, neutrophils, macro-
phages, mast cells, and epithelial cells [109–112]. Lipid ana-
lysis of purified LDs obtained by subcellular fractionation 
demonstrated that arachidonate was incorporated predomi-
nantly in the phospholipid pool of eosinophils; whereas 
arachidonic acid-containing neutral lipids appear to be the 
major store of arachidonic acid in monocyte/macrophages, 
neutrophils and mast cells [23,113,114]. Moreover, in LD 
proteome also have phospholipases (e.g. cPLA2) and lipases 
(e.g. ATGL and HSL), key enzymes for the mobilization of 
arachidonic acid esterified within phospholipids or triglycer-
ides, respectively [23,47,110,114,115]. In addition to these 
enzymes, LDs compartmentalize the entire enzymatic 
machinery for eicosanoid synthesis, including activating 
kinases involved in the arachidonic acid mobilization path-
way (ERK1/2, p38, and p85) [23], and all relevant eicosanoid- 
forming enzymes (COX-1, COX-2, 5-LO, 5-LO−activating pro-
tein, 15-LO, LTC4-synthase, and PGE-synthase) [40,105]. The 
compartmentalization of all this machinery causes LDs to be 
capable of rapid arachidonic acid mobilization to produce 
several eicosanoids, in especial prostaglandins and leuko-
trienes [4,23,25,108] (Figure 1). As a result of this process, 
stimuli that induce or inhibit LD formation also coordinately 
enhance or inhibit eicosanoid synthesis, respectively, in 
a dose-dependent manner [15,26]. Direct proof of eicosa-
noid synthesis occurring within LDs came after the devel-
opment of a lipid immunolabeling technique termed 
EicosaCell [108]. Since eicosanoids are newly formed and 
non-storable, this method enable to immobilize and label 
eicosanoids at the exact locale of their synthesis and has 
given further insight into the functions of LDs in subcellular 
protein organization and signaling.

During inflammatory and/or infectious stimulation, it has 
been experimentally demonstrated that LDs could be the 
main sites of production of eoxin C4 (EXC4) [103], leukotriene 
B4 (LTB4) [40,116], leukotriene C4 (LTC4) [40,117], prostaglan-
din D2 (PGD2) [104], prostaglandin E2 (PGE2) [102,118,119] 
and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) [120] 
depending on the stimulus in different cell types. Other 
data further indicate that LDs probably are the main synth-
esis site of cysteinyl leukotriene (Cys-LT) [121], lipoxin B4 

(LXB4) [12], and prostaglandin F2alpha (PGF2α) [12,122], 
due to the stronger correlation reported between LD 

accumulation and the generation of these eicosanoids. 
Interestingly, despite the strong correlation between LD 
accumulation and synthesis of several eicosanoids in the 
literature, the connection of LDs and the synthesis of media-
tors derived from eicosapentaenoic acid (EPA) and docosa-
hexaenoic acid (DHA), including resolvins, protectins, and 
maresines, are still poorly investigated.

3.2. LDs as an innate immune hub

Innate immune receptors, including TLR2 and TLR4, and 
nuclear receptors play major roles in infection-driven LD bio-
genesis [17]. TLRs activated by pathogens and/or pathogen- 
derived molecules trigger signaling pathways that are 
involved in the formation of LDs in host infected cells and 
also trigger the indirect mechanisms of activation of bystander 
amplification-induced system through host-generated cyto-
kines and chemokines, thus suggesting that LDs as an integral 
part of innate immune response.

Indeed, LDs are now recognized as central players in inter-
feron (IFN) responses, both in signaling pathways and the effec-
tiveness of the response [92,123,124]. Moreover, LDs are required 
to enhance the synthesis of IFNs in infected cells, which is 
important for an effective early innate response to viral infection 
[124,125]. IFNs constitute a large signaling protein family, which 
regulate a myriad of proteins critical to the innate host response 
against microbial infections [126–128]. INF signaling also is a key 
modulator of lipid metabolism [70,129] and LD’s protein compo-
sition [130–132].

Recent studies have established that LDs are functional 
hubs for innate immune proteins induced by interferon 
response [92,123–125]. During the immune response, multi-
ple INF-inducible GTPases (IRGs) have found clustered with 
PLIN2 on LD proteome, including immunity-related GTPase 
M (IRGM1 and IRGM3)/Interferon-inducible guanosine tri-
phosphatases (IGTP), Interferon-inducible GTPase 1 (IIGP1), 
T-cell-specific guanine nucleotide triphosphate-binding pro-
tein 1 (TGTP1), and Interferon-gamma inducible protein 47 
(IFI47) [58,133]. The IRGs are involved in controlling several 
host defense processes essentials to the degradation of 
pathogen/parasite-containing vacuoles, including the pha-
gocyte oxidase, antimicrobial peptides, and autophagy 
effectors [127,133–136]. Furthermore, the same data have 
been suggested that IRGs onto LDs are also involved in the 
cross-presentation of antigens in the dendritic cell 
[18,132,137]

The participation of LDs in innate cell-autonomous resis-
tance also involves the compartmentalization of two potent 
antimicrobial proteins, the viperin [123,130,138] and the cathe-
licidin [133]. Viperin is a radical S-adenosylmethionine (SAM) 
enzyme regulated by IFN response to viral infection 
[131,139,140]. Viperin inhibits viral entry, replication, assembly, 
and budding through its physical interaction with several viral 
proteins, as well as its enzymatic action, catalyzing the produc-
tion of the 3ʹ-deoxy-3ʹ,4ʹ-didehydro-cytidine triphosphate 
(ddhCTP), an endogenous antiviral molecule [123,139,141– 
144]. In turn, cathelicidins are cationic peptides with 
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antimicrobial and immunomodulatory functions [145,146]. Due 
to their physicochemical characteristics as cationic peptides, 
cathelicidins can bind and inducing cell membrane damage, 
leading to microbial cell death [146–148]. Interestingly, the 
antibacterial mechanism of cathelicidins is similar to the one 
proposed for histones, the first antibacterial proteins to be 
reported to be loading to LDs in Drosophilas [93]. It is note-
worthy that both viperin [149] and cathelicidin [150] have 

already been reported as essential modulators of lipid metabo-
lism, which reinforces the interconnection of LDs’ metabolic 
and immunological roles.

The autonomous immune response mechanism also con-
nects with innate immune signaling. In this context, LD- 
localized viperin also might act as a scaffold for TLR7, TLR9, 
and Stimulator of Interferon Genes (STING) pathways, facilitat-
ing the production of type I IFN in immune cells [151,152]. In 

Figure 2. Lipid droplet–organelle contacts. Lipid droplets (LD) interact with nearly all organelles in the cell, including endoplasmic reticulum (ER), mitochondria, 
lysosome, peroxisome, and endosome. although the molecular basis for many of these contacts remains poorly understood, each LD interaction with other 
organelles is associated with specific proteins, implicated both in tethering structure as well as the organization of LDs contact sites are shown. although each 
organelle’s contacts are represented here as distinct and spatially separate, recent data has been demonstrated that individual LDs can participate in contacts with 
multiple organelles simultaneously. tethering mechanisms that are thus far undefined are indicated by a question mark (image created with BioRender.com).
ABCD1: ATP-binding cassette, sub-family D (ALD), member 1, ACSL acyl-CoA synthetase, CAMP: Cathelicidin, DGAT2:diacylglycerol acyltransferase 2, FATP1: fatty acid transport protein 1, 
FIT2: Fat storage-inducing transmembrane protein 2, IGTP: Interferon gamma-induced GTPase, IRF3: Interferon regulatory factor 3, IST1/CHMP1B: Vacuolar protein sorting-associated protein 
IST1 /Charged multivesicular body protein 1b, MIGA2: Mitoguardin 2, MFN2: mitofusin 2, RILD: Rab-interacting lysosomal protein, NRZ: NAG–RINT1–ZW10 complex, PLIN: perilipin, SNARE: 
soluble NSF attachment receptor, SNAP23: Synaptosomal-associated protein 23, Snx14: Sorting Nexin 14, ORP2: oxysterol binding protein (OSBP)-related protein 2, VPS: Vacuolar protein 
sorting proteins, VAP: VAMP-associated proteins (VAPs), VAMP: Vesicle-associated membrane protein. 
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this process, viperin recruits IRAK1 and TNF receptor- 
associated factor 6 (TRAF6) in a stimulation-dependent man-
ner to LDs [151]. The co-localization of IRAK1 and TRAF6 by 
LD-localized viperin facilitates K63-linked ubiquitination of 
IRAK1 by TRAF6, which results in the interferon regulatory 
factor 7 (IRF7)-mediated induction of type I IFN production 
[151]. A similar role for LD-localized viperin in STING signaling 
was described in response to dsDNA, where viperin hijacking 
TANK-binding kinase 1 (TBK1) and STING, promoting the acti-
vation of TBK1 and, consequently, interferon production [152].

3.3. LDs as cellular signaling scaffold

Several well-established proteins with roles in key cell signal-
ing have been reported within LDs [23,58,132]. In the LDs of 
leukocytes, some of the main protein kinases were found in 
LDs proteome, including Phosphoinositide 3-kinase (PI3K) sub-
units (p55, p88a, p88b), Mitogen-activated protein (MAP) 
kinases (ERK1, ERK2, and p38), Lyn tyrosine Kinase (Lyn), and 
Protein kinase C (PKC) [23,153–155]. In addition to the pre-
sence of these several kinases, functional studies demonstrate 
that LDs are important players in signal transduction and cell 
proliferation in inflammatory and neoplasic conditions 
[156,157].

Activation of LD associated proteins controls the rate of 
lipolysis of triglycerides, which is dependent on phosphoryla-
tion by PKA and PKC [158,159]. The phosphorylation of Plin1 
(p-Plin1) leads to its dissociation from the GCI-58 factor, which 
promotes the activation of ATGL [49]. Moreover, p-Plin1 
recruits HSL to LDs surface via the N-terminal region [51,98], 
favoring the phosphorylation and activation of HSL by PKC 
and ERK1/2 kinase pathways in adipocytes [51,52,160,161].

The presence of cPLA2, PKC, PI3K, and MAP kinases on the 
surface of LDs are also key elements in regulating biological 
processes that occurs in LDs, particularly the lipolysis and the 
synthesis of eicosanoids [23,26,153]. The release of arachidonic 
acid and subsequent production of eicosanoids, cause PKC, 
PI3K, and MAPK/ERK to also have an important role in cPLA2 
phosphorylation and activation [23,162–164]. In this context, 
the cPLA2 and MAPK hijacking to the same site of the target 
proteins may facilitate the signaling involved in the activation 
of lipolysis and the release of AA esterified within phospholi-
pids at the surface of LDs while ATGL have roles in releasing 
AA from triglicerydes [23,47,110,114,115].

4. LD interaction with other organelles enable 
bidirectional flux of contents

In addition to the protein hijacking to LDs, several cellular 
processes associated with LDs are due to these physical inter-
actions with other cell compartments, including the ER, mito-
chondria, peroxisomes, Golgi apparatus, lysosomes, and 
endosomes [85,119,165–171]. The interorganelle contacts 
involve the membrane contact sites (MCS), specialized regions 
of the organellar membranes in close apposition between two 
organelles [172]. MSCs are established and maintained by 
protein tethering structures, which keep the two membranes 
close but without their fusion [172,173].

Mechanisms mediating and controlling LD association with 
other organelle are still not fully understood. Still, several data 
suggested that membrane trafficking proteins are a central 
player in this phenomenon, particularly SNARE protein 
[174,175] and the prenylated proteins of Rab GTPases family 
[76,165,175]. Furthermore, several articles highlighting the 
participation of Plin proteins in LD interaction with other 
organelles [58,176–178], both participating directly in the for-
mation of tethering structures, as well as recruiting other 
proteins (Figure 2).

The MSCs favor the exchange of proteins and lipids 
between the LD and other organelles [27,172]. In particular, 
the interaction of LD with RE, mitochondria, and peroxisome 
may allow the coordination and regulation of the flux of lipid 
metabolites and the integration of lipid metabolism [179,180]. 
The lipid metabolism integration permits the lipids synthe-
sized in the ER to be stored in the LDs, which later would be 
transferred lipids to various organelles, including mitochondria 
and peroxisomes [28,181]. On the other hand, the LDs’ inter-
action with other organelles also has to be highlighted as 
a key process in the host-pathogen interaction [58,182,183], 
both in pro-host response and pathogens survival and 
replication.

4.1. LD-ER interaction

The LD-ER interaction is the most frequent interaction invol-
ving LDs [27,181]. Besides ER-derived organelles, LDs emerge 
as organelles that are partially or entirely distinct from the ER, 
and some data still indicate that LD could contain remnant ER- 
derived membranes [88,166]. Moreover, several data have 
shown overlap of the mechanisms involved in the LD-ER con-
tact site with those related to the LD biogenesis cause all 
proteins involved in the LD-ER tethering structure are inti-
mately involved in the LD biogenesis [8,88].

In the ER–LD contact site structure, Rab18 has been 
reported to be a key protein in maintaining these structures 
[175]. In this process, LD’s Rab18 was found to physically 
associate with an ER-associated complex comprising the NRZ 
complex (with its subunits NAG, RINT1, and ZW10), associated 
with SNARE (Syntaxin 18, Use1, BNIP1) [175]. Still, in this con-
text, Plin2 mediated the recruitment of Rab18 to LDs, formed 
a complex Plin2-Rab18-ACSL3 that contributed to TAG accu-
mulation in myoblasts [184]. In addition to Rab18-NRZ-SNARE 
tether complex, ER-localized proteins Seipin [185,186], DFCP1 
[187,188], fat-storage-inducing transmembrane protein 2 
(FIT2) [189], human VPS13 protein (VPS13A and VPS13C) 
[190], OSBP-related proteins (ORP2) and its partner VAMP- 
associated proteins (VAP) [191], sorting nexin protein Snx14 
[192], and Fatty acid transport protein 1 (FATP1)–DGAT2 com-
plex [193] are also involved in LD-RE contact site. Interestingly, 
deletions or mutations in each of these proteins profoundly 
impact the number of contact sites and the amount of LD 
[194–201], suggesting that these proteins might act together, 
possibly through the formation of a macromolecular complex. 
However, this hypothesis still needs validation.

In addition to lipid metabolism integration, LD biogenesis 
and probably the maintenance LD-ER contact site could also 
contribute management of ER stress to unfolded protein, 
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a widespread consequence of inflammation and pathogenic 
infection [9,83,175,202]. On the other hand, LD-ER tethering 
protein could also be involved in the subversion of LD to 
support viral replication sites [28]. In this context, Rab18- 
mediated membrane trafficking of viral proteins to LDs facil-
itates viral replication and assembly [203–205]. The physical 
association between LDs and sites of viral replication is 
mediated by association Rab18 with the virus protein, such 
as HCV NS5A [203,204] or DENV NSP3 [205]. Furthermore, LD- 
associated protein PLIN3/TIP47 is an important mediator of 
anchorage of Hepatitis C Virus (HCV) nonstructural protein 5A 
(NS5A) and core protein [206,207], and the Dengue Virus 
(DENV) core protein [208] on LDs. The involvement of other 
proteins of LD-RE tethering structure in host-pathogens inter-
action still needs to be investigated, especially in leukocytes.

4.2. LD-mitochondria interaction

The LD-mitochondria contact is one of the most frequent and 
complex interactions involved with LDs in a wide variety of 
cell types, including the leukocytes [49,58,176,209]. 
Interestingly, LD structural proteins have been associated as 
the central player in LD-mitochondria interaction, particularly 
Plin1 and Plin5. In adipocytes under lipolytic conditions, the 
tethering structures between LD-mitochondria have been 
associated with Plin1 and the mitochondrial-associated pro-
tein MFN2 [178]. In contrast, the Plin5 was the principal pro-
tein responsible for the LD-mitochondria interaction in 
oxidative tissues [49,58,176]. Additionally, the participation of 
SNAP23, a SNARE protein [174], and Rab32 [210,211] in LD- 
mitochondria interaction was also associated with FA-induced 
LDs lipolysis to increase β-oxidation in adipocytes and hepa-
tocytes, respectively.

In the meantime, the LD-mitochondria interaction is more 
complex than simply supplying lipids for β-oxidation. Recent 
data have been reported a more stable coupled between LD- 
mitochondria, also known as peridroplet mitochondria. Unlike 
isolated mitochondria, peridroplet mitochondria have reduced 
beta-oxidation capacity and promote LD expansion by provid-
ing ATP for triglyceride synthesis [168]. Curiously, these prop-
erties of peridroplet mitochondria were also associated with 
the expression of Plin5 [168]. The interaction LD-mitochondria 
favoring the synthesis of neutral lipids was also observed in 
the triple bound mitochondria-RE-LD when the MIGA2 binds 
directly to LDs and with VAP proteins in the ER [167]. One 
hypothesis that can explain these two sides of LD- 
mitochondria interaction is the existence of two types of con-
tacts between these organelles, one more dynamic and 
another more stable [212]. However, the proteins involved in 
each process still need further investigation.

The interaction between LD-mitochondria is also a key element 
in regulating and modulating cellular metabolism in the inflam-
matory environment [58,209]. In this context, the dissociation of 
LD-mitochondria is essential for bacterial infections-triggered 
immunometabolic reprogramming in macrophages and liver 
[58,209]. In the liver, the dissociation of the LD-mitochondria 
interaction happens due to the decrease in the expression of 
Plin5, co-occurring with the increase of Plin2 and the clustering 
of several immune-related proteins on LDs [58]. Furthermore, 

maintenance of the association between LD- mitochondria in 
leukocytes was associated with amplifying cell damage in sepsis 
[209]. In this case, the oxidative microenvironment favors the 
oxidation of protein and lipid components of LDs in intimate 
contact with dysfunctional mitochondria, leading to an amplifica-
tion of oxidative stress, both in macrophages and in the liver [209]. 
However, further details of this process still need to be better 
investigated. In leukocytes, the absence of Plin1 and Plin5 expres-
sion indicating that alternative mechanisms must be present in 
the LD-mitochondria interaction.

4.3. LD-endosomes interaction

During the parasite and bacterial infections, LDs are redistributed 
or recruited to the vicinity of pathogen-containing phagosome 
through mechanisms that involve complex pathogen- and host- 
derived signaling [119,213,214]. Physical interactions between LDs 
and phagosomes has been demonstrated, enabling bidirectional 
content exchange between LDs and phagosomes containing 
pathogens [100,118,215–217]. In Mycobacterium bovis infection, 
the late endosome protein Rab7 and its protein effector Rab- 
interacting lysosomal protein (RILP) were shown essential to the 
interaction between LD and M. bovis containing-phagosomes and 
also involves pathogen-derived cell wall molecules including 
lipoarabinomannan and PIM [165]. In turn, the capture and trans-
location of LD into the chlamydial inclusion have been associated 
with chlamydial protein Lda3 [218], probably forming a tethering 
structure between LDs and the inclusion membrane. Altogether, 
LD-phagosome interactions are controlled pathogen compo-
nents, which enables the exchange of contents between LDs 
and phagosomes, and may represent a fundamental aspect of 
bacterial pathogenesis and immune evasion

The simultaneous presence of several Rab proteins, both LDs 
and EEs, probably strongly suggests that they may be involved in 
physical interaction between these organelles and/or the triple 
contact sites between EE-LD-RE [219,220]. Recent data have been 
reported 26 different Rab GTPases reside in the LD proteome, 
representing 20% of total proteins [85,90]. These findings corro-
borate the detection of Rab5 and Rab11 on purified LDs [220]. 
Moreover, several LD-resident Rab proteins are also present in 
early endosomes (EE), including Rab5, Rab8, Rab11, Rab13, 
Rab14, Rab15, and Rab21 [58,90,182]. Interestingly, the enrich-
ment of Rab proteins in LDs happened concomitantly with the 
clusterization of antibacterial proteins in the LDs following lipo-
polysaccharide (LPS) stimulation [58]. Collectively, these data 
suggest Rab proteins may be involved in the LD-EE MSC, favoring 
the delivery of antibacterial proteins from LDs to phagosome- 
containing bacteria. Furthermore, among the Rab proteins 
enriched in the proteome of LDs, Rab14 and Rab34 deserve to 
be highlighted [58]. Both Rab14 and Rab34 are involved in anti-
gen cross-presentation [221,222], which reinforces the participa-
tion of LDs in antigen presentation.

4.4. LD interaction with peroxisomes and lysosomes

Despite the interaction between LDs with peroxisomes and 
lysosomes often seen in various cell types, proteins associated 
with these processes remain to be elucidated [180,223]. In LD- 
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peroxisome interaction, M1 Spastin’s seems to be the principal 
protein in the LD-peroxisomes complex. The M1 Spastin’s have 
dual roles in LD-peroxisomes complex, directly participant da 
tether structure with peroxisomal -associated ABCD1, and 
recruiting membrane-shaping endosomal sorting complexes 
required for transport (ESCRT-III) components (IST1 and 
CHMP1B) to LD-peroxisome contact sites for FA trafficking 
[169]. However, the participation of peroxisomes in repro-
gramming the metabolism of macrophages is not yet fully 
understood.

LD-lysosome contact has been associated with autophagy- 
dependent processing of LDs, also known as macrolipophagy 
or lipophagy [223–225]. In this context, several indications 
suggest that autophagic cell machinery might be mediating 
LD-lysosome interaction [225–227]. However, it still needs to 
be validated. Another mechanism for LD-lysosomes interac-
tion is through chaperone-mediated autophagy (CMA), lyso-
somal proteolysis carried by heat shock protein 70 (HSP70), 

and lysosome-associated membrane protein 2A (LAMP-2A) 
[228]. In this context, the degradation of Plin2 and Plin3 by 
CMA is a prerequisite to stimulate both ATGL lipolysis and 
macrolipophagy [57]. Beyond that, the induction of lipophagy 
is one mechanism in which the virus can subvert the lipid 
metabolism by increasing cellular β-oxidation, which gener-
ates ATP and can be used in viral replication and assembly 
[194,229,230].

5. Lipid droplet in the immunometabolism context

In the inflammatory context, LD formation is part of anabolic and 
glycolytic programming of pro-inflammatory leukocytes [12–14]. 
The activation of TLR, in especial TLR2, TLR3, TLR4, TLR5, TLR6, 
and TLR9, have been reported as key elements in the induction 
of LD accumulation in leukocytes [68,124,231–233]. Furthermore, 
TLR-driven LD biogenesis is a multimediated process that 

Figure 3. Lipid droplets biogenesis in inflammation and infection. lipid droplet (LDs) biogenesis is a highly regulated process involving several receptors of innate 
immunity, including TLR, which recognize pathogens or PAMPs (LAM, LPS). moreover, several cytokines (MCP-1/CCL2, TNF) and lipid mediator molecules (5-HETE, 
PAF, and PAF-like molecules) also induced the LDs accumulations. activation of the receptors of these molecules (TLR, TNF-R, PAF-R) started a complex signaling 
cascade (5-LO, STAT-6, Myd88, TRIF, IRAK, TRAF, MENO, IKK) that culminates in the activation of several transcription factors, such PPAR-γ, NFκB and or HIF1α. the 
activation of these transcription factors directly or indirectly increasing of the expression of several proteins involved in lipid synthesis (SREBPs, LXR/FXR, FASN, 
DGAT1, DGAT2, and ACAT1), lipid uptake (CD36, LDL-R), and autophagy as well as LD’s structural proteins (Plin2 and Plin3). these transcription factors activation also 
decrease in expression and activity of lipolytic enzymes (ATGL), reduction of mitochondrial β-oxidation. this metabolic reprogramming favors the increase of 
synthesis or intracellular accumulation of fatty acid (FA) and cholesterol (C) and of their esterification in the form of cholesterol ester (CE) and triglycerides (TAG) by 
ACAT1 and DGAT1, respectively. all these events culminate in LD biogenesis and accumulation (image created with BioRender.com).
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involves the increase of the expression of several receptors 
involved in lipid uptake and transport [214,233–235], decrease 
in expression of lipolytic enzymes [233,235], reduction of mito-
chondrial β-oxidation [183,195,196,236] and LD biogenesis 
[233,237]. The biogenesis of LD downstream of TLR activation is 
stronger dependent on de novo lipid synthesis, and in fact, the 
inhibition of the liponeogenesis severely impaired the LD accu-
mulation [119,238] (Figure 3). Recent results have shown that 
each TLRs induces distinct lipidomes in macrophages, with sig-
nificant changes in the main classes of lipids [197]. Since different 
TLRs recognize pathogens, different roles of this organelle in 
several infectious and inflammatory models can be due to mod-
ifications on quantities and variety of lipid composition of LDs.

The TLR-driven pathways also involve the activation of several 
transcription factors, such as Hypoxia Inducible Factor (HIF), Liver 
X receptor (LXR), Peroxisome Proliferator-Activated Receptors 
(PPARs), and Sterol Regulatory Element-binding protein 
(SREBPs) [12,38,198–201,214,216,239,240]. Members of the sub-
family of these nuclear receptors are important sensors of the 
intracellular lipid environment and modulators of the expression 
of key genes in lipid synthesis, fatty acid uptake, cholesterol 
efflux, lipolytic enzymes, and LD biogenesis [38,39]. The regula-
tion of lipid metabolism also involving the participation of other 
transcription factors in macrophages, including Pregnane 
X Receptors (PXRs), Vitamin D Receptor (VDR), REV-ERBα, the 
Nuclear Receptor 4A (NR4A), Farnesoid X Receptors (FXRs), and 
Estrogen-Related Receptors (ERRs) [241–248]. However, the par-
ticipation of these transcription factors in LD accumulation in 
leukocytes during infection still needs further investigation.

Among transcription factors involved in LD accumulation, 
PPARs have been the most explored during the inflammation 
and infectious processes. PPARs are expressed by leukocytes, 
including lymphocytes, dendritic cells, and macrophages 
[38,249]. Several studies have demonstrated that the expression 
and function of the PPARs are regulated by bacterial compo-
nents [198,250,251] and are often associated with LD biogen-
esis in leukocytes. Moreover, PPARs are highly expressed in 
foam cells within atherosclerotic lesions [252]. PPAR can directly 
impact LD formation, triggering de novo lipogenesis by mod-
ulating the expression of several genes, including fatty acid 
synthase (FASN) and Plin2, one of the principal LD structural 
proteins [253–255]. In BCG infection, PPARγ expression and LD 
formation largely depend on fatty acids translocase CD36 acti-
vation in association with CD11b/CD18 and CD14 compartmen-
talized on lipid rafts [214]. Moreover, there is a crosstalk of 
PPARs and other lipid metabolism regulatory factors, such as 
LXR and SREBPs [39]. PPAR functions counteregulate the role of 
NFκB, since have opposite roles in TLR2-triggered LD formation 
in BCG infection [214].

Furthermore, several molecules produced during the 
inflammatory response act in a paracrine manner, inducing 
LD formation, including lipid mediators, cytokines, and che-
mokines [116,118,119,215,231,256,257]. In this context, several 
pathways have been reported to accumulate from different 
stimuli, with intense cross-talk between these signals 
[116,237,258–260]. For example, Platelet-activating factor 
(PAF) or PAF-like induced LD formation through G protein- 
coupled PAF receptor, a mechanism dependent on 5-lipoxy-
genase (5-LO) activity to form 5(S)-hydroxyeicosatetraenoic 

acid (5-HETE) in polymorphonuclear leukocytes (PMN) 
[258,261]. In turn, PAF-induced LD biogenesis requires new 
protein synthesis that may be amplified by PPARγ activation 
and has intense crosstalk with chemokine ligand 2 (CCL2/ 
MCP-1) signaling [237,258–260]. CCL2, also directly induces 
a dose-dependent increase in the numbers of cytoplasmic 
LDs in resident peritoneal macrophages through its cognate 
receptor CCR2, MAP kinases, ERK, and PI3K downstream sig-
naling and requires the maintenance of a well-organized 
microtubule [116]. These redundant LD-triggering mechan-
isms indicated a central role of these organelles in the 
response of leukocytes.

In infectious disease, the participation of LDs has been 
reported for all classes of pathogens, from viruses [208,262] 
to protozoa [217,263], including bacteria [231,264] and fungi 
[265]. Host LDs may also be exploited to adapt higher specia-
lized pathogens to escape the immune system and as an 
energy source for intracellular pathogens survival and/or repli-
cation [93,130,133]. However, recent results have been pro-
moting a drastic transformation of the role of LDs in the 
infectious and inflammatory context. In this new perspective, 
several works have been shown a pro-host role of LDs 
[12,58,93,130,133]. In the pro-host context, LD improving the 
immune response act as an innate immune hub [58], as well as 
an important platform for the production of a broad range of 
host protective eicosanoids, such as leukotriene B4 (LTB4) and 
prostaglandins E2 (PGE2) [12,116]. In addition, the synthesis of 
neutral lipids and LD accumulation are important enhancers of 
the pro-inflammatory profile of macrophages [14,121].

As a site of production of different eicosanoids, the LDs are 
also intimately involved in paracrine, autocrine, and/or intra-
crine signal transduction of these molecules in immune cells 
[4,103]. Furthermore, an expressive correlation has been 
reported in several models between LD accumulation and 
synthesis and/or secretion of several cytokines, mainly those 
regulated by eicosanoids [121,257,266]. For example, in neu-
trophils was observed an LTC4 paracrine signal-transduction 
pathway that mediates the secretion of eosinophil granules, 
including cytokine IL-4 [266]. When the LD accumulation is 
impaired, the LTC4 is inhibited, and consequently, the IL-4 
secretion is impaired [266]. And a similar phenomenon may 
be happening in other models. In pro-inflammatory macro-
phages, LDs inhibition has been followed by the decreasing of 
the expression of IL-6 and IL-1β, whose phenomenon can be 
reversed by the replacement of PGE2 [14]. In SARS-COV-2 
infected-monocytes, the LD biogenesis impaired by DGAT1 
inhibitor was followed by reduction of cysLT and LTB4 synth-
esis and decreasing of CXCL10, IL-6, IL-8, and TNF [121]. And 
similarly, the blockade of LD accumulation also decreasing the 
PGE2 synthesis and IL-10 levels in Mycobacteria sp and 
Trypanosoma cruzi infected-macrophages [118,119,231]. LDs 
may also have a direct role in the secretion of some cytokines 
because TNF and macrophage migration inhibitory factors 
(MIF) were reported in LDs from leukocytes [237,267,268]. 
However, the biological implication of a direct association 
between these cytokines and LDs remains to be understood.

Interestingly, LD accumulation has also been reported in 
anti-inflammatory macrophages, also known as M2. 
Although M2 metabolic programming of macrophages has 
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been associated with lipolytic metabolism [269–271], some 
stimuli can trigger LD accumulation in anti-inflammatory 
profiles, too [231,239,272]. The presence of LD in an anti- 
inflammatory context was first observed in host-pathogen 
interaction, particularly in M.bovis, Mycobacterium leprae, 
and Trypanosoma cruzi infection [119,232,238,257]. In these 
models, LDs act as the site of PGE2 synthesis, associated 
with a decrease in Th1-type cytokines and an increase in 
interleukin- 10 (IL-10), favoring the pathogen survival 
[238,239,264]. Moreover, apoptotic cells also can enhancer 
the LDs accumulation in M2-like phenotypes of macro-
phages [119]. More recently, the association of LDs and 
PGE2 synthesis was also observed in macrophages stimu-
lated murine adipose-derived conditioned medium (ASCcm) 
[272]. Interestingly, the application of these ASCcm polar-
ized-macrophages has a protective action in experimental 
colitis and sepsis [273]. Although the mechanisms that lead 
to LDs in M2 macrophages are not yet fully elucidated, 
some indications suggest that the mTOR/PPARγ pathway 
regulates both LD biogenesis and macrophage plasticity 
[214,272,274]. However, open questions remain how LD 
are regulated and contribute to the different macrophage 
phenotypes.

6. Expert opinion

It is now widely appreciated that the range of the LD’s role 
have expanded from its original description as a lipid storage 
compartment to a full-range cellular organelle that actively 
participates in immunity and inflammation. Studies of LD 
composition and structural features have revealed that LDs 
contain a diverse array of proteins in addition to lipids. 
Accumulating evidence has indicated that LDs have a much 
more complex and plastic structure and composition than 
initially anticipated. According to the cell and stimulatory 
condition, LDs may compartmentalize a distinct set of pro-
teins, and the heterogeneity of LD composition may deter-
mine different cellular functions. Our contemporary view of 
LDs places this organelle as an important regulator of different 
metabolic, inflammatory, and infectious diseases and a key 
leukocyte activation marker. In leukocytes and other cells 
involved in immunity and infectious conditions, LDs have 
been shown to have central roles in compartmentalizing the 
synthesis of inflammatory mediators leading to the heigh-
tened production of eicosanoids, cytokines and participating 
in the amplification of the inflammatory response.

Moreover, LDs are also sites for antimicrobial protein 
localization. Notably, LD biogenesis is highly induced during 
infection and is often found in close proximity to the ER, 
phagosomes, and mitochondria. LDs exhibit roles in host 
defense, but some pathogens have evolved strategies to 
explore LDs as escape mechanisms by highjack LDs for 
exploitation as a nutrient source and subverting the host 
immune response.

Although great advances in the understanding of the 
mechanisms of LD biogenesis and its roles in lipid metabo-
lism and inflammatory mediator production have been 
achieved, critical questions remain about the formation 

and the functions that lipid droplets play in infectious dis-
eases. In conclusion, recent studies have identified LDs as 
multifunctional organelles with key functions in lipid sto-
rage and cell signaling in inflammation and immunity, and 
as such, they are emerging as attractive target candidates 
for therapeutic intervention. Future studies will be necessary 
to characterize the role of LDs as targets for therapeutic 
intervention in infectious diseases that progress with 
increased LD accumulation.
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